Next Generation Risk Assessment to Address Disease-Related Vulnerability—A Proof of Concept for the Sunscreen Octocrylene
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Drivers and Identification of Risk Hypothesis
3.2. Analysis of Risk Hypothesis, Vulnerabilities and Data Gaps
3.3. Estimation of Human Biomonitoring Guideline Values (HBM_GVs) for Octocrylene
4. NGRA and Risk Management Options for Vulnerable Groups
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander-White, C.; Bury, D.; Cronin, M.; Dent, M.; Hack, E.; Hewitt, N.J.; Kenna, G.; Naciff, J.; Ouedraogo, G.; Schepky, A.; et al. A 10-Step Framework for Use of Read-across (RAX) in next Generation Risk Assessment (NGRA) for Cosmetics Safety Assessment. Regul. Toxicol. Pharmacol. 2022, 129, 105094. [Google Scholar] [CrossRef] [PubMed]
- Api, A.M.; Belsito, D.; Bruze, M.; Cadby, P.; Calow, P.; Dagli, M.L.; Dekant, W.; Ellis, G.; Fryer, A.D.; Fukayama, M.; et al. Criteria for the Research Institute for Fragrance Materials, Inc. (RIFM) Safety Evaluation Process for Fragrance Ingredients. Food Chem. Toxicol. 2015, 82, S1–S19. [Google Scholar] [CrossRef] [PubMed]
- Hoogstraaten, M.J.; Vriend, J.; de Leeuw, V.C.; Negro, S.O.; Moors, E.H.M.; Kienhuis, A.S.; Hoekman, J. Animal-Free Safety Assessment of Chemicals: An Innovation System Perspective. Arch. Toxicol. 2025, 99, 43–56. [Google Scholar] [CrossRef]
- Rogiers, V.; Benfenati, E.; Bernauer, U.; Bodin, L.; Carmichael, P.; Chaudhry, Q.; Coenraads, P.J.; Cronin, M.T.D.; Dent, M.; Dusinska, M.; et al. The Way Forward for Assessing the Human Health Safety of Cosmetics in the EU-Workshop Proceedings. Toxicology 2020, 436, 152421. [Google Scholar] [CrossRef]
- Fernández-Martín, M.-E.; Tarazona, J.V. Cosmetics, Endocrine Disrupting Ingredients. In Reference Module in Biomedical Sciences; Elsevier: Amsterdam, The Netherlands, 2023; p. B9780128243152011854. ISBN 978-0-12-801238-3. [Google Scholar]
- Fernández-Martín, M.-E.; Tarazona, J.V. Market Analysis of the Presence of Endocrine Disrupting Chemicals in Cosmetic Products Intended for Oncological Patients and Other Vulnerable Groups. Eur. J. Dermatol. 2024, 34, 40–50. [Google Scholar] [CrossRef]
- Gustafson, E.; Debruyne, C.; De Troyer, O.; Rogiers, V.; Vinken, M.; Vanhaecke, T. Screening of Repeated Dose Toxicity Data in Safety Evaluation Reports of Cosmetic Ingredients Issued by the Scientific Committee on Consumer Safety between 2009 and 2019. Arch. Toxicol. 2020, 94, 3723–3735. [Google Scholar] [CrossRef]
- Varshavsky, J.R.; Rayasam, S.D.G.; Sass, J.B.; Axelrad, D.A.; Cranor, C.F.; Hattis, D.; Hauser, R.; Koman, P.D.; Marquez, E.C.; Morello-Frosch, R.; et al. Current Practice and Recommendations for Advancing How Human Variability and Susceptibility Are Considered in Chemical Risk Assessment. Environ. Health 2023, 21, 133. [Google Scholar] [CrossRef]
- Berardesca, E.; Zuberbier, T.; Sanchez Viera, M.; Marinovich, M. Review of the Safety of Octocrylene Used as an Ultraviolet Filter in Cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33 (Suppl. 7), 25–33. [Google Scholar] [CrossRef]
- Hiller, J.; Klotz, K.; Meyer, S.; Uter, W.; Greiner, A.; Göen, T.; Drexler, H. Systemic Availability of Lipophilic Organic UV Filters through Dermal Sunscreen Exposure. Environ. Int. 2019, 132, 105068. [Google Scholar] [CrossRef]
- Matta, M.K.; Florian, J.; Zusterzeel, R.; Pilli, N.R.; Patel, V.; Volpe, D.A.; Yang, Y.; Oh, L.; Bashaw, E.; Zineh, I.; et al. Effect of Sunscreen Application on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. JAMA 2020, 323, 256. [Google Scholar] [CrossRef]
- Bury, D.; Weber, T.; Ebert, K.E.; Zülz, S.; Brüning, T.; Koch, H.M.; Kolossa-Gehring, M. Increasing Exposure to the UV Filters Octocrylene and 2-Ethylhexyl Salicylate in Germany from 1996 to 2020: Human Biomonitoring in 24-h Urine Samples of the German Environmental Specimen Bank (ESB). Environ. Int. 2023, 182, 108334. [Google Scholar] [CrossRef] [PubMed]
- EU SCCS SCCS/1627/21 Final Opinion. Scientific Committee on Consumer Safety SCCS Opinion on Octocrylene. 30–31 March 2021. Available online: https://health.ec.europa.eu/system/files/2022-08/sccs_o_249.pdf (accessed on 16 January 2024).
- Sander, M.; Sander, M.; Burbidge, T.; Beecker, J. The Efficacy and Safety of Sunscreen Use for the Prevention of Skin Cancer. CMAJ 2020, 192, E1802–E1808. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.; Rousselle, C.; Lange, R.; Sissoko, F.; Kolossa-Gehring, M.; Ougier, E. Human Biomonitoring Initiative (HBM4EU)-Strategy to Derive Human Biomonitoring Guidance Values (HBM-GVs) for Health Risk Assessment. Int. J. Hyg. Environ. Health 2020, 230, 113622. [Google Scholar] [CrossRef] [PubMed]
- Apel, P.; Lamkarkach, F.; Lange, R.; Sissoko, F.; David, M.; Rousselle, C.; Schoeters, G.; Kolossa-Gehring, M. Human Biomonitoring Guidance Values (HBM-GVs) for Priority Substances under the HBM4EU Initiative–New Values Derivation for Deltamethrin and Cyfluthrin and Overall Results. Int. J. Hyg. Environ. Health 2023, 248, 114097. [Google Scholar] [CrossRef]
- Santonen, T.; Mahiout, S.; Alvito, P.; Apel, P.; Bessems, J.; Bil, W.; Borges, T.; Bose-O’Reilly, S.; Buekers, J.; Cañas Portilla, A.I.; et al. How to Use Human Biomonitoring in Chemical Risk Assessment: Methodological Aspects, Recommendations, and Lessons Learned from HBM4EU. Int. J. Hyg. Environ. Health 2023, 249, 114139. [Google Scholar] [CrossRef]
- Escher, B.I.; Henneberger, L.; König, M.; Schlichting, R.; Fischer, F.C. Cytotoxicity Burst? Differentiating Specific from Nonspecific Effects in Tox21 in Vitro Reporter Gene Assays. Environ. Health Perspect. 2020, 128, 077007. [Google Scholar] [CrossRef]
- Onyango, D.O.; Selman, B.G.; Rose, J.L.; Ellison, C.A.; Nash, J.F. Comparison between Endocrine Activity Assessed Using ToxCast/Tox21 Database and Human Plasma Concentration of Sunscreen Active Ingredients/UV Filters. Toxicol. Sci. 2023, 196, 25–37. [Google Scholar] [CrossRef]
- Schlumpf, M.; Kypke, K.; Wittassek, M.; Angerer, J.; Mascher, H.; Mascher, D.; Vökt, C.; Birchler, M.; Lichtensteiger, W. Exposure Patterns of UV Filters, Fragrances, Parabens, Phthalates, Organochlor Pesticides, PBDEs, and PCBs in Human Milk: Correlation of UV Filters with Use of Cosmetics. Chemosphere 2010, 81, 1171–1183. [Google Scholar] [CrossRef]
- Bury, D.; Belov, V.N.; Qi, Y.; Hayen, H.; Volmer, D.A.; Brüning, T.; Koch, H.M. Determination of Urinary Metabolites of the Emerging UV Filter Octocrylene by Online-SPE-LC-MS/MS. Anal. Chem. 2018, 90, 944–951. [Google Scholar] [CrossRef]
- Gu, J.; Yuan, T.; Ni, N.; Ma, Y.; Shen, Z.; Yu, X.; Shi, R.; Tian, Y.; Zhou, W.; Zhang, J. Urinary Concentration of Personal Care Products and Polycystic Ovary Syndrome: A Case-Control Study. Environ. Res. 2019, 168, 48–53. [Google Scholar] [CrossRef]
- Matta, M.K.; Zusterzeel, R.; Pilli, N.R.; Patel, V.; Volpe, D.A.; Florian, J.; Oh, L.; Bashaw, E.; Zineh, I.; Sanabria, C.; et al. Effect of Sunscreen Application Under Maximal Use Conditions on Plasma Concentration of Sunscreen Active Ingredients: A Randomized Clinical Trial. JAMA 2019, 321, 2082–2091. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Christen-Zäch, S.; Taieb, A.; Paul, C.; Thyssen, J.P.; de Bruin-Weller, M.; Vestergaard, C.; Seneschal, J.; Werfel, T.; Cork, M.J.; et al. ETFAD/EADV Eczema Task Force 2020 Position Paper on Diagnosis and Treatment of Atopic Dermatitis in Adults and Children. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 2717–2744. [Google Scholar] [CrossRef] [PubMed]
- Halling-Overgaard, A.-S.; Kezic, S.; Jakasa, I.; Engebretsen, K.A.; Maibach, H.; Thyssen, J.P. Skin Absorption through Atopic Dermatitis Skin: A Systematic Review. Br. J. Dermatol. 2017, 177, 84–106. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Michael, S.; Bharti, K.; Ferrer, M.; Song, M.J. A Biofabricated Vascularized Skin Model of Atopic Dermatitis for Preclinical Studies. Biofabrication 2020, 12, 035002. [Google Scholar] [CrossRef]
- Browne, P.; Judson, R.S.; Casey, W.M.; Kleinstreuer, N.C.; Thomas, R.S. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model. Environ. Sci. Technol. 2015, 49, 8804–8814. [Google Scholar] [CrossRef]
- Mansouri, K.; Kleinstreuer, N.; Abdelaziz, A.M.; Alberga, D.; Alves, V.M.; Andersson, P.L.; Andrade, C.H.; Bai, F.; Balabin, I.; Ballabio, D.; et al. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environ. Health Perspect. 2020, 128, 027002. [Google Scholar] [CrossRef]
- Bury, D.; Modick-Biermann, H.; Leibold, E.; Brüning, T.; Koch, H.M. Urinary Metabolites of the UV Filter Octocrylene in Humans as Biomarkers of Exposure. Arch. Toxicol. 2019, 93, 1227–1238. [Google Scholar] [CrossRef]
- EU SCCS SCCS/1647/22 Corrigendum. SCCS (Scientific Committee on Consumer Safety), SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation 12th Revision, 15 May 2023, Corrigendum 26 October 2023. Available online: https://health.ec.europa.eu/publications/sccs-notes-guidance-testing-cosmetic-ingredients-and-their-safety-evaluation-12th-revision_en (accessed on 29 October 2024).
- Berggren, E.; White, A.; Ouedraogo, G.; Paini, A.; Richarz, A.-N.; Bois, F.Y.; Exner, T.; Leite, S.; van Grunsven, L.A.; Worth, A.; et al. Ab Initio Chemical Safety Assessment: A Workflow Based on Exposure Considerations and Non-Animal Methods. Comput. Toxicol. 2017, 4, 31–44. [Google Scholar] [CrossRef]
- Dent, M.; Amaral, R.T.; Da Silva, P.A.; Ansell, J.; Boisleve, F.; Hatao, M.; Hirose, A.; Kasai, Y.; Kern, P.; Kreiling, R.; et al. Principles Underpinning the Use of New Methodologies in the Risk Assessment of Cosmetic Ingredients. Comput. Toxicol. 2018, 7, 20–26. [Google Scholar] [CrossRef]
Observation/Conclusion | Relevance | Risk and Vulnerability Drivers |
---|---|---|
Cutaneous absorption confirmed | Need to address systemic effects | Absorption may be higher in patients with skin disorders |
Inhalation exposure is significant for propellant sprays | High variability in inhalation exposure | Selection of pump vs. propellant sprays reduces ca. 100 times inhalation exposure |
Rapid metabolism, plasmatic levels of metabolite CDAA 1 significantly higher than the parent compound | Systemic toxicity may be related to the parent ingredient, the metabolite(s) or both | Bioactivity data should cover both the parent ingredient and the relevant metabolite(s) |
CDAA represents the larger fraction of renal excretion | CDAA urinary levels are the best marker for human biomonitoring | Reference values for human biomonitoring could be established for the general population |
There are some but inconclusive indications of endocrine activity | All modalities associated with endocrine activity to be considered | Potential for endocrine disruption vulnerabilities |
Induction of hepatic enzymes leading to increased metabolism of thyroid hormones | The thyroid disruption is assumed to be rat-specific and not relevant for humans | Vulnerabilities associated with increased hepatic metabolism |
PoD for systemic toxicity 76.5 mg/kg bw per day, based on an oral rat reproductive NOAEL 2 and 50% absorption | Reproductive NOAEL low relevance for disease-related vulnerability | Standard hazard assessment for the general “healthy” population |
Plasmatic levels in studies with human volunteers | Expected exposure levels under normal use patterns | Baseline exposure for toxicodynamic-based vulnerability |
Bioactivity Pathway | Relevance | Risk and Vulnerability Drivers |
---|---|---|
Inconsistent/inconclusive assessment of EAST 1 endocrine modalities | The results are insufficient for the identification of octocrylene as an endocrine disrupter, but bioactivity was detected | Potential for endocrine disruption vulnerabilities |
PXR 2 agonist and induction of Cytochrome P450 including Cytochrome P450 3A4 (CYP3A4) | Induction of hepatic drug metabolisms; also involved in the metabolisms of hormones and other substances | Driver for oncology patients, as may affect the efficacy of patients’ treatments |
FXR 3 and ERR 4 antagonist affecting genes regulating metabolisms and cellular energetic pathways | May affect energy homeostasis; bioactivity shared with several anticancer drugs | Potential for metabolic disruption; driver for oncology patients due to potential for interaction with anticancer drugs |
No information on bioactivity of the metabolite(s) | CDAA plasmatic levels are much higher, and the in vivo studies do not clarify if the metabolite plays a role in the toxicity | Driver for generating additional information: bioactivity of CDAA |
No information on skin-related pathways | Very relevant for cosmetic uses in general and specifically for patients with atopic dermatitis | Driver for generating additional information to assess vulnerability for patients with dermal disruption |
No information on immunotoxicity pathways | Very relevant for oncological patients | Driver for generating additional information to assess vulnerability for oncological patients |
HBM-GV GenPop | TRV | MW Metabolite CDAA | MW Octocrylene | Fue | Daily Urinary Flow Rate Adjusted to bw | ||
---|---|---|---|---|---|---|---|
adults | 11.87 | mg/L | 0.765 | 249.27 | 361.5 | 0.45 | 20 |
children | 7.91 | mg/L | 0.765 | 249.27 | 361.5 | 0.45 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Martín, M.-E.; Tarazona, J.V. Next Generation Risk Assessment to Address Disease-Related Vulnerability—A Proof of Concept for the Sunscreen Octocrylene. Toxics 2025, 13, 110. https://doi.org/10.3390/toxics13020110
Fernández-Martín M-E, Tarazona JV. Next Generation Risk Assessment to Address Disease-Related Vulnerability—A Proof of Concept for the Sunscreen Octocrylene. Toxics. 2025; 13(2):110. https://doi.org/10.3390/toxics13020110
Chicago/Turabian StyleFernández-Martín, María-Elena, and Jose V. Tarazona. 2025. "Next Generation Risk Assessment to Address Disease-Related Vulnerability—A Proof of Concept for the Sunscreen Octocrylene" Toxics 13, no. 2: 110. https://doi.org/10.3390/toxics13020110
APA StyleFernández-Martín, M.-E., & Tarazona, J. V. (2025). Next Generation Risk Assessment to Address Disease-Related Vulnerability—A Proof of Concept for the Sunscreen Octocrylene. Toxics, 13(2), 110. https://doi.org/10.3390/toxics13020110