Exploring the Molecular Composition of Dissolved Organic Matter and Its Connection to Microbial Communities in Industrial-Scale Anaerobic Digestion of Chicken Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Sources
2.2. Bulk Measurements Analysis of DOMs
2.3. Molecular Compositions of DOM Analyzed by FT-ICR MS
2.4. Microbial Community Structure Analyzed by High-Throughput Sequencing
2.5. Data Processing
3. Results and Discussion
3.1. Bulk Properties of Characteristics of CM Digestate-Derived DOM
3.2. Molecular Composition of CM Digestate-Derived DOM by FT-ICR MS
3.3. Microbial Structure Composition Analysis of CM Digestate-Derived DOM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, Y.; Yang, Q.; Bartocci, P.; Wei, H.; Liu, S.S.; Wu, Z.; Zhou, H.; Yang, H.; Fantozzi, F.; Chen, H. Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials. Renew. Sustain. Energy Rev. 2020, 127, 109842. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.; Zhang, Z.; Pan, J. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, C.; Gao, B.; Wu, Y.; Ao, Y.; Ma, S.; Jiménez, N.; Zheng, L.; Huang, F.; Tomberlin, J.K. Insights into the reduction of antibiotic-resistant bacteria and mobile antibiotic resistance genes by black soldier fly larvae in chicken manure. Ecotoxicol. Environ. Saf. 2023, 266, 115551. [Google Scholar] [CrossRef]
- Wu, S.; Ni, P.; Li, J.; Sun, H.; Wang, Y.; Luo, H.; Dach, J.; Dong, R. Integrated approach to sustain biogas production in anaerobic digestion of chicken manure under recycled utilization of liquid digestate: Dynamics of ammonium accumulation and mitigation control. Bioresour. Technol. 2016, 205, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Das, D.; Kim, S.C.; Cho, B.-K.; Kalia, V.C.; Lee, J.-K. Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew. Sustain. Energy Rev. 2021, 150, 111491. [Google Scholar] [CrossRef]
- Song, Y.; Qiao, W.; Zhang, J.; Dong, R. Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review. Energies 2023, 16, 4675. [Google Scholar] [CrossRef]
- Khan, M.U.; Ahring, B.K. Improving the biogas yield of manure: Effect of pretreatment on anaerobic digestion of the recalcitrant fraction of manure. Bioresour. Technol. 2021, 321, 124427. [Google Scholar]
- Zou, J.; Liu, X.; Xu, S.; Chen, M.; Yu, Q.; Xie, J. Combined hydrothermal pretreatment of agricultural and forestry wastes to enhance anaerobic digestion for methane production. Chem. Eng. J. 2024, 486, 150313. [Google Scholar] [CrossRef]
- Akhiar, A.; Battimelli, A.; Torrijos, M.; Carrere, H. Comprehensive characterization of the liquid fraction of digestates from full-scale anaerobic co-digestion. Waste Manag. 2017, 59, 118–128. [Google Scholar] [CrossRef]
- Yekta, S.S.; Hedenström, M.; Svensson, B.H.; Sundgren, I.; Dario, M.; Enrich-Prast, A.; Hertkorn, N.; Björn, A. Molecular characterization of particulate organic matter in full scale anaerobic digesters: An NMR spectroscopy study. Sci. Total Environ. 2019, 685, 1107–1115. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Li, L.; Huang, Y.; Fu, Q.-L.; Wang, D.; Zhang, W. Photochemical transformation mechanisms of dissolved organic matters (DOM) derived from different bio-stabilization sludge. Environ. Int. 2022, 169, 107534. [Google Scholar] [CrossRef] [PubMed]
- Dwinandha, D.; Elsamadony, M.; Gao, R.; Fu, Q.-L.; Liu, J.; Fujii, M. Interpretable machine learning and reactomics assisted isotopically labeled FT-ICR-MS for exploring the reactivity and transformation of natural organic matter during ultraviolet photolysis. Environ. Sci. Technol. 2023, 58, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, C.; Hao, Z.; Kondo, G.; Fujii, M.; Fu, Q.-L.; Wei, Y. Comprehensive understanding of DOM reactivity in anaerobic fermentation of persulfate-pretreated sewage sludge via FT-ICR mass spectrometry and reactomics analysis. Water Res. 2023, 229, 119488. [Google Scholar] [CrossRef] [PubMed]
- Pasalari, H.; Gholami, M.; Rezaee, A.; Esrafili, A.; Farzadkia, M. Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: A systematic review. Chemosphere 2021, 270, 128618. [Google Scholar] [CrossRef]
- Hou, J.; Chen, Z.; Gao, J.; Xie, Y.; Li, L.; Qin, S.; Wang, Q.; Mao, D.; Luo, Y. Simultaneous removal of antibiotics and antibiotic resistance genes from pharmaceutical wastewater using the combinations of up-flow anaerobic sludge bed, anoxic-oxic tank, and advanced oxidation technologies. Water Res. 2019, 159, 511–520. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, Z.; Cao, W.; Feng, Q.; Liu, J.; Wu, Y.; Feng, L.; Wang, D.; Luo, J. Untangling the interplay of dissolved organic matters variation with microbial symbiotic network in sludge anaerobic fermentation triggered by various pretreatments. Water Res. 2024, 260, 121930. [Google Scholar] [CrossRef]
- Rice, E.W.; Bridgewater, L.; Association, A.P.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Lu, D.; Qian, T.; Le, C.; Pan, C.; Cao, S.; Ng, W.J.; Zhou, Y. Insights into thermal hydrolyzed sludge liquor-Identification of plant-growth-promoting compounds. J. Hazard. Mater. 2021, 403, 123650. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.C.; Kroger, M.; Kneebone, L.R. Comparative protein studies (kjeldahl, dye binding, amino acid analysis) of nine strains of Agaricus bisporus (Lange) IMBACH MUSHROOMS. J. Food Sci. 1997, 42, 364–366. [Google Scholar] [CrossRef]
- Luo, H.; Lyu, T.; Muhmood, A.; Xue, Y.; Wu, H.; Meers, E.; Dong, R.; Wu, S. Effect of flocculation pre-treatment on membrane nutrient recovery of digested chicken slurry: Mitigating suspended solids and retaining nutrients. Chem. Eng. J. 2018, 352, 855–862. [Google Scholar] [CrossRef]
- Hu, A.; Zheng, Y.; Wang, Z.; Li, M.; Wang, D.; Zhang, W. Tracking the transformation pathway of dissolved organic matters (DOMs) in biochars under sludge pyrolysis via reactomics and molecular network analysis. Chemosphere 2023, 342, 140149. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, N.; Fujii, M.; Bao, Z.; Wei, J.; Hao, Z.; Fu, Q.-l.; Gao, R.; Liu, J.; Wei, Y. Insights into the roles of DOM in humification during sludge composting: Comprehensive chemoinformatic analysis using FT-ICR mass spectrometry. Chem. Eng. J. 2023, 475, 146024. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Bai, Y.; Li, X.; Ye, J.; Liao, H.; Cui, P.; Yu, Z.; Zhou, S. Linking microbial community structure with molecular composition of dissolved organic matter during an industrial-scale composting. J. Hazard. Mater. 2021, 405, 124281. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Chen, W.; Qian, C.; Chen, Z.; Chen, G.-L.; Yu, H.-Q. Using Rayleigh Scattering to Correct the Inner Filter Effect of the Fluorescence Excitation–Emission Matrix. Anal. Chem. 2023, 95, 12273–12283. [Google Scholar] [CrossRef] [PubMed]
- Britto, D.T.; Kronzucker, H.J. NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, W.; Zhang, J.; Liu, X.; Jin, Y.; Li, S.; Qu, J.; Wang, W. Comparison of Pb adsorption and transformation behavior induced by chichken manure and its DOM in contaminated soil. J. Environ. Chem. Eng. 2024, 861, 160611. [Google Scholar]
- Kong, Y.; Wang, G.; Tang, H.; Yang, J.; Yang, Y.; Wang, J.; Li, G.; Li, Y.; Yuan, J. Multi-omics analysis provides insight into the phytotoxicity of chicken manure and cornstalk on seed germination. Sci. Total Environ. 2023, 861, 160611. [Google Scholar] [CrossRef]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef]
- Abid, W.; Mahmoud, I.B.; Masmoudi, S.; Triki, M.A.; Mounier, S.; Ammar, E. Physico-chemical and spectroscopic quality assessment of compost from date palm (Phoenix dactylifera L.) waste valorization. J. Environ. Manag. 2020, 264, 110492. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lyu, T.; Dong, R.; Liu, H.; Wu, S. Dynamic evolution of humic acids during anaerobic digestion: Exploring an effective auxiliary agent for heavy metal remediation. Bioresour. Technol. 2021, 320, 124331. [Google Scholar] [CrossRef]
- Chen, W.; Westerhoff, P.; Leenheer, J.A.; Booksh, K. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Aryal, R.; Lebegue, J.; Vigneswaran, S.; Kandasamy, J.; Grasmick, A. Identification and characterisation of biofilm formed on membrane bio-reactor. Sep. Purif. Technol. 2009, 67, 86–94. [Google Scholar] [CrossRef]
- Qiu, X.; Chen, M.; Wu, P.; Li, Y.; Sun, L.; Shang, Z.; Wang, T.; Dang, Z.; Zhu, N. Influence of dissolved organic matter with different molecular weight from chicken manure on ferrihydrite adsorption and re-release of antimony(V). J. Environ. Manag. 2024, 358, 120883. [Google Scholar] [CrossRef] [PubMed]
- Vadstein, O.; Andersen, T.; Reinertsen, H.R.; Olsen, Y. Carbon, nitrogen and phosphorus resource supply and utilisation for coastal planktonic heterotrophic bacteria in a gradient of nutrient loading. Mar. Ecol. Prog. Ser. 2012, 447, 55–75. [Google Scholar] [CrossRef]
- He, P.; Huang, Y.; Qiu, J.; Zhang, H.; Shao, L.; Lü, F. Molecular diversity of liquid digestate from anaerobic digestion plants for biogenic waste. Bioresour. Technol. 2022, 347, 126373. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Ming, Y.; Zhang, Y.; Zhang, Q. Unraveling the role of black soldier fly larvae in chicken manure conversion: Facilitating maturation and enhancing humification. Sci. Total Environ. 2024, 952, 175952. [Google Scholar] [CrossRef]
- Arakawa, N.; Aluwihare, L.I.; Simpson, A.J.; Soong, R.; Stephens, B.M.; Lane-Coplen, D. Carotenoids are the likely precursor of a significant fraction of marine dissolved organic matter. Sci. Adv. 2017, 3, e1602976. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, A.; Peng, L.; Luo, S.; Zeng, Q.; Shao, J. Physiological characteristics and toxin production of Microcystis aeruginosa (Cyanobacterium) in response to DOM in anaerobic digestion effluent. Sci. Total Environ. 2019, 685, 902–910. [Google Scholar] [CrossRef]
- Yuan, R.; Shen, Y.; Zhu, N.; Yin, C.; Yuan, H.; Dai, X. Pretreatment-promoted sludge fermentation liquor improves biological nitrogen removal: Molecular insight into the role of dissolved organic matter. Bioresour. Technol. 2019, 293, 122082. [Google Scholar] [CrossRef] [PubMed]
- Suksong, W.; Tukanghan, W.; Promnuan, K.; Kongjan, P.; Reungsang, A.; Insam, H.; O-Thong, S. Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion. Bioresour. Technol. 2020, 296, 122304. [Google Scholar] [CrossRef]
- Zainudin, M.H.M.; Singam, J.T.; Sazili, A.Q.; Shirai, Y.; Hassan, M.A. Indigenous cellulolytic aerobic and facultative anaerobic bacterial community enhanced the composting of rice straw and chicken manure with biochar addition. Sci. Rep. 2022, 12, 5930. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Liu, R.; Cai, R.; Liu, F.; Sun, C. Iocasia fonsfrigidae NS-1 gen. nov., sp. nov., a Novel Deep-Sea Bacterium Possessing Diverse Carbohydrate Metabolic Pathways. Front. Microbiol. 2021, 12, 725159. [Google Scholar] [CrossRef] [PubMed]
- Otto, P.; Puchol-Royo, R.; Ortega-Legarreta, A.; Tanner, K.; Tideman, J.; de Vries, S.-J.; Pascual, J.; Porcar, M.; Latorre-Perez, A.; Abendroth, C. Multivariate comparison of taxonomic, chemical and technical data from 80 full-scale an-aerobic digester-related systems. bioRxiv 2023. [Google Scholar] [CrossRef]
- Huang, S.; Shen, M.; Ren, Z.J.; Wu, H.; Yang, H.; Si, B.; Lin, J.; Liu, Z. Long-term in situ bioelectrochemical monitoring of biohythane process: Metabolic interactions and microbial evolution. Bioresour. Technol. 2021, 332, 125119. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-tiêt, A.; Puente-Sánchez, F.; Bertilsson, S.; Aalto, S.L. Identification of bacteria involved in non-sulfate based hydrogen sulfide production in an aquaculture environment. bioRxiv 2024. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, D.-Z.; Fan, J.-Q.; Sun, Y.-C.; Jin, W.-L.; Li, J.-C.; Deng, J.; Xu, J. Current regulates electron donors for heterotrophic and autotrophic microorganisms to enhance sulfate reduction in three-dimensional electrode biofilm reactors. Chem. Eng. J. 2024, 500, 157150. [Google Scholar] [CrossRef]
- Wang, X.; Lyu, T.; Dong, R.; Wu, S. Revealing the link between evolution of electron transfer capacity of humic acid and key enzyme activities during anaerobic digestion. J. Environ. Manag. 2022, 301, 113914. [Google Scholar] [CrossRef]
Indicators | TN | PO43− | TK | NH4+-N | pH | EC |
---|---|---|---|---|---|---|
Value | 5100 ± 100 | 26.1 ± 10 | 3366.7 ± 57.7 | 4506 ± 12.8 | 8.14 ± 0.01 | 32.2 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zeng, Y.; Hu, A.; Wang, X. Exploring the Molecular Composition of Dissolved Organic Matter and Its Connection to Microbial Communities in Industrial-Scale Anaerobic Digestion of Chicken Manure. Toxics 2025, 13, 49. https://doi.org/10.3390/toxics13010049
Hu J, Zeng Y, Hu A, Wang X. Exploring the Molecular Composition of Dissolved Organic Matter and Its Connection to Microbial Communities in Industrial-Scale Anaerobic Digestion of Chicken Manure. Toxics. 2025; 13(1):49. https://doi.org/10.3390/toxics13010049
Chicago/Turabian StyleHu, Juan, Yurui Zeng, Aibin Hu, and Xiaofeng Wang. 2025. "Exploring the Molecular Composition of Dissolved Organic Matter and Its Connection to Microbial Communities in Industrial-Scale Anaerobic Digestion of Chicken Manure" Toxics 13, no. 1: 49. https://doi.org/10.3390/toxics13010049
APA StyleHu, J., Zeng, Y., Hu, A., & Wang, X. (2025). Exploring the Molecular Composition of Dissolved Organic Matter and Its Connection to Microbial Communities in Industrial-Scale Anaerobic Digestion of Chicken Manure. Toxics, 13(1), 49. https://doi.org/10.3390/toxics13010049