Background Values of Soil Heavy Metals in the Huang-Huai-Hai Plain in Henan Province, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Physical Geography of the Study Area
2.2. Soil Sampling
2.3. Determination of Soil Heavy Metal Concentrations
2.4. Determination of the Background Soil Heavy Metal Values
2.4.1. Outlier Test
2.4.2. Data Distribution Test
2.4.3. Methods for Characterizing Background Values
3. Results and Discussion
3.1. Descriptive Statistics and Distribution of Raw Data
3.2. Statistics and Distribution of the Soil Heavy Metal Contents After Removal of Outliers
3.3. Background Values for Soil Heavy Metals
3.4. Analysis of Differences in the Heavy Metal Background Values of Soils in the Huang-Huai-Hai Plain in Henan Province
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roca, N.; Pazos, M.S.; Bech, J. Background levels of potentially toxic elements in soils: A case study in Catamarca (a semiarid region in Argentina). Catena 2012, 92, 55–66. [Google Scholar] [CrossRef]
- Ander, E.L.; Johnson, C.C.; Cave, M.R.; Palumbo–Roe, B.; Nathanail, C.P.; Lark, R.M. Methodology for the determination of normal background concentrations of contaminants in English soil. Sci. Total Environ. 2013, 454–455, 604–618. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.X.; Li, K.; Li, M.; Yang, K.; Liu, F.; Cheng, X.M. Background and reference values of soil chemical elements in urban China. Earth Sci. Front. 2014, 21, 265–306. [Google Scholar]
- Chen, M.; Ma, L.Q.; Hoogeweg, C.G.; Harris, W.G. Arsenic background concentrations in Florida, USA, surface soil: Determination and interpretation. Environ. Forensics 2001, 2, 117–126. [Google Scholar] [CrossRef]
- Ramos–Miras, J.J.; Roca–Perez, L.; Guzmán–Palomino, M. Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J. Geochem. Explor. 2011, 110, 186–192. [Google Scholar] [CrossRef]
- Beygi, M.; Jalali, M. Background levels of some trace elements in calcareous soils of the Hamedan Province. Iran. Catena. 2018, 162, 303–316. [Google Scholar] [CrossRef]
- Rawlins, B.G.; Lister, T.R.; Mackenzie, A.C. Trace–metal pollution of soils in northern England. Environ. Geol. 2002, 42, 612–620. [Google Scholar] [CrossRef]
- China National Environmental Monitoring Centre. Background Values of Soil Elements in China; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- Henan Provincial Soil Survey Office. Henan Soil; China Agriculture Press: Beijing, China, 2004.
- Zhang, P.Y.; Qin, C.Z.; Hong, X.; Kang, G.H.; Qin, M.Z.; Yang, D.; Pang, B.; Li, Y.Y.; He, J.J.; Dick, R.P. Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Sci. Total. Environ. 2018, 633, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Y.; Li, F.F.; Wang, X.Y.; Yang, Z.H.; Han, K.; Ruan, X.L. Spatial distribution characteristics and risk assessment of heavy metal pollution in farmland soil around lead–zinc refinery. Environ. Sci. 2019, 40, 437–444. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, W.P.; Yang, Y.; Wang, T.Q.; Liu, C.F.; Cai, B. Characteristics and comprehensive risk assessment of heavy metal pollution in farmland in Plain district of Jiyuan City. J. Environ. Sci. 2020, 40, 2229–2236. [Google Scholar] [CrossRef]
- Meng, X.F.; Guo, J.M.; Yang, J.X.; Yang, J.; Zheng, G.D.; Qiao, P.W.; Bian, J.L.; Chen, T.B. Distribution characteristics and risk assessment of heavy metals in farmland soils around typical industrial areas in Henan Province. Environ. Sci. 2021, 42, 900–908. [Google Scholar] [CrossRef]
- Zhang, C.L.; Qian, J.; Lei, Y.C.; Nie, J.X.; Ma, J.H.; Zhang, J.L. Heavy metal pollution and risk assessment of watermelon planting soil in Kaifeng city. Environ. Chem. 2021, 40, 1714–1722. [Google Scholar] [CrossRef]
- Ma, J.H.; Li, C.; Chen, Y.Z. Effects of land use and economic growth on heavy metal pollution in urban soil: A case study of Kaifeng City. Acta Pedol. Sin. 2011, 48, 743–750. [Google Scholar]
- Xia, M.; Zhao, B.Z.; Zhang, J.B. Heavy metal accumulation in typical fluvo–aquci soil area of Huang–Huai–hai Plain based on GIS. Acta Pedol. Sin. 2013, 50, 684–692. [Google Scholar] [CrossRef]
- Liu, D.X.; Ma, J.H.; Sun, Y.L.; Li, Y.M. Spatial distribution of soil magnetic susceptibility and its correlation with heavy metal pollution in Kaifeng city. J. Soil. 2014, 51, 1242–1250. [Google Scholar] [CrossRef]
- Li, Y.M.; Ma, J.H.; Liu, D.X.; Sun, Y.L.; Chen, Y.F. Heavy metal pollution and potential ecological risk assessment of urban soil in Kaifeng. Environ. Sci. 2015, 36, 1037–1044. [Google Scholar] [CrossRef]
- Liu, D.X.; Li, Y.M.; Ma, J.H.; Li, C.; Chen, X. Heavy metal pollution in urban soil from 1994 to 2012 in Kaifeng City, China. Water Air Soil Poll. 2016, 227, 1–10. [Google Scholar] [CrossRef]
- Chen, Z.F.; Hua, Y.X.; Xu, W. Analysis of heavy metal pollution sources in suburban farmland based on positive definite matrix factor analysis model. J. Environ. Sci. 2020, 40, 276–283. [Google Scholar] [CrossRef]
- LV, L.; Ma, J.H.; Jiang, Y.L.; Zhang, Z. Spatial distribution, enrichment and source analysis of heavy metals in farmland soils around crematoria in Pingdingshan City. J. Environ. Sci. 2021, 41, 5117–5126. [Google Scholar] [CrossRef]
- Ma, J.H.; Li, J.; Song, B. Heavy metal distribution and pollution analysis of roadside soil in different operational sections of Zhengbian Road. Acta Sci. Circumstantiae 2007, 27, 1734–1743. [Google Scholar] [CrossRef]
- Ma, J.H.; Chu, C.J.; Li, J.; Song, B. Heavy metal pollution in soils on railroad side of Zhengzhou–Putian Section of Longxi–Haizhou Railroad, China. Pedosphere 2009, 19, 121–128. [Google Scholar] [CrossRef]
- Gu, L.; Song, B.; Tong, Z.Q.; Ma, J.H. Distribution and potential ecological risk of heavy metals in roadside soil of different operating sections of Lian–Huo Expressway. Prog. Geogr. 2012, 31, 632–638. [Google Scholar] [CrossRef]
- Chen, Y.N.; Ma, J.H.; Miao, C.H.; Ruan, X.L. Occurrence and environmental impact of industrial agglomeration on regional soil heavy metalloid accumulation: A case study of the Zhengzhou Economic and Technological Development Zone (ZETZ), China. J. Clean. Prod. 2020, 245, 118676. [Google Scholar] [CrossRef]
- Senila, M.; Levei, E.; Miclean, M.; Senila, L.; Stefanescu, L.; Mărginean, S.; Ozunu, A.; Roman, C. Influence of pollution level on heavy metals mobility in soil from NW Romania. Environ. Eng. Manag. J. 2011, 10, 50–64. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Zhang, X.L. Relationship between multi–stage geomorphic features and soil diversity in Henan Province. Soils 2019, 51, 142–151. [Google Scholar] [CrossRef]
- GB/T 17141-1997; Soil Quality-Determination of Lead and Cd—Graphite Furnace Yard Absorption Spectrophotometry. National Standards of the People’s Republic of China: Beijing, China, 1997.
- HJ 766-2015; Solid Waste–Determination of Metals–Inductively Coupled Plasma Mass Spectrometry (ICP-MS). National Environmental Protection Standards of the People’s Republic of China: Beijing, China, 2015.
- GB/T 22105.1-2008; Soil Quality—Analysis of Total Mercury, Arsenic and Lead Contents in Soils—Atomic Fluorescence Spectrometry—Part 1: Analysis of Total Mercury Contents in Soils. National Standards of the People’s Republic of China: Beijing, China, 2008.
- GB/T 22105.2-2008; Soil Quality—Analysis of Total Mercury, Arsenic and Lead Contents in Soils—Atomic Fluorescence Spectrometry—Part 2: Analysis of Total Arsenic Contents in Soils. National Standards of the People’s Republic of China: Beijing, China, 2008.
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Bio. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Opekunova, M.G.; Opekunov, A.Y.; Kukushkin, S.Y.; Ganul, A.G. Background contents of heavy metals in soils and bottom sediments in the North of Western Siberia. Eurasian Soil Sci. 2019, 53, 380–395. [Google Scholar] [CrossRef]
- Matschullat, J.; Ottenstein, R.; Reimann, C. Geochemical background: Can we calculate it? Environ. Geol. 2000, 39, 990–1000. [Google Scholar] [CrossRef]
- Agharezaei, M.; Hezarkhani, A. Delineation of geochemical anomalies based on Cu by the boxplot as an exploratory data analysis (EDA) method and concentration–volume (C–V) fractal modeling in Mesgaran mining area. Eastern Iran. J. Geol. 2016, 6, 1269–1278. [Google Scholar] [CrossRef]
- Reimann, C.; Fabian, K.; Birke, M.; Peter, F.; Alecos, D. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem. 2018, 88, 302–318. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Dall′Agnol, R.; Salomão, G.N.; Junior, J.S.F.; Silva, M.S.; Martins, G.C.; Filho, P.W.M.; Powell, M.A.; Maurity, C.W.; Angelica, R.S.; et al. Source and background threshold values of potentially toxic elements in soils by multivariate statistics and GIS–based mapping: A high density sampling survey in the Parauapebas Basin, Brazilian Amazon. Environ. Geochem. Health 2020, 42, 255–283. [Google Scholar] [CrossRef]
- GB/T 4883-2008; Statistical Interpretation of Data—Detection and Treatment of Outliers in the Normal Sample. National Standards of the People’s Republic of China: Beijing, China, 2008.
- Lomax, R.G.; Hahs–Vaughn, D.L. An Introduction to Statistical Concepts, 3rd ed.; Taylor & Francis Group LLC: New York, 2012. [Google Scholar]
- Wang, F.P.; Song, B.; Zhou, L.; Pang, R.; Zhang, Y.X.; Chen, T.B. Restudy on background values of soil heavy metals in Xijiang River Basin, Guangxi. Acta Sci. Circumstantiae 2018, 38, 3695–3702. [Google Scholar] [CrossRef]
- Wang, P.; Cao, J.Y.; Wu, F. Environmental background values and influencing factors of surface soil in Qinghai Lake Basin. J. Earth Environ. 2010, 1, 189–200. [Google Scholar]
- GB 15618-2018; Soil Environmental Quality—Standards for Soil Pollution Risk Control of Agricultural Land. National Standards of the People’s Republic of China: Beijing, China, 2018.
- Chen, T.B.; Zheng, Y.M.; Chen, H.; Zheng, G.D. Background concentrations of soil heavy metals in Beijing. Environ. Sci. 2004, 25, 1. [Google Scholar] [CrossRef]
- Chen, Y.L.; Weng, L.P.; Ma, J.; Wu, X.J.; Li, Y.T. Review on the last ten years of research on source identification of heavy metal pollution in soils. J. Agro⁃Environ. Sci. 2019, 38, 2219–2238. [Google Scholar] [CrossRef]
- An, L.H.; Liu, M.C.; Zhang, J.Q.; Huang, L.; Chen, Z.L. Sources of arsenic in soil and affecting factors of migration and release: A review. Soils 2020, 52, 234–246. [Google Scholar] [CrossRef]
HMs | Min | Max | AM | GM | Med | SD | GSD | AMD | CV/% |
---|---|---|---|---|---|---|---|---|---|
Hg (n = 694) | 0.001 | 0.152 | 0.070 | 0.054 | 0.064 | 0.041 | 2.390 | 0.033 | 58.57 |
As (n = 848) | 1.70 | 11.25 | 6.43 | 5.92 | 6.67 | 2.41 | 1.54 | 1.96 | 37.48 |
Cd (n = 682) | 0.076 | 0.183 | 0.129 | 0.126 | 0.129 | 0.027 | 1.237 | 0.020 | 20.93 |
Cr (n = 729) | 35.11 | 71.65 | 53.24 | 52.45 | 53.13 | 9.11 | 1.19 | 6.64 | 17.11 |
Pb (n = 778) | 14.02 | 25.54 | 19.77 | 19.56 | 19.67 | 2.89 | 1.16 | 2.32 | 14.12 |
Cu (n = 613) | 14.15 | 32.77 | 23.30 | 22.87 | 23.05 | 4.45 | 1.21 | 3.26 | 19.10 |
Zn (n = 550) | 40.43 | 87.87 | 64.00 | 62.88 | 64.04 | 11.82 | 1.21 | 8.74 | 18.47 |
Ni (n = 753) | 16.12 | 36.36 | 26.25 | 25.74 | 26.08 | 5.08 | 1.22 | 3.85 | 19.35 |
Heavy Metals | Skewness Test | Kurtosis Test | K-S | Q-Q | Distribution | |||||
---|---|---|---|---|---|---|---|---|---|---|
S | Zs | Distribution | K | Zk | Distribution | |||||
Hg | Natural values | 0.311 | 3.444 | skewed | −1.059 | 5.724 | normal | skewed | skewed | skewed |
Log-transformed values | −1.825 | 19.624 | skewed | 5.229 | 28.625 | skewed | skewed | skewed | skewed | |
As | Natural values | 0.033 | 0.393 | normal | −1.072 | 6.381 | skewed | skewed | skewed | skewed |
Log-transformed values | −0.644 | 7.667 | skewed | −0.536 | 3.109 | skewed | skewed | skewed | skewed | |
Cd | Natural values | 0.050 | 0.532 | normal | −0.855 | 4.572 | skewed | normal | normal | normal |
Cr | Natural values | 0.092 | 1.022 | normal | −0.239 | 1.320 | normal | normal | normal | normal |
Pb | Natural values | 0.074 | 0.841 | normal | −0.964 | 5.509 | skewed | skewed | skewed | skewed |
Log-transformed values | −0.159 | 1.807 | normal | −0.900 | 5.143 | skewed | skewed | skewed | skewed | |
Cu | Natural values | 0.204 | 2.061 | skewed | −0.788 | 4.000 | skewed | skewed | skewed | skewed |
Log-transformed values | −0.140 | 1.414 | normal | −0.765 | 3.883 | skewed | normal | normal | normal | |
Zn | Natural values | 0.030 | 0.288 | normal | 0.753 | 3.620 | skewed | normal | normal | normal |
Ni | Natural values | 0.056 | 0.628 | normal | −0.882 | 4.955 | skewed | normal | normal | normal |
Heavy Metals | Order Statistics | BVs | 95% Confidence Intervals | ||||||
---|---|---|---|---|---|---|---|---|---|
5% | 10% | 25% | 50% | 75% | 90% | 95% | |||
Hg | 0.012 | 0.022 | 0.035 | 0.064 | 0.105 | 0.131 | 0.141 | 0.064 (med) | 0.012–0.130 |
As | 2.62 | 3.06 | 4.24 | 6.67 | 8.32 | 9.71 | 10.35 | 6.67 (med) | 2.75–10.59 |
Cd | 0.085 | 0.093 | 0.109 | 0.129 | 0.149 | 0.166 | 0.175 | 0.129 (AM) | 0.075–0.183 |
Cr | 38.29 | 40.48 | 46.52 | 53.13 | 59.82 | 66.40 | 68.24 | 53.24 (AM) | 35.02–71.46 |
Pb | 15.10 | 16.00 | 17.44 | 19.67 | 22.08 | 23.81 | 24.53 | 19.67 (med) | 15.03–24.31 |
Cu | 16.50 | 17.54 | 19.81 | 23.05 | 26.46 | 29.61 | 31.11 | 22.87 (GM) | 15.66–33.39 |
Zn | 43.85 | 46.51 | 55.39 | 64.04 | 73.00 | 79.62 | 83.89 | 64.00 (AM) | 40.36–87.64 |
Ni | 17.80 | 19.21 | 22.44 | 26.08 | 30.33 | 33.33 | 34.90 | 26.25 (AM) | 16.09–36.41 |
Heavy Metals | This Study | Soils in Henan Province [8] | Fluvo-Aquic Soil in Henan Province [9] | Fluvo-Aquic Soil in China [8] | |||
---|---|---|---|---|---|---|---|
BVs | Degree of Variation (%) | BVs | Degree of Variation (%) | BVs | Degree of Variation (%) | ||
Hg | 0.064 | 0.031 | 51.56 (Extremely strong) | 0.027 | 57.81 (Extremely strong) | 0.032 | 50.00 (strong) |
As | 6.67 | 10.9 | −63.43 (Extremely strong) | 9.4 | −40.93 (strong) | 9.3 | −39.43 (strong) |
Cd | 0.129 | 0.073 | 43.41 (strong) | 0.065 | 49.61 (strong) | 0.085 | 34.11 (strong) |
Cr | 53.24 | 62.5 | −17.39 (moderate) | 58.9 | −10.63 (moderate) | 64.8 | −20.17 (moderate) |
Pb | 19.67 | 19.1 | 2.90 (weak) | 20.1 | −2.19 (weak) | 20.6 | −4.73 (weak) |
Cu | 22.87 | 19.2 | 16.05 (moderate) | − | − | 22.9 | −3.45 (weak) |
Zn | 64.00 | 58.4 | 8.75 (weak) | − | − | 67.8 | −5.94 (weak) |
Ni | 26.25 | 26.1 | 0.57 (weak) | 25.5 | 2.86 (weak) | 28.1 | −7.05 (weak) |
Heavy Metals | Regions | Sample Size After Removing Outliers | Distribution Types | BVs (mg·kg−1) | 95% Confidence Intervals (mg·kg−1) | Statistical Significance |
---|---|---|---|---|---|---|
Hg | Southern | 261 | Skewness | 0.066 (Med) | 0.003–0.144 | Non-significant (p = 0.758) |
Northern | 426 | Skewness | 0.061 (Med) | 0.003–0.119 | ||
As | Southern | 286 | Skewness | 4.11 (Med) | 1.23–6.99 | Highly significant (p = 0.000) |
Northern | 514 | Skewness | 7.45 (Med) | 5.15–9.75 | ||
Cd | Southern | 234 | Normal | 0.130 (AM) | 0.092–0.168 | Non-significant (p = 0.445) |
Northern | 427 | Normal | 0.129 (AM) | 0.069–0.189 | ||
Cr | Southern | 303 | Normal | 56.72 (AM) | 34.96–78.48 | Highly significant (p = 0.000) |
Northern | 440 | Normal | 51.92 (AM) | 35.22–68.62 | ||
Pb | Southern | 298 | Log-normal | 20.97 (GM) | 15.98–27.68 | Highly significant (p = 0.000) |
Northern | 490 | Log-normal | 18.96 (GM) | 14.04–25.60 | ||
Cu | Southern | 236 | Normal | 23.31 (AM) | 15.71–30.91 | Significant (p = 0.038) |
Northern | 356 | Normal | 22.72 (AM) | 13.82–31.62 | ||
Zn | Southern | 213 | Log-normal | 59.21 (GM) | 41.12–85.26 | Highly significant (p = 0.000) |
Northern | 343 | Log-normal | 66.69 (GM) | 45.68–97.37 | ||
Ni | Southern | 296 | Normal | 24.03 (AM) | 13.63–34.07 | Highly significant (p = 0.000) |
Northern | 472 | Normal | 27.16 (AM) | 17.04–37.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Ma, J.; Wang, Y.; Yang, Y. Background Values of Soil Heavy Metals in the Huang-Huai-Hai Plain in Henan Province, China. Toxics 2025, 13, 93. https://doi.org/10.3390/toxics13020093
Jiang Y, Ma J, Wang Y, Yang Y. Background Values of Soil Heavy Metals in the Huang-Huai-Hai Plain in Henan Province, China. Toxics. 2025; 13(2):93. https://doi.org/10.3390/toxics13020093
Chicago/Turabian StyleJiang, Yuling, Jianhua Ma, Yuanbo Wang, and Yahan Yang. 2025. "Background Values of Soil Heavy Metals in the Huang-Huai-Hai Plain in Henan Province, China" Toxics 13, no. 2: 93. https://doi.org/10.3390/toxics13020093
APA StyleJiang, Y., Ma, J., Wang, Y., & Yang, Y. (2025). Background Values of Soil Heavy Metals in the Huang-Huai-Hai Plain in Henan Province, China. Toxics, 13(2), 93. https://doi.org/10.3390/toxics13020093