Multi-Element Exposure and Health Risks of Grains from Ambagarh Chowki, Chhattisgarh, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Materials
2.4. Analysis
2.5. Indices
2.6. Quality Assurance/Quality Control (QA/QC) Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil Characteristics
3.2. Distribution of Elements in Plants
3.3. Comparison of Element Distribution in Various Rice Cultivars
3.4. Comparison of Distribution of Elements in Rice, Wheat, and Maize Grains
3.5. Distribution of Elements in Straw, Husk, and Root
3.6. Transfer Factor
3.7. Translocation Factor
3.8. Toxicity
4. Discussion
4.1. Implications for Food Safety and Agriculture
4.2. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, D.S.; Thavarajah, D.; Ekanayake, L.J.; Johnson, C.; Amarakoon, D.; Kumar, S. Rice, Wheat, and maize biofortification. In Sustainable Agriculture Reviews; Lichtfouse, E., Goyal, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 16, pp. 29–83. [Google Scholar] [CrossRef]
- Elke, H.; Qendrim, Z. Grains in ruminant feeding and potentials to enhance their nutritive and health value by chemical processing. Anim. Feed Sci. Technol. 2017, 226, 133–151. [Google Scholar] [CrossRef]
- Goodman, B.A. Utilization of waste straw and husks from rice production: A review. J. Bioresour. Bioprod. 2020, 5, 143–162. [Google Scholar] [CrossRef]
- Joseph, A. Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; Arendt, E., Belton, S., Eds.; American Chemical Society: Washington, DC, USA, 2011; Volume 1089, pp. 1–13. [Google Scholar] [CrossRef]
- Sen, S. Food Grains of India: A brief note on their therapeutic potential. In Herbal Medicine in India; Sen, S., Chakraborty, R., Eds.; Springer: Singapore, 2020; pp. 441–447. [Google Scholar] [CrossRef]
- Delvin, E.; Levy, E. Contemporary Practice in Clinical Chemistry. In Chapter 47—Trace Elements: Functions and Assessment of Status Through Laboratory Testing, 4th ed.; Clarke, W., Marzinke, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 851–864. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Tommasi, F.; Thomas, P.J.; Pagano, G.; Perono, G.A.; Oral, R.; Lyons, D.M.; Toscanesi, M.; Trifuoggi, M. Review of Rare Earth Elements as Fertilizers and Feed Additives: A Knowledge Gap Analysis. Arch. Environ. Contam. Toxicol. 2021, 81, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Mendel, R.R.; Bittner, F. Cell biology of molybdenum. Biochim. Biophys. Acta 2006, 1763, 621–635. Available online: https://www.sciencedirect.com/science/article/pii/S0167488906001017 (accessed on 8 January 2025). [CrossRef]
- Yamada, K. Cobalt: Its role in health and disease. In Interrelations Between Essential Metal Ions and Human Diseases; Sigel, A., Sigel, H., Sigel, R., Eds.; Metal Ions in Life Sciences; Springer: Dordrecht, The Netherlands, 2013; Volume 13. [Google Scholar] [CrossRef]
- Barchielli, G.; Capperucci, A.; Tanini, D. The Role of selenium in pathologies: An updated review. Antioxidants 2022, 11, 251. [Google Scholar] [CrossRef]
- Costa, M.I.; Sarmento-Ribeiro, A.B.; Gonçalves, A.C. Zinc: From biological functions to therapeutic potential. Int. J. Mol. Sci. 2023, 24, 4822. [Google Scholar] [CrossRef]
- Yadav, R.; Yadav, N.; Saini, P.; Kaur, D.; Kumar, R. Potential Value Addition from Cereal and Pulse Processed By-Products: A Review. In Sustainable Food Waste Management; Thakur, M., Modi, V.K., Khedkar, R., Singh, K., Eds.; Springer: Singapore, 2020. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural waste management strategies for environmental sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Kordi, M.; Farrokhi, N.; Pech-Canul, M.I.; Ahmadikhah, A. Rice Husk at a Glance: From Agro-Industrial to Modern Applications. Rice Sci. 2024, 31, 14–32. [Google Scholar] [CrossRef]
- Sahoo, J.K.; Hota, A.; Singh, C.; Barik, S.; Sahu, N.; Sahoo, S.K.; Sahoo, H. Rice husk and rice straw based materials for toxic metals and dyes removal: A comprehensive and critical review. Int. J. Environ. Anal. Chem. 2023, 103, 9131–9153. [Google Scholar] [CrossRef]
- Ali, W.; Zhang, H.; Mao, K.; Shafeeque, M.; Aslam, M.W.; Yang, X.; Zhong, L.; Feng, X.; Podgorski, J. Chromium contamination in paddy soil-rice systems and associated human health risks in Pakistan. Sci. Total Environ. 2022, 821, 153910. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.; Aslam, A.; Sheraz, M.; Ali, B.; Ulhassan, Z.; Najeeb, U.; Zhou, W.; Gill, R.A. Lead Toxicity in Cereals: Mechanistic Insight into Toxicity, Mode of Action, and Management. Front. Plant Sci. 2020, 11, 587785. [Google Scholar] [CrossRef] [PubMed]
- Brouziotis, A.A.; Giarra, A.; Libralato, G.; Pagano, G.; Guida, M.; Trifuoggi, M. Toxicity of rare earth elements: An overview on human health impact. Front. Environ. Sci. 2022, 10, 948041. [Google Scholar] [CrossRef]
- Amorello, D.; Barreca, S.; Gulli, E.; Orecchio, S. Platinum and rhodium in wine samples by using voltametric techniques. Microchem. J. 2017, 130, 229–235. [Google Scholar] [CrossRef]
- Kadhim, A.Y.; Al-Ataya, K.H.; Aswood, M.S. Distribution and uptake of uranium in rice and wheat from soil samples collected from Al-Diwaniyah, Iraq. J. Phys. Conf. Ser. 2021, 1897, 012065. [Google Scholar] [CrossRef]
- Mahmud, U.; Salam, M.B.; Khan, A.S.; Rahman, M.M. Ecological risk of heavy metal in agricultural soil and transfer to rice grains. Discov. Mater. 2021, 1, 10. [Google Scholar] [CrossRef]
- Sharma, S.; Kaur, I.; Nagpal, A.K. Contamination of rice crop with potentially toxic elements and associated human health risks—A review. Environ. Sci. Pollut. Res. 2021, 28, 12282–12299. [Google Scholar] [CrossRef]
- Barreca, S.; Orecchio, S.; Orecchio, S.; Abbate, I.; Pellerito, C. Macro and micro elements in traditional meals of Mediterranean diet: Determination, estimated intake by population, risk assessment and chemometric analysis. J. Food Compost. Anal. 2023, 123, 105541. [Google Scholar] [CrossRef]
- Khan, A.; Khan, S.; Khan, M.A.; Qamar, Z.; Waqas, M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: A review. Environ. Sci. Pollut. Res. 2015, 22, 13772–13799. [Google Scholar] [CrossRef]
- Proshad, R.; Idris, A.M. Evaluation of heavy metals contamination in cereals, vegetables and fruits with probabilistic health hazard in a highly polluted megacity. Environ. Sci. Pollut. Res. 2023, 30, 79525–79550. [Google Scholar] [CrossRef]
- Wakhle, B.; Sharma, S.; Patel, K.S.; Pandey, P.K.; Lučić, M.; Fiket, Z.; Yurdakul, S.; Varol, S.; Martín-Ramos, P.; Al-Yousef, M.H.; et al. Multi-element Contamination and Health Risks in Green Leafy Vegetables from Ambagarh Chowki, Chhattisgarh, India. Biol. Trace Elem. Res. 2025, 203, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.S.; Sahu, B.L.; Dahariya, N.S.; Bhatia, A.; Patel, R.K.; Matini, L.; Sracek, O.; Bhattacharya, P. Groundwater arsenic and fluoride in Rajnandgaon District, Chhattisgarh, northeastern India. Appl. Water Sci. 2017, 7, 1817–1826. [Google Scholar] [CrossRef]
- Patel, K.S.; Shrivas, K.; Brandt, R.; Jakubowski, N.; Corns, W.; Hoffmann, P. Arsenic contamination in water, soil, sediment, and rice of central India. Environ. Geochem. Health 2005, 27, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Khute, M.; Sharma, S.; Patel, K.S.; Pandey, P.K.; Allen, J.; Corns, W.; Georgieva, N.; Bozhanina, E.; Blazhev, B.; Varol, S.; et al. Arsenic Speciation and Contamination in Cereals from Chhattisgarh, India. J. Heavy Met. Toxic Dis. 2024, 9, 18816. [Google Scholar] [CrossRef]
- Hu, W.; Huang, B.; Tian, K.; Holm, P.E.; Zhang, Y. Heavy metals in intensive greenhouse vegetable production systems along Yellow Sea of China: Levels, transfer and health risk. Chemosphere 2017, 167, 82–90. [Google Scholar] [CrossRef]
- Varol, S.; Şener, Ş.; Şener, E. Assessment of groundwater quality and human health risk related to arsenic using index methods and GIS: A case of Şuhut Plain (Afyonkarahisar/Turkey). Environ. Res. 2021, 202, 111623. [Google Scholar] [CrossRef]
- Zeng, F.; Wei, W.; Li, M.; Huang, R.; Yang, F.; Duan, Y. Heavy Metal contamination in rice-producing soils of Hunan Province, China and potential health risks. Int. J. Environ. Res. Public Health 2015, 12, 15584–15593. [Google Scholar] [CrossRef]
- Ali, W.; Aslam, M.W.; Feng, C.; Junaid, M.; Ali, K.; Li, S.; Chen, Z.; Yu, Z.; Rasool, A.; Zhang, H. Unraveling prevalence and public health risks of arsenic, uranium and co-occurring trace metals in groundwater along riverine ecosystem in Sindh and Punjab, Pakistan. Environ. Geochem. Health 2019, 41, 2223–2238. [Google Scholar] [CrossRef]
- MacInnes, J. An Introduction to Secondary Data Analysis with IBM SPSS Statistics; SAGE Publications Ltd.: New Delhi, India, 2017. [Google Scholar]
- Dantu, S. Heavy metals concentration in soils of southeastern part of Ranga Reddy district, Andhra Pradesh, India. Environ. Monit. Assess. 2009, 149, 213–222. [Google Scholar] [CrossRef]
- Peana, M.; Medici, S.; Dadar, M.; Zoroddu, M.A.; Pelucelli, A.; Chasapis, C.T.; Bjørklund, G. Environmental barium: Potential exposure and health hazards. Arch. Toxicol. 2021, 95, 2605–2612. [Google Scholar] [CrossRef]
- Patel, K.S.; Pandey, P.K.; Martn-Ramos, P.; Corns, W.T.; Varol, S.; Bhattacharya, P.; Zhu, Y. A review on arsenic in the environment: Contamination, mobility, sources, and exposure. RSC Adv. 2023, 13, 8803–8821. [Google Scholar] [CrossRef] [PubMed]
- Ameen, M.; Akhtar, J.; Anwar-Ul-Haq, M.; Abbasi, G.H.; Jamil, M.; Ali, M.; Athar, T. Chapter Three—Nutrient Acquisition, Transport and Metabolism Within the Plant Cells; Aftab, T., Hakeem, K.R., Nutrition, S.P., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 51–70. [Google Scholar] [CrossRef]
- Starska, K. Aluminum in food. Rocz. Panstw. Zakl. Hig. 1993, 44, 55–63. (In Polish) [Google Scholar] [PubMed]
- Abedi, T.; Mojiri, A. Arsenic Uptake and Accumulation Mechanisms in Rice Species. Plants 2020, 9, 129. [Google Scholar] [CrossRef] [PubMed]
- Marcio, M.; Nelson, S.; Everaldo, Z.; Alfredo, B.; Xavier, L.; Izabella, C. Reducing conditions on barium absorption in rice plants cultured in BaSO4-enriched soil. Acta Sci. Agron. 2014, 36, 119–127. [Google Scholar] [CrossRef]
- Patel, K.S.; Pandey, P.K.; Martn-Ramos, P.; Corns, W.T.; Varol, S.; Bhattacharya, P.; Zhu, Y. A review on arsenic in the environment: Bio-accumulation, remediation, and disposal. RSC Adv. 2023, 13, 14914–14929. [Google Scholar] [CrossRef]
- Saenboonruang, K. Quantification of aluminium and heavy metal contents in cooked rice samples from Thailand markets using inductively coupled plasma mass spectrometry (ICP-MS) and potential health risk assessment. Emir. J. Food Agric. 2018, 30, 372. [Google Scholar] [CrossRef]
- Tatah Mentan, M.; Nyachoti, S.; Scott, L.; Phan, N.; Okwori, F.O.; Felemban, N.; Godebo, T.R. Toxic and Essential Elements in Rice and Other Grains from the United States and Other Countries. Int. J. Environ. Res. Public Health 2020, 17, 8128. [Google Scholar] [CrossRef]
- Uddin, M.M.; Zakeel, M.C.M.; Zavahir, J.S.; Marikar, F.M.M.T.; Jahan, I. Heavy metal accumulation in rice and aquatic plants used as human food: A general review. Toxics 2021, 9, 360. [Google Scholar] [CrossRef]
- Kowsalya, P.; Sharanyakanth, P.S.; Mahendran, R. Traditional rice varieties: A comprehensive review on its nutritional, medicinal, therapeutic and health benefit potential. J. Food Compos. Anal. 2022, 114, 104742. [Google Scholar] [CrossRef]
- Anila, M.; Mahadeva Swamy, H.K.; Kale, R.R.; Bhadana, V.P.; Anantha, M.S.; Brajendra; Hajira, S.K.; Balachiranjeevi, C.H.; Ayyappa Dass, M.; Bhaskar, S.; et al. Breeding lines of the Indian mega-rice variety, MTU 1010, possessing protein kinase OsPSTOL (Pup1), show better root system architecture and higher yield in soils with low phosphorus. Mol. Breeding 2018, 38, 147. [Google Scholar] [CrossRef]
- Patel, K.S.; Sahu, B.; Ramteke, S.; Bontempi, E. Contamination of paddy soil and rice with arsenic. J. Environ. Prot. 2016, 7, 689–698. [Google Scholar] [CrossRef]
- Lockwood, T.E.; Banati, R.B.; Nikagolla, C.; Violi, J.P.; Bishop, D.P. Concentration and distribution of toxic and essential elements in traditional rice varieties of Sri Lanka grown on an Anuradhapura district farm. Biol. Trace Elem. Res. 2024, 202, 2891–2899. [Google Scholar] [CrossRef]
- Wang, R.; Sun, C.; Cai, S.; Liu, F.; Xie, H.; Xiong, Q. Research progress in crop root biology and nitrogen uptake and use, with emphasis on cereal crops. Agronomy 2023, 13, 1678. [Google Scholar] [CrossRef]
- Du, F.; Yang, Z.; Liu, P.; Wang, L. Accumulation, translocation, and assessment of heavy metals in the soil-rice systems near a mine-impacted region. Environ. Sci. Pollut. Res. 2018, 25, 32221–32230. [Google Scholar] [CrossRef]
- Murugaiyan, V.; Zeibig, F.; Anumalla, M.; Ali Siddiq, S.; Frei, M.; Murugaiyan, J.; Ali, J. Arsenic Stress Responses and Accumulation in Rice. In Rice Improvement; Ali, J., Wani, S.H., Eds.; Springer: Cham, Switzerland, 2021; pp. 221–241. [Google Scholar] [CrossRef]
- Nataša, M.; Rukie, A.; Ljubomir, S.; Lidija, M.; Zoran, I. Transfer factor as indicator of heavy metals content in plants. Fres. Environ. Bull. 2015, 24, 4212–4219. [Google Scholar]
- Subramanian, D.; Subha, R.; Murugesan, A.K. Accumulation and translocation of trace elements and macronutrients in different plant species across five study sites. Ecol. Indic. 2022, 135, 108522. [Google Scholar] [CrossRef]
- Kovaříková, M.; Tomášková, I.; Soudek, P. Rare earth elements in plants. Biol. Plant. 2019, 63, 20–32. [Google Scholar] [CrossRef]
- Wimolwattanapun, W.; Hopke, P.K.; Pongkiatkul, P. Source apportionment and potential source locations of PM2.5 and PM2.5–10 at residential sites in metropolitan Bangkok. Atmos. Pollut. Res. 2011, 2, 172–181. [Google Scholar] [CrossRef]
- Yang, L.; Wang, C.S.; Xia, J.G. Assessment of heavy metal pollution and the potential ecological hazard of farmland soils alongside Chengle highway. J. Sichuan Agric. Univ. 2020, 38, 168–175. [Google Scholar]
- Brzezicha-Cirocka, J.; Grembecka, M.; Szefer, P. Monitoring of essential and heavy metals in green tea from different geographical origins. Environ. Monit. Assess. 2016, 188, 183. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Z.; Ren, H.; Wang, D.; Wang, J.; Wu, Z.; Cai, P. Spatial distribution and source apportionment of heavy metals in the topsoil of Weifang City, East China. Front. Environ. Sci. 2022, 10, 469. [Google Scholar] [CrossRef]
- Sulaiman, F.R.; Hamzah, H.A. Heavy metals accumulation in suburban roadside plants of a tropical area (Jengka, Malaysia). Ecol. Proc. 2018, 7, 28. [Google Scholar] [CrossRef]
- Dimitrov, D.S.; Nedyalkova, M.A.; Donkova, B.V.; Simeonov, V.D. Chemometric assessment of soil pollution and pollution source apportionment for an industrially impacted region around a non-ferrous metal smelter in Bulgaria. Molecules 2019, 24, 883. [Google Scholar] [CrossRef] [PubMed]
- Muttagi, G.; Ravindra, U. Chemical and nutritional composition of traditional rice varieties of Karnataka. J. Pharmacog. Phytochem. 2020, 9, 2300–2309. [Google Scholar] [CrossRef]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Johansson, E. Mineral composition of organically grown wheat genotypes: Contribution to daily minerals intake. Int. J. Environ. Res. Public Health 2010, 7, 3442–3456. [Google Scholar] [CrossRef]
- Alireza, M. The evaluation and determination of heavy metals pollution in edible vegetables, water, and soil in the south of Tehran province by GIS. Arch. Environ. Prot. 2015, 41, 63–72. [Google Scholar] [CrossRef]
- Aquilina, G.; Bories, G.; Brantom, P.; Caloni, F.; Chesson, A.; Cocconcelli, P.S.; de Knecht, J.; Dierick, N.A.; Gralak, M.A.; Gropp, J.; et al. Scientific Opinion on the use of cobalt compounds as additives in animal nutrition. EFSA J. 2009, 7, 1383. [Google Scholar] [CrossRef]
- FAO/WHO. General Standard for Contaminants and Toxins in Food and Feed (CXS 193-1995); Codex Secretariat, Joint FAO/WHO Food Standards Programme: Rome, Italy, 2023; pp. 1–77. [Google Scholar]
- Food Standards Australia New Zealand, 2002, 20th Australian Total Diet Survey—Part B. Available online: https://www.foodstandards.gov.au/science-data/monitor/australian-total-diet-study (accessed on 8 January 2025).
- Pearson, A.J.; Ashmore, E. Risk assessment of antimony, barium, beryllium, boron, bromine, lithium, nickel, strontium, thallium, and uranium concentrations in the New Zealand diet. Food Addit. Contam. Part A 2020, 37, 451–464. [Google Scholar] [CrossRef]
- Patel, K.S.; Sharma, S.; Maity, J.P.; Martín-Ramos, P.; Fiket, Ž.; Bhattacharya, P.; Zhu, Y. Occurrence of uranium, thorium and rare earth elements in the environment: A review. Front. Environ. Sci. 2023, 10, 1058053. [Google Scholar] [CrossRef]
- Román-Ochoa, Y.; Delgado, G.T.C.; Tejada, T.R.; Yucra, H.R.; Durand, A.E.; Hamaker, B.R. Heavy metal contamination and health risk assessment in grains and grain-based processed food in Arequipa region of Peru. Chemosphere 2021, 274, 129792. [Google Scholar] [CrossRef]
- Wei, R.; Chen, C.; Kou, M.; Wang, Z.; Cai, J.; Tan, W. Heavy metal concentrations in rice that meet safety standards can still pose a risk to human health. Commun. Earth Environ. 2023, 4, 84. [Google Scholar] [CrossRef]
- Zakaria, Z.; Zulkafflee, N.S.; Mohd Redzuan, N.A.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Tóth, G.; Abdull Razis, A.F. Understanding potential heavy metal contamination, absorption, translocation and accumulation in rice and human health risks. Plants 2021, 10, 1070. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Guidelines for Carcinogen Risk Assessment [EPA/630/P-03/001F]; United States Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- Sharma, S.; Kumar, R.; Sahoo, P.K.; Mittal, S. Geochemical relationship and translocation mechanism of arsenic in rice plants: A case study from health prone southwest Punjab, India. Ground Sustain. Dev. 2020, 10, 100333. [Google Scholar] [CrossRef]
Sample | Al | As | Ba | Be | Bi | Ca | Cd |
---|---|---|---|---|---|---|---|
RG | 528 ± 299 | 4.8 ± 4.1 | 8.2 ± 4.7 | 0.015 ± 0.011 | 0.004 ± 0.002 | 938 ± 428 | 0.019 ± 0.018 |
WG | 431 ± 230 | 12.0 ± 0.8 | 12.9 ± 3.2 | 0.009 ± 0.007 | 0.005 ± 0.001 | 907 ± 46 | 0.05 ± 0.01 |
ZG | 49.1 ± 7.4 | 10.1 ± 0.3 | 3.0 ± 0.5 | ND | 0.002 ± 0 | 402 ± 65 | 0.005 ± 0.002 |
RH | 770 ± 183 | 11.8 ± 0.8 | 13.4 ± 1.7 | 0.02 ± 0.01 | 0.016 ± 0.01 | 1448 ± 98 | 0.021 ± 9.005 |
WS | 1628 ± 878 | 15.3 ± 2.8 | 117.8 ± 4.8 | 0.07 ± 0.030 | 0.029 ± 0.012 | 4933 ± 158 | 0.189 ± 0.099 |
RS | 2835 ± 917 | 21.3 ± 5.1 | 87.2 ± 13.9 | 0.13 ± 0.06 | 0.027 ± 0.009 | 6098 ± 305 | 0.132 ± 0.072 |
Rr | 6832 ± 3311 | 79.9 ± 34.9 | 222 ± 114 | 0.73 ± 0.38 | 0.119 ± 0.051 | 10,293 ± 4175 | 0.179 ± 0.075 |
Wr | 3785 ± 1078 | 27.1 ± 2.2 | 180 ± 53 | 0.38 ± 0.11 | 0.061 ± 0.020 | 7087 ± 643 | 0.340 ± 0.212 |
Sample | Co | Cr | Cu | Fe | Ga | Ge | K |
RG | 0.53 ± 0.57 | 5.34 ± 4.18 | 19.0 ± 9.4 | 481 ± 327 | 0.16 ± 0.10 | 0.038 ± 0.019 | 3949 ± 655 |
WG | 0.32 ± 0.14 | 2.47 ± 1.03 | 8.7 ± 1.4 | 405 ± 217 | 0.13 ± 0.08 | 0.027 ± 0.014 | 4769 ± 970 |
ZG | 0.08 ± 0.20 | 1.49 ± 0.32 | 3.6 ± 0.4 | 70 ± 12 | 0.017 ± 0.004 | 0.005 ± 0.002 | 4758 ± 499 |
RH | 0.62 ± 0.13 | 68.1 ± 11.4 | 200 ± 186 | 1393 ± 348 | 0.25 ± 0.05 | 0.179 ± 0.042 | 6318 ± 1250 |
WS | 1.31 ± 0.84 | 19.7 ± 7.1 | 357 ± 213 | 2110 ± 1547 | 0.63 ± 0.45 | 0.190 ± 0.052 | 21,403 ± 3718 |
RS | 3.8 ± 0.7 | 21.5 ± 5.6 | 59.9 ± 3.5 | 3671 ± 1449 | 1.30 ± 0.55 | 0.305 ± 0.107 | 12,293 ± 1916 |
Rr | 14.0 ± 7.6 | 69.0 ± 24.8 | 83.1 ± 31.6 | 22,923 ± 12,810 | 6.44 ± 3.59 | 0.898 ± 0.421 | 8233 ± 3037 |
Wr | 12.1 ± 4.5 | 31.9 ± 5.9 | 37.1 ± 0.5 | 14,442 ± 4189 | 3.90 ± 1.17 | 0.549 ± 0.128 | 8441 ± 2493 |
Sample | Li | Mg | Mn | Mo | Na | Nb | Ni |
RG | 0.22 ± 0.10 | 2292 ± 546 | 52 ± 21 | 0.60 ± 0.17 | 34.8 ± 38.7 | 0.11 ± 0.07 | 1.92 ± 1.35 |
WG | 0.16 ± 0.10 | 1402 ± 348 | 63 ± 21 | 0.36 ± 0.07 | ND | 0.10 ± 0.05 | 0.87 ± 0.28 |
ZG | 0.03 ± 0.02 | 1378 ± 126 | 7.9 ± 0.9 | 0.29 ± 0.04 | ND | 0.013 ± 0.001 | 0.64 ± 0.03 |
RH | 0.28 ± 0.07 | 2389 ± 414 | 217 ± 16 | 0.61 ± 0.02 | ND | 0.18 ± 0.05 | 3.49 ± 0.31 |
WS | 0.77 ± 0.54 | 1806 ± 351 | 122 ± 49 | 0.42 ± 0.08 | 290 ± 132 | 0.47 ± 0.31 | 2.85 ± 1.73 |
RS | 1.67 ± 0.57 | 2581 ± 361 | 1230 ± 557 | 0.444 ± 0.104 | 2956 ± 465 | 1.03 ± 0.53 | 4.37 ± 1.22 |
Rr | 7.70 ± 5.43 | 1937 ± 641 | 1007 ± 883 | 0.76 ± 0.09 | 3974 ± 1442 | 5.07 ± 2.79 | 21.20 ± 122. |
Wr | 5.15 ± 1.65 | 1384 ± 175 | 540 ± 248 | 0.41 ± 0.07 | 995 ± 315 | 2.62 ± 0.66 | 17.40 ± 5.39 |
Sample | P | Pb | Rb | Sb | Sc | Se | Sn |
RG | 4827 ± 1094 | 2.3 ± 1.0 | 8.8 ± 3.4 | 0.02 ± 0.01 | 1.0 ± 0.2 | 0.06 ± 0.01 | 0.34 ± 0.14 |
WG | 3989 ± 776 | 2.5 ± 2.2 | 2.7 ± 1.5 | 0.011 ± 0.003 | 0.77 ± 0.15 | 0.07 ± 0.03 | 0.28 ± 0.13 |
ZG | 3504 ± 321 | 0.35 ± 0.08 | 7.8 ± 1.5 | 0.002 ± 0.002 | 0.48 ± 0.01 | 0.04 ± 0.01 | 0.15 ± 0.02 |
RH | 4288 ± 717 | 25.2 ± 22.6 | 11.3 ± 3.43 | 0.16 ± 0.13 | 10.0 ± 2.9 | 0.049 ± 0.004 | 2.65 ± 2.25 |
WS | 801 ± 136 | 46.5 ± 28.3 | 6.0 ± 2.4 | 0.29 ± 0.16 | 6.9 ± 0.59 | 0.08 ± 0.01 | 4.80 ± 2.82 |
RS | 956 ± 202 | 8.3 ± 0.8 | 8.4 ± 2.8 | 0.09 ± 0.02 | 12.7 ± 1.0 | 0.08 ± 0.02 | 0.95 ± 0.10 |
Rr | 929 ± 470 | 20.2 ± 7.6 | 16.4 ± 7.7 | 0.51 ± 0.16 | 13.4 ± 6.5 | 0.21 ± 0.03 | 2.20 ± 0.65 |
Wr | 982 ± 20 | 8.9 ± 2.0 | 10.2 ± 1.7 | 0.20 ± 0.05 | 11.0 ± 2.49 | 0.16 ± 0.07 | 1.37 ± 0.44 |
Sample | Sr | Te | Th | Ti | Tl | U | V |
RG | 1.61 ± 0.32 | 0.006 ± 0.006 | 0.13 ± 0.07 | 37.5 ± 24.7 | 0.005 ± 0.003 | 0.026 ± 0.013 | 1.01 ± 0.73 |
WG | 3.11 ± 0.54 | ND | 0.09 ± 0.05 | 40.6 ± 22.5 | 0.003 ± 0.002 | 0.016 ± 0.008 | 0.91 ± 0.56 |
ZG | 0.73 ± 0.21 | ND | 0.008 ± 0.002 | 4.8 ± 0.9 | ND | 0.003 ± 0.001 | 0.07 ± 0.01 |
RH | 6.05 ± 1.15 | 0.005 ± 0.008 | 0.196 ± 0.059 | 57.4 ± 17.9 | 0.009 ± 0.002 | 0.044 ± 0.010 | 1.32 ± 0.39 |
WS | 26.3 ± 1.6 | 0.005 ± 0.008 | 0.35 ± 0.13 | 204 ± 143 | 0.023 ± 0.011 | 0.120 ± 0.083 | 4.58 ± 0.33 |
RS | 32.1 ± 2.0 | 0.008 ± 0.007 | 0.77 ± 0.32 | 309 ± 130 | 0.047 ± 0.021 | 0.497 ± 0.037 | 9.12 ± 2.85 |
Rr | 53.5 ± 19.0 | 0.022 ± 0.012 | 2.04 ± 0.87 | 1497 ± 1063 | 0.223 ± 0.115 | 1.77 ± 1.09 | 46.2 ± 29.4 |
Wr | 37.6 ± 10.4 | ND | 0.62 ± 0.26 | 1151 ± 389 | 0.115 ± 0.035 | 0.65 ± 0.19 | 36.8 ± 9.3 |
Sample | W | Y | Zn | La | Ce | Pr | Nd |
RG | 0.03 ± 0.01 | 0.21 ± 0.12 | 41.1 ± 11.3 | 0.29 ± 0.22 | 0.94 ± 0.67 | 0.08 ± 0.05 | 0.29 ± 0.18 |
WG | 0.032 ± 0.007 | 0.16 ± 0.09 | 67.3 ± 2.2 | 0.20 ± 0.14 | 0.69 ± 0.37 | 0.06 ± 0.03 | 0.24 ± 0.13 |
ZG | 0.016 ± 0.003 | 0.017 ± 0.016 | 46.6 ± 4.9 | ND | 0.06 ± 0.1 | 0.006 ± 0 | 0.024 ± 0 |
RH | 0.107 ± 0.016 | 0.32 ± 0.094 | 65.1 ± 11.9 | 0.46 ± 0.14 | 1.18 ± 0.034 | 0.12 ± 0.03 | 0.45 ± 0.11 |
WS | 0.11 ± 0.06 | 0.70 ± 0.37 | 71.6 ± 18.1 | 1.10 ± 0.64 | 2.70 ± 1.46 | 0.29 ± 0.18 | 1.09 ± 0.68 |
RS | 0.18 ± 0.05 | 1.63 ± 0.64 | 48.5 ± 9.9 | 2.49 ± 1.32 | 5.23 ± 2.70 | 0.62 ± 0.33 | 2.27 ± 1.89 |
Rr | 0.70 ± 0.41 | 4.57 ± 1.28 | 76.6 ± 2.5 | 7.48 ± 1.57 | 16.5 ± 4.6 | 1.97 ± 0.58 | 7.56 ± 2.36 |
Wr | 0.45 ± 0.10 | 1.79 ± 0.65 | 59.0 ± 5.9 | 3.14 ± 0.86 | 9.92 ± 1.91 | 0.99 ± 0.21 | 3.88 ± 0.83 |
Sample | Sm | Eu | Gd | Tb | Dy | Ho | Er |
RG | 0.060 ± 0.037 | 0.013 ± 0.008 | 0.04 ± 0.03 | 0.007 ± 0.005 | 0.04 ± 0.03 | 0.009 ± 0.005 | 0.025 ± 0.015 |
WG | 0.047 ± 0.028 | 0.012 ± 0.006 | 0.031 ± 0.019 | 0.006 ± 0.003 | 0.032 ± 0.018 | 0.007 ± 0.004 | 0.019 ± 0.010 |
ZG | 0.006 ± 0 | 0.002 ± 0 | 0.003 ± 0.001 | ND | 0.003 ± 0.001 | ND | 0.002 ± 0 |
RH | 0.091 ± 0.021 | 0.019 ± 0.004 | 0.059 ± 0.016 | 0.011 ± 0.003 | 0.062 ± 0.019 | 0.013 ± 0.004 | 0.036 ± 0.010 |
WS | 0.231 ± 0.139 | 0.067 ± 0.028 | 0.15 ± 0.09 | 0.03 ± 0.02 | 0.16 ± 0.10 | 0.03 ± 0.02 | 0.09 ± 0.06 |
RS | 0.522 ± 0.226 | 0.108 ± 0.035 | 0.336 ± 0.142 | 0.065 ± 0.030 | 0.366 ± 0.142 | 0.075 ± 0.036 | 0.216 ± 0.103 |
Rr | 1.591 ± 0.55 | 0.323 ± 0.142 | 1.01 ± 0.33 | 0.20 ± 0.06 | 1.18 ± 0.38 | 0.24 ± 0.08 | 0.70 ± 0.23 |
Wr | 0.795 ± 0.178 | 0.198 ± 0.046 | 0.49 ± 0.11 | 0.10 ± 0.02 | 0.57 ± 0.14 | 0.12 ± 0.08 | 0.33 ± 0.08 |
Sample | Tm | Yb | Lu | ΣElement | ΣREEs | ΣHREEs | ΣLREEs |
RG | 0.004 ± 0.002 | 0.023 ± 0.013 | 0.003 ± 0.002 | 13,238 ± 2569 | 1.84 ± 1.26 | 1.69 ± 1.15 | 0.16 ± 0.09 |
WG | 0.003 ± 0.001 | 0.016 ± 0.010 | 0.003 ± 0.001 | 12,125 ± 2437 | 1.37 ± 0.77 | 1.25 ± 0.70 | 0.12 ± 0.06 |
ZG | ND | 0.002 ± 0 | ND | 10,249 ± 973 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.01 ± 0 |
RH | 0.005 ± 0.002 | 0.033 ± 0.010 | 0.005 ± 0.002 | 17,304 ± 2395 | 2.53 ± 0.72 | 2.31 ± 0.65 | 0.22 ± 0.07 |
WS | 0.013 ± 0.008 | 0.086 ± 0.058 | 0.013 ± 0.009 | 33,987 ± 2142 | 6.05 ± 3.45 | 5.48 ± 3.12 | 0.58 ± 0.37 |
RS | 0.031 ± 0.015 | 0.192 ± 0.094 | 0.027 ± 0.013 | 33,283 ± 4367 | 14.22 ± 1.43 | 12.91 ± 5.79 | 1.31 ± 0.60 |
Rr | 0.10 ± 0.03 | 0.61 ± 0.21 | 0.08 ± 0.03 | 58,413 ± 23,420 | 39.49 ± 11.14 | 35.38 ± 9.80 | 4.12 ± 1.33 |
Wr | 0.05 ± 0.01 | 0.29 ± 0.07 | 0.04 ± 0.01 | 39,313 ± 871 | 20.90 ± 4.51 | 18.93 ± 3.83 | 1.97 ± 0.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wakhle, B.; Sharma, S.; Patel, K.S.; Pandey, P.K.; Blažević, A.; Fiket, Ž.; Yurdakul, S.; Varol, S.; Martín-Ramos, P.; Al-Yousef, H.M.; et al. Multi-Element Exposure and Health Risks of Grains from Ambagarh Chowki, Chhattisgarh, India. Toxics 2025, 13, 56. https://doi.org/10.3390/toxics13010056
Wakhle B, Sharma S, Patel KS, Pandey PK, Blažević A, Fiket Ž, Yurdakul S, Varol S, Martín-Ramos P, Al-Yousef HM, et al. Multi-Element Exposure and Health Risks of Grains from Ambagarh Chowki, Chhattisgarh, India. Toxics. 2025; 13(1):56. https://doi.org/10.3390/toxics13010056
Chicago/Turabian StyleWakhle, Bhagyashri, Saroj Sharma, Khageshwar Singh Patel, Piyush Kant Pandey, Antonela Blažević, Željka Fiket, Sema Yurdakul, Simge Varol, Pablo Martín-Ramos, Hanan M. Al-Yousef, and et al. 2025. "Multi-Element Exposure and Health Risks of Grains from Ambagarh Chowki, Chhattisgarh, India" Toxics 13, no. 1: 56. https://doi.org/10.3390/toxics13010056
APA StyleWakhle, B., Sharma, S., Patel, K. S., Pandey, P. K., Blažević, A., Fiket, Ž., Yurdakul, S., Varol, S., Martín-Ramos, P., Al-Yousef, H. M., & Mothana, R. A. (2025). Multi-Element Exposure and Health Risks of Grains from Ambagarh Chowki, Chhattisgarh, India. Toxics, 13(1), 56. https://doi.org/10.3390/toxics13010056