The Role of Prenatal Exposure to Lead and Manganese in Child Cognitive Neurodevelopment at 18 Months: The Results of the Italian PHIME Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Power Calculation
2.3. Ethics
2.4. Exposures
2.5. Chemical Analysis
2.6. Outcome Definition and Measurement
2.7. Covariates
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shetty, S.S.; Deepthi, D.; Harshitha, S.; Sonkusare, S.; Naik, P.B.; Kumari, N.S.; Madhyastha, H. Environmental Pollutants and Their Effects on Human Health. Heliyon 2023, 9, e19496. [Google Scholar] [CrossRef] [PubMed]
- Landrigan, P.J.; Kimmel, C.A.; Correa, A.; Eskenazi, B. Children’s Health and the Environment: Public Health Issues and Challenges for Risk Assessment. Environ. Health Perspect. 2004, 112, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Faustman, E.M.; Silbernagel, S.M.; Fenske, R.A.; Burbacher, T.M.; Ponce, R.A. Mechanisms Underlying Children’s Susceptibility to Environmental Toxicants. Environ. Health Perspect. 2000, 108 (Suppl. S1), 13–21. [Google Scholar] [CrossRef]
- Kothapalli, C.R. Differential Impact of Heavy Metals on Neurotoxicity during Development and in Aging Central Nervous System. Curr. Opin. Toxicol. 2021, 26, 33–38. [Google Scholar] [CrossRef]
- Farías, P.; Hernández-Bonilla, D.; Moreno-Macías, H.; Montes-López, S.; Schnaas, L.; Texcalac-Sangrador, J.L.; Ríos, C.; Riojas-Rodríguez, H. Prenatal Co-Exposure to Manganese, Mercury, and Lead, and Neurodevelopment in Children during the First Year of Life. Int. J. Environ. Res. Public. Health 2022, 19, 13020. [Google Scholar] [CrossRef] [PubMed]
- Rehman, Q.; Rehman, K.; Akash, M.S.H. Heavy Metals and Neurological Disorders: From Exposure to Preventive Interventions. In Environmental Contaminants and Neurological Disorders; Akash, M.S.H., Rehman, K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 69–87. ISBN 978-3-030-66376-6. [Google Scholar]
- Singh, N.; Sharma, B. On the Mechanisms of Heavy Metal-Induced Neurotoxicity: Amelioration by Plant Products. Proc. Natl. Acad. Sci. USA India Sect. B Biol. Sci. 2021, 91, 743–751. [Google Scholar] [CrossRef]
- Avila, D.S.; Puntel, R.L.; Aschner, M. Manganese in Health and Disease. Met. Ions Life Sci. 2013, 13, 199–227. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, R.C.; Mukhopadhyay, S.; McBride, D.; Veevers, J.; Harrison, F.E.; Aschner, M.; Haynes, E.N.; Bowman, A.B. Brain Manganese and the Balance between Essential Roles and Neurotoxicity. J. Biol. Chem. 2020, 295, 6312–6329. [Google Scholar] [CrossRef]
- Lucchini, R.G.; Guazzetti, S.; Zoni, S.; Benedetti, C.; Fedrighi, C.; Peli, M.; Donna, F.; Bontempi, E.; Borgese, L.; Micheletti, S.; et al. Neurofunctional Dopaminergic Impairment in Elderly after Lifetime Exposure to Manganese. Neurotoxicology 2014, 45, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Sanders, A.P.; Claus Henn, B.; Wright, R.O. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature. Curr. Environ. Health Rep. 2015, 2, 284–294. [Google Scholar] [CrossRef]
- Heng, Y.Y.; Asad, I.; Coleman, B.; Menard, L.; Benki-Nugent, S.; Hussein Were, F.; Karr, C.J.; McHenry, M.S. Heavy Metals and Neurodevelopment of Children in Low and Middle-Income Countries: A Systematic Review. PLoS ONE 2022, 17, e0265536. [Google Scholar] [CrossRef]
- Nowakowski, R.S.; Hayes, N.L. CNS Development: An Overview. Dev. Psychopathol. 1999, 11, 395–417. [Google Scholar] [CrossRef] [PubMed]
- Andiarena, A.; Irizar, A.; Molinuevo, A.; Urbieta, N.; Babarro, I.; Subiza-Pérez, M.; Santa-Marina, L.; Ibarluzea, J.; Lertxundi, A. Prenatal Manganese Exposure and Long-Term Neuropsychological Development at 4 Years of Age in a Population-Based Birth Cohort. Int. J. Environ. Res. Public Health 2020, 17, 1665. [Google Scholar] [CrossRef] [PubMed]
- Soler-Blasco, R.; Murcia, M.; Lozano, M.; González-Safont, L.; Amorós, R.; Ibarluzea, J.; Broberg, K.; Irizar, A.; Lopez-Espinosa, M.-J.; Lertxundi, N.; et al. Prenatal Manganese Exposure and Neuropsychological Development in Early Childhood in the INMA Cohort. Int. J. Hyg. Environ. Health 2020, 224, 113443. [Google Scholar] [CrossRef] [PubMed]
- Valeri, L.; Mazumdar, M.M.; Bobb, J.F.; Claus Henn, B.; Rodrigues, E.; Sharif, O.I.A.; Kile, M.L.; Quamruzzaman, Q.; Afroz, S.; Golam, M.; et al. The Joint Effect of Prenatal Exposure to Metal Mixtures on Neurodevelopmental Outcomes at 20-40 Months of Age: Evidence from Rural Bangladesh. Environ. Health Perspect. 2017, 125, 067015. [Google Scholar] [CrossRef] [PubMed]
- Gundacker, C.; Forsthuber, M.; Szigeti, T.; Kakucs, R.; Mustieles, V.; Fernandez, M.F.; Bengtsen, E.; Vogel, U.; Hougaard, K.S.; Saber, A.T. Lead (Pb) and Neurodevelopment: A Review on Exposure and Biomarkers of Effect (BDNF, HDL) and Susceptibility. Int. J. Hyg. Environ. Health 2021, 238, 113855. [Google Scholar] [CrossRef]
- Vorvolakos, T.; Arseniou, S.; Samakouri, M. There Is No Safe Threshold for Lead Exposure: A Literature Review. Psychiatriki 2016, 27, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, T.E.; Lanphear, B.P.; Auinger, P.; Hornung, R.; Epstein, J.N.; Braun, J.; Kahn, R.S. Association of Tobacco and Lead Exposures with Attention-Deficit/Hyperactivity Disorder. Pediatrics 2009, 124, e1054–e1063. [Google Scholar] [CrossRef] [PubMed]
- Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; et al. Low-Level Environmental Lead Exposure and Children’s Intellectual Function: An International Pooled Analysis. Environ. Health Perspect. 2005, 113, 894–899. [Google Scholar] [CrossRef]
- Needleman, H.L.; Riess, J.A.; Tobin, M.J.; Biesecker, G.E.; Greenhouse, J.B. Bone Lead Levels and Delinquent Behavior. JAMA 1996, 275, 363–369. [Google Scholar] [CrossRef]
- Nigg, J.T.; Knottnerus, G.M.; Martel, M.M.; Nikolas, M.; Cavanagh, K.; Karmaus, W.; Rappley, M.D. Low Blood Lead Levels Associated with Clinically Diagnosed Attention-Deficit/Hyperactivity Disorder and Mediated by Weak Cognitive Control. Biol. Psychiatry 2008, 63, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Bihaqi, S.W.; Zawia, N.H. Enhanced Taupathy and AD-like Pathology in Aged Primate Brains Decades after Infantile Exposure to Lead (Pb). Neurotoxicology 2013, 39, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Jedrychowski, W.; Perera, F.P.; Jankowski, J.; Mrozek-Budzyn, D.; Mroz, E.; Flak, E.; Edwards, S.; Skarupa, A.; Lisowska-Miszczyk, I. Very Low Prenatal Exposure to Lead and Mental Development of Children in Infancy and Early Childhood: Krakow Prospective Cohort Study. Neuroepidemiology 2009, 32, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Polanska, K.; Hanke, W.; Pawlas, N.; Wesolowska, E.; Jankowska, A.; Jagodic, M.; Mazej, D.; Dominowska, J.; Grzesiak, M.; Mirabella, F.; et al. Sex-Dependent Impact of Low-Level Lead Exposure during Prenatal Period on Child Psychomotor Functions. Int. J. Environ. Res. Public. Health 2018, 15, 2263. [Google Scholar] [CrossRef] [PubMed]
- Shah-Kulkarni, S.; Ha, M.; Kim, B.-M.; Kim, E.; Hong, Y.-C.; Park, H.; Kim, Y.; Kim, B.-N.; Chang, N.; Oh, S.-Y.; et al. Neurodevelopment in Early Childhood Affected by Prenatal Lead Exposure and Iron Intake. Medicine 2016, 95, e2508. [Google Scholar] [CrossRef]
- Jia, Z.; Zhang, H.; Yu, L.; Qiu, F.; Lv, Y.; Guan, J.; Gang, H.; Zuo, J.; Zheng, T.; Liu, H.; et al. Prenatal Lead Exposure, Genetic Factors, and Cognitive Developmental Delay. JAMA Netw. Open 2023, 6, e2339108. [Google Scholar] [CrossRef]
- Valent, F.; Horvat, M.; Sofianou-Katsoulis, A.; Spiric, Z.; Mazej, D.; Little, D.; Prasouli, A.; Mariuz, M.; Tamburlini, G.; Nakou, S.; et al. Neurodevelopmental Effects of Low-Level Prenatal Mercury Exposure from Maternal Fish Consumption in a Mediterranean Cohort: Study Rationale and Design. J. Epidemiol. 2013, 23, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Valent, F.; Mariuz, M.; Bin, M.; Little, D.; Mazej, D.; Tognin, V.; Tratnik, J.; McAfee, A.J.; Mulhern, M.S.; Parpinel, M.; et al. Associations of Prenatal Mercury Exposure from Maternal Fish Consumption and Polyunsaturated Fatty Acids with Child Neurodevelopment: A Prospective Cohort Study in Italy. J. Epidemiol. 2013, 23, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.; Raven, J.C.; Court, J.H. Raven Manual: Section 4, Advanced Progressive Matrices, 1998 Edition; Oxford Psychologists Press Ltd.: Oxford, UK, 1998. [Google Scholar]
- Bayley N Bayley Scales of Infant and Toddler Development, Third Edition; Harcourt Assessment, Inc: San Antonio, TX, USA, 2006.
- Capotorti, F.; Luchino, F.; Siglienti, L.; Battaini, A.; Di Tullio, F.; Rosenholtz, E.; Vecerova, S.; Molinari, G.; Carelli, E.; Foderini, N.; et al. La Valutazione Dell’ambiente Familiare Negli Studi Longitudinali Di Sviluppo Infantile. MEdico E Bambino 1987, 9, 16–23. [Google Scholar]
- Bradley, R.H.; Caldwell, B.M. The Relation of Infants’ Home Environments to Achievement Test Performance in First Grade: A Follow-up Study. Child. Dev. 1984, 55, 803–809. [Google Scholar] [CrossRef] [PubMed]
- Barbone, F.; Rosolen, V.; Mariuz, M.; Parpinel, M.; Casetta, A.; Sammartano, F.; Ronfani, L.; Vecchi Brumatti, L.; Bin, M.; Castriotta, L.; et al. Prenatal Mercury Exposure and Child Neurodevelopment Outcomes at 18 Months: Results from the Mediterranean PHIME Cohort. Int. J. Hyg. Environ. Health 2019, 222, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Castriotta, L.; Rosolen, V.; Biggeri, A.; Ronfani, L.; Catelan, D.; Mariuz, M.; Bin, M.; Brumatti, L.V.; Horvat, M.; Barbone, F. The Role of Mercury, Selenium and the Se-Hg Antagonism on Cognitive Neurodevelopment: A 40-Month Follow-up of the Italian Mother-Child PHIME Cohort. Int. J. Hyg. Environ. Health 2020, 230, 113604. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chen, Y.-C.; Su, F.-C.; Lin, C.-M.; Liao, H.-F.; Hwang, Y.-H.; Hsieh, W.-S.; Jeng, S.-F.; Su, Y.-N.; Chen, P.-C. In Utero Exposure to Environmental Lead and Manganese and Neurodevelopment at 2 Years of Age. Environ. Res. 2013, 123, 52–57. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J.; Shpitser, I. A New Criterion for Confounder Selection. Biometrics 2011, 67, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Barbiero, F.; Rosolen, V.; Consonni, D.; Mariuz, M.; Parpinel, M.; Ronfani, L.; Brumatti, L.V.; Bin, M.; Castriotta, L.; Valent, F.; et al. Copper and Zinc Status in Cord Blood and Breast Milk and Child’s Neurodevelopment at 18 Months: Results of the Italian PHIME Cohort. Int. J. Hyg. Environ. Health 2024, 263, 114485. [Google Scholar] [CrossRef]
- Claus Henn, B.; Ettinger, A.S.; Schwartz, J.; Téllez-Rojo, M.M.; Lamadrid-Figueroa, H.; Hernández-Avila, M.; Schnaas, L.; Amarasiriwardena, C.; Bellinger, D.C.; Hu, H.; et al. Early Postnatal Blood Manganese Levels and Children’s Neurodevelopment. Epidemiology 2010, 21, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Gunier, R.B.; Arora, M.; Jerrett, M.; Bradman, A.; Harley, K.G.; Mora, A.M.; Kogut, K.; Hubbard, A.; Austin, C.; Holland, N.; et al. Manganese in Teeth and Neurodevelopment in Young Mexican-American Children. Environ. Res. 2015, 142, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Rocha, T.V.; Tamayo Y Ortiz, M.; Romero, M.; Pantic, I.; Schnaas, L.; Bellinger, D.; Claus-Henn, B.; Wright, R.; Wright, R.O.; Téllez-Rojo, M.M. Prenatal Co-Exposure to Manganese and Depression and 24-Months Neurodevelopment. Neurotoxicology 2018, 64, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Smargiassi, A.; Takser, L.; Masse, A.; Sergerie, M.; Mergler, D.; St-Amour, G.; Blot, P.; Hellier, G.; Huel, G. A Comparative Study of Manganese and Lead Levels in Human Umbilical Cords and Maternal Blood from Two Urban Centers Exposed to Different Gasoline Additives. Sci. Total Environ. 2002, 290, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Mahdi, A.A.; Ansari, J.A.; Chaurasia, P.; Ahmad, M.K.; Kunwar, S.; McClean, S.; Yogarajah, P. A Study of Maternal and Umbilical Cord Blood Lead Levels in Pregnant Women. Indian. J. Clin. Biochem. 2023, 38, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Claus Henn, B.; Schnaas, L.; Ettinger, A.S.; Schwartz, J.; Lamadrid-Figueroa, H.; Hernández-Avila, M.; Amarasiriwardena, C.; Hu, H.; Bellinger, D.C.; Wright, R.O.; et al. Associations of Early Childhood Manganese and Lead Coexposure with Neurodevelopment. Environ. Health Perspect. 2012, 120, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.V.; Sucharew, H.; Dietrich, K.N.; Parsons, P.J.; Palmer, C.D.; Wright, R.; Amarasiriwardena, C.; Smith, D.R.; Haynes, E.N. Co-Exposure to Manganese and Lead and Pediatric Neurocognition in East Liverpool, Ohio. Environ. Res. 2021, 202, 111644. [Google Scholar] [CrossRef] [PubMed]
- Fruh, V.; Rifas-Shiman, S.L.; Amarasiriwardena, C.; Cardenas, A.; Bellinger, D.C.; Wise, L.A.; White, R.F.; Wright, R.O.; Oken, E.; Claus Henn, B. Prenatal Lead Exposure and Childhood Executive Function and Behavioral Difficulties in Project Viva. Neurotoxicology 2019, 75, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Goodman, C.V.; Green, R.; DaCosta, A.; Flora, D.; Lanphear, B.; Till, C. Sex Difference of Pre- and Post-Natal Exposure to Six Developmental Neurotoxicants on Intellectual Abilities: A Systematic Review and Meta-Analysis of Human Studies. Environ. Health 2023, 22, 80. [Google Scholar] [CrossRef]
- Rechtman, E.; Curtin, P.; Papazaharias, D.M.; Renzetti, S.; Cagna, G.; Peli, M.; Levin-Schwartz, Y.; Placidi, D.; Smith, D.R.; Lucchini, R.G.; et al. Sex-Specific Associations between Co-Exposure to Multiple Metals and Visuospatial Learning in Early Adolescence. Transl. Psychiatry 2020, 10, 358. [Google Scholar] [CrossRef] [PubMed]
- Silveyra, P.; Al Housseiny, H.; Rebuli, M.E. Sex and Gender Differences in the Susceptibility to Environmental Exposures. In Sex-Based Differences in Lung Physiology; Silveyra, P., Tigno, X.T., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 251–290. ISBN 978-3-030-63549-7. [Google Scholar]
- Stiles, J.; Jernigan, T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef] [PubMed]
Main Characteristics of Mothers | Whole Cohort | Boys | Girls |
---|---|---|---|
Mother’s age at delivery, mean ± SD (median): | 33.2 ± 4.2 (33.0) n = 460 | 33.1 ± 4.4 (33.0) n = 240 | 33.3 ± 4.0 (34.0) n = 220 |
Pre-pregnancy BMI (kg/m2), mean ± SD (median): | 22.9 ± 4.0 (22.4) n = 460 | 22.9 ± 3.9 (22.6) n = 240 | 22.9 ± 4.1 (22.3) n = 220 |
Maternal IQ mean ± SD (median): | 119 ± 11 (125) n = 460 | 119 ± 12 (124) n = 240 | 119 ± 11 (125) n = 220 |
Mother’s marital status at delivery, n (%): | |||
Married/living together | 414 (90.8) | 214 (89.9) | 200 (91.7) |
Separated/divorced | 13 (2.9) | 7 (2.9) | 6 (2.8) |
Single | 29 (6.4) | 17 (7.1) | 12 (5.5) |
Mother’s educational level at delivery, n (%): | |||
Elementary and middle school | 86 (18.7) | 49 (20.5) | 37 (16.8) |
High school | 219 (47.7) | 113 (47.3) | 106 (48.2) |
University degree | 154 (33.6) | 77 (32.2) | 77 (35.0) |
Mother’s occupation at delivery, n (%): | |||
Employed on maternity | 353 (77.9) | 182 (77.1) | 171 (78.8) |
Employed worker | 33 (7.3) | 16 (6.8) | 17 (7.8) |
Housewife | 38 (8.4) | 26 (11.0) | 12 (5.5) |
Other condition | 29 (6.4) | 12 (5.1) | 17 (7.8) |
Smoking habits during pregnancy, n (%): | |||
Smoker | 40 (8.8) | 18 (7.6) | 22 (10.1) |
Ex smoker | 153 (33.8) | 78 (33.1) | 75 (34.6) |
Never smoker | 260 (57.4) | 140 (59.3) | 120 (55.3) |
Exposure to passive smoke during pregnancy, n (%): | |||
No | 445 (97.0) | 233 (97.1) | 212 (96.8) |
Yes | 14 (3.0) | 7 (2.9) | 7 (3.2) |
Surface area of the home of residence, n (%): | |||
<50 m2 | 34 (7.5) | 22 (9.3) | 12 (5.5) |
50–100 | 308 (67.7) | 163 (69.1) | 145 (66.2) |
>100 m2 | 113 (24.8) | 51 (21.6) | 62 (28.3) |
Area of the home of residence, n (%): | |||
Urban central | 166 (36.7) | 87 (36.9) | 79 (36.6) |
Urban suburban | 256 (56.6) | 135 (57.2) | 121 (56.0) |
Rural | 30 (6.6) | 14 (5.9) | 16 (7.4) |
The home is within 1 km of one or more sources of pollutant missions *, n (%): | |||
Yes | 418 (90.9) | 218 (90.9) | 200 (90.9) |
No | 42 (9.1) | 22 (9.2) | 20 (9.1) |
Main Characteristics of Children | Whole Cohort | Boys | Girls |
---|---|---|---|
Birth weight (g), mean ± SD (median): | 3419.1 ± 454.2 (3400) n = 459 | 3480.9 ± 436.6 (3440) n = 240 | 3351.3 ± 464.2 (3360.0) n = 219 |
Birth length (cm), mean ± SD (median): | 50.1 ± 2.1 (50.0) n = 457 | 50.5 ± 2.0 (50.0) n = 237 | 49.7 ± 2.0 (50.0) n = 220 |
Duration of breastfeeding (months), mean ± SD (median): | 10.0 ± 6.0 (10.0) n = 436 | 10.2 ± 5.9 (11.0) n = 228 | 9.8 ± 6.2 (10.0) n = 208 |
AIRE scores: | |||
Communication and affective interaction between parents and child, mean ± SD (median): | 18 ± 2 (19) n = 380 | 18 ± 2 (18) n = 208 | 18 ± 2 (19) n = 172 |
Promotion of child autonomy when alone, mean ± SD (median): | 19 ± 2 (19) n = 380 | 18 ± 2 (19) n = 208 | 19 ± 1 (19) n = 172 |
Respect for the child and implementation of rules, mean ± SD (median): | 16 ± 2 (17) n = 380 | 16 ± 2 (17) n = 208 | 17 ± 2 (17) n = 172 |
Emotional atmosphere, mean ± SD (median): | 17 ± 2 (17) n = 380 | 17 ± 2 (17) n = 208 | 17 ± 2 (18) n = 172 |
Child’s sex, n (%): | |||
Male | 240 (52.2) | 240 (100.0) | - |
Female | 220 (47.8) | - | 220 (100.0) |
Daycare attendance at 18 months, n (%): | |||
Member of the family or other people not included in the family | 290 (63.0) | 155 (64.6) | 135 (61.4) |
Kindergarten | 170 (37.0) | 85 (35.4) | 85 (38.6) |
Whole Cohort | Boys | Girls | |||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean ± SD | Median (25th–75th Percentile) | N | Mean ± SD | Median (25th–75th Percentile) | N | Mean ± SD | Median (25th–75th Percentile) | |
Cognitive composite score | 458 | 106 ± 8 | 105 (100–110) | 240 | 105 ± 9 | 105 (100–110) | 218 | 107 ± 8 | 105 (100–115) |
Cord blood (ng/g): | |||||||||
Mn | 460 | 41.3 ± 15.0 | 38.5 (30.4–50.4) | 240 | 41.6 ± 14.9 | 38.6 (30.7–50.4) | 220 | 40.9 ± 15.1 | 38.5 (29.9–50.3) |
Pb | 460 | 12.0 ± 7.4 | 10.47 (8.1–13.91) | 240 | 11.1 ± 4.6 | 10.2 (7.7–12.8) | 220 | 13.0 ± 9.4 | 11.1 (8.4–14.8) |
Metals in Cord Blood (ng/g) | Cognitive Composite Score | ||
---|---|---|---|
Mean ± SD (Median) | |||
Whole Cohort | Boys | Girls | |
Low exposure to Mn: Mn < 50.42 | 106 ± 8 (105) n = 344 | 106 ± 9 (105) n = 180 | 107 ± 8 (105) n = 164 |
High exposure to Mn: Mn ≥ 50.42 | 106 ± 9 (105) n = 114 | 104 ± 8 (105) n = 60 | 108 ± 9 (110) n = 54 |
Low exposure to Pb: Pb < 13.91 | 106 ± 9 (105) n = 344 | 106 ± 9 (105) n = 192 | 107 ± 9 (105) n = 152 |
High exposure to Pb: Pb ≥ 13.91 | 106 ± 7 (105) n = 114 | 104 ± 7 (105) n = 48 | 108 ± 7 (108) n = 66 |
Metals in Cord Blood (ng/g): | Cognitive Composite Score | |||||
---|---|---|---|---|---|---|
Whole Cohort | Boys | Girls | ||||
Crude Beta (90% CI) | Adjusted e Beta (90% CI) | Crude Beta (90% CI) | Adjusted e Beta (90% CI) | Crude Beta (90% CI) | Adjusted e Beta (90% CI) | |
MODEL 1 a (n): | (n = 458) | (n = 380) | (n = 240) | (n = 208) | (n = 218) | (n = 172) |
High exposure to Mn: ≥50.42 | −0.27 (−1.76; 1.22) | 0.39 (−1.18; 1.96) | −1.67 (−3.76; 0.43) | −1.10 (−3.32; 1.13) | 1.29 (−0.80; 3.37) | 2.03 (−0.18; 4.25) |
MODEL 2 b (n): | (n = 458) | (n = 380) | (n = 240) | (n = 208) | (n = 218) | (n = 172) |
High exposure to Pb: ≥13.91 | 0.20 (−1.29; 1.68) | −0.97 (−2.54; 0.59) | −1.20; −3.47; 1.07) | −2.26 (−4.64; 0.11) | 0.92 (−1.05; 2.88) | −0.32 (−2.43; 1.80) |
MODEL 3 c (n): | (n = 458) | (n = 380) | (n = 240) | (n = 208) | (n = 218) | (n = 172) |
High exposure to Mn: ≥50.42 | −0.28 (−2.07; 1.50) | 0.47 (−1.41; 2.35) | −1.58 (−3.68; 0.53) | −1.05 (−3.69; 1.60) | 1.18 (−0.93; 3.29) | 2.11 (−0.56; 4.78) |
High exposure to Pb: ≥13.91 | 0.20 (−1.60; 1.99) | −1.01 (−2.89; 0.86) | −1.04 (−3.31; 1.24) | −2.24 (−5.07; 0.60) | 0.77 (−1.21; 2.76) | −0.57 (−3.11; 1.96) |
MODEL 4 d (n): | (n = 458) | (n = 380) | (n = 240) | (n = 208) | (n = 218) | (n = 172) |
High exposure to Mn: ≥50.42 | −0.09 (−1.88; 1.71) | 1.04 (−0.84; 2.92) | −0.89 (−3.31; 1.52) | 0.20 (−2.29; 2.70) | 1.07 (−1.58;3.73) | 2.19 (−0.68; 5.07) |
High exposure to Pb: ≥13.91 | 0.44 (−1.35; 2.23) | −0.46 (−2.32; 1.40) | −0.15 (−2.89; 2.59) | −0.70 (−3.47; 2.06) | 0.69 (−1.66; 3.04) | −0.51 (−3.04; 2.01) |
Mn (high) and Pb (high) interaction | −0.70 (−3.98; 2.57) | −1.92 (−5.39; 1.54) | −2.86 (−7.79; 2.07) | −5.78 (−11.17; −0.40) * | 0.29 (−4.09; 4.67) | −0.22 (−4.86; 4.43) |
Cognitive Composite Score | ||||||
---|---|---|---|---|---|---|
Whole Cohort | Boys | Girls | ||||
Metals in Cord Blood (ng/g): | Crude Beta (90% CI) | Adjusted a Beta (90% CI) | Crude Beta (90% CI) | Adjusted a Beta (90% CI) | Crude Beta (90% CI) | Adjusted a Beta (90% CI) |
High exposure of Pb (≥13.91): | ||||||
When Mn was low (<50.42) | 0.44 (−1.31; 2.19) (n = 344) | −0.45 (−2.31; 1.42) (n = 285) | −0.15 (−2.90; 2.60) (n = 180) | −0.98 (−3.79; 1.83) (n = 158) | 0.69 (−1.57; 2.95) (n = 164) | −0.28 (−2.81; 2.24) (n = 127) |
When Mn was high (≥50.42) | −0.26 (−3.21; 2.68) (n = 114) | −2.22 (−5.08; 0.65) (n = 95) | −3.01 (−7.12; 1.10) (n = 60) | −6.98 (−10.93; −3.04) * (n = 50) | 0.98 (−3.22;5.18) (n = 54) | −0.84 (−5.16; 3.47) (n = 45) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosolen, V.; Barbiero, F.; Mariuz, M.; Parpinel, M.; Ronfani, L.; Vecchi Brumatti, L.; Bin, M.; Castriotta, L.; Valent, F.; Little, D.L.; et al. The Role of Prenatal Exposure to Lead and Manganese in Child Cognitive Neurodevelopment at 18 Months: The Results of the Italian PHIME Cohort. Toxics 2025, 13, 54. https://doi.org/10.3390/toxics13010054
Rosolen V, Barbiero F, Mariuz M, Parpinel M, Ronfani L, Vecchi Brumatti L, Bin M, Castriotta L, Valent F, Little DL, et al. The Role of Prenatal Exposure to Lead and Manganese in Child Cognitive Neurodevelopment at 18 Months: The Results of the Italian PHIME Cohort. Toxics. 2025; 13(1):54. https://doi.org/10.3390/toxics13010054
Chicago/Turabian StyleRosolen, Valentina, Fabiano Barbiero, Marika Mariuz, Maria Parpinel, Luca Ronfani, Liza Vecchi Brumatti, Maura Bin, Luigi Castriotta, Francesca Valent, D’Anna Latesha Little, and et al. 2025. "The Role of Prenatal Exposure to Lead and Manganese in Child Cognitive Neurodevelopment at 18 Months: The Results of the Italian PHIME Cohort" Toxics 13, no. 1: 54. https://doi.org/10.3390/toxics13010054
APA StyleRosolen, V., Barbiero, F., Mariuz, M., Parpinel, M., Ronfani, L., Vecchi Brumatti, L., Bin, M., Castriotta, L., Valent, F., Little, D. L., Snoj Tratnik, J., Mazej, D., Falnoga, I., Horvat, M., & Barbone, F. (2025). The Role of Prenatal Exposure to Lead and Manganese in Child Cognitive Neurodevelopment at 18 Months: The Results of the Italian PHIME Cohort. Toxics, 13(1), 54. https://doi.org/10.3390/toxics13010054