Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review
Abstract
:1. Introduction
2. Application of SMS to Soils and Its Effect on the Behavior of Pesticides
2.1. Effect of SMS on Pesticide Adsorption-Desorption
2.2. Effect of SMS on Pesticide Mobility
2.2.1. Pesticide Mobility in Undisturbed Soil + SMS Cores
2.2.2. Pesticide Mobility in Packed Soil + SMS Columns
2.2.3. Pesticide Mobility in SMS-Amended Soils: Field Experiments
2.3. Effect of SMS on Pesticide Degradation and Dissipation
2.3.1. Pesticide Dissipation and Mass Balance in SMS-Amended Soils: Field and Laboratory Studies
2.3.2. Pesticide Dissipation in Biobeds or Biomixtures including SMS as a Component
2.3.3. Biodegradation and Bioremediation of Polluted Soils by SMS
3. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Oerke, E.C.; Dehne, H.W. Safeguarding production–losses in major crops and the role of crop protection. Crop. Prot. 2004, 23, 275–285. [Google Scholar] [CrossRef]
- AEPLA. Asociación Empresarial para la Protección de las Plantas. Available online: www.aepla.es (accessed on 19 April 2016).
- FAOSTAT. Food and Agriculture Organization of the United Nations (2016). Available online: http://faostat3.fao.org (accessed on 19 April 2016).
- Masiá, A.; Campo, J.; Navarro-Ortega, A.; Barceló, D.; Picó, Y. Pesticide monitoring in the basin of Llobregat River (Catalonia, Spain) and comparison with historical data. Sci. Total Environ. 2015, 503–504, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Sulowicz, S.; Piotrowska-Seget, Z. The impact of fungicides on soil microorganisms. Postep. Mikrobiol. 2016, 55, 12–18. [Google Scholar]
- Ccanccapa, A.; Masiá, A.; Navarro-Ortega, A.; Picó, Y.; Barceló, D. Pesticides in the Ebro River basin: Occurrence and risk assessment. Environ. Pollut. 2016, 211, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Palma, P.; Kuster, M.; Alvarenga, P.; Palma, V.L.; Fernández, R.M.; Soares, A.M.V.V.; López de Alda, M.J.; Barceló, D.; Barbosa, I.R. Risk assessment of representative and priority pesticides, in surface water of the Alqueva reservoir (south of Portugal) using on-line solid phase extraction–liquid chromatography–tandem mass spectrometry. Environ. Int. 2009, 35, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Vryzas, Z.; Vassiliou, G.; Alexoudis, C.; Papadopoulou-Mourkidou, E. Spatial and temporal distribution of pesticide residues in surface waters in northeastern Greece. Water Res. 2009, 43, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Hernández, E.; Andrades, M.S.; Álvarez-Martín, A.; Pose-Juan, E.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Occurrence of pesticides and some of their degradation products in waters in a Spanish wine region. J. Hydrol. 2013, 486, 234–245. [Google Scholar] [CrossRef]
- Fait, G.; Nicelli, M.; Fragoulis, G.; Trevisan, M.; Capri, E. Reduction of point contamination sources of pesticide from a vineyard farm. Environ. Sci. Technol. 2007, 41, 3302–3308. [Google Scholar] [CrossRef]
- Ouyang, W.; Cai, G.; Huang, W.; Hao, F. Temporal–spatial loss of diffuse pesticide and potential risks for water quality in China. Sci. Total Environ. 2016, 541, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Vonberg, D.; Vanderborght, J.; Cremer, N.; Pütz, T.; Herbst, M.; Vereecken, H. 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Res. 2014, 50, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Castillo, M.d.P.; Torstensson, L.; Stenstrom, J. Biobeds for environmental protection from pesticide use-a review. J. Agric. Food Chem. 2008, 56, 6206–6219. [Google Scholar] [CrossRef] [PubMed]
- Ramwell, C.T.; Johnson, P.D.; Boxall, A.B.A.; Rimmer, D.A. Pesticide residues on the external surfaces of field-crop sprayers: Environmental impact. Pest Manag. Sci. 2004, 60, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martín, A.; Rodríguez-Cruz, M.S.; Andrades, M.S.; Sánchez-Martín, M.J. Application of a biosorbent to soil: A potential method for controlling water pollution by pesticides. Environ. Sci. Pollut. Res. 2016, 23, 9192–9203. [Google Scholar] [CrossRef] [PubMed]
- Karanasios, E.; Tsiropoulos, N.G.; Karpouzas, D.G.; Menkissoglu-Spiroudi, U. Novel biomixtures based on local Mediterranean lignocellulosic materials: Evaluation for use in biobed systems. Chemosphere 2010, 80, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Salgado, I.; Paradelo-Pérez, M.; Pérez-Rodríguez, P.; Cutillas-Barreiro, L.; Fernández-Calviño, D.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M. Cyprodinil retention on mixtures of soil and solid wastes from wineries. Effects of waste dose and ageing. Environ. Sci. Pollut. Res. 2014, 21, 9785–9795. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Calderon, P.; Gondar-Bouzada, D.M. Producción y gestión de los residuos orgánicos: Situación actual a nivel mundial, comunitario y estatal. In Compostaje; Moreno-Casco, J., Moral-Herrero, R., Eds.; Mundi-Prensa: Madrid, Spain, 2008. [Google Scholar]
- Ingelmo-Sánchez, F.; Rubio-Delgado, J. Efecto de la aplicación del compost sobre las propiedades físicas y química del suelo. In Compostaje; Moreno-Casco, J., Moral-Herrero, R., Eds.; Mundi-Prensa: Madrid, Spain, 2008. [Google Scholar]
- García-Izquierdo, C.; Lobo-Bedmar, M.C. Rehabilitación de suelos degradados y contaminados mediante la aplicación de compost. In Compostaje; Moreno-Casco, J., Moral-Herrero, R., Eds.; Mundi-Prensa: Madrid, Spain, 2008. [Google Scholar]
- Spokas, K.A.; Koskinen, W.C.; Baker, J.M.; Reicosky, D.C. Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a Minnesota soil. Chemosphere 2009, 77, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, M.; Wang, X.; Huang, Q.; Nie, J.; Li, Z.; Li, S.; Hwang, S.W.; Lee, K.B. Effects of organic amendments on soil carbon sequestration in paddy fields of subtropical China. J. Soils Sediments 2012, 12, 457–470. [Google Scholar] [CrossRef]
- Briceño, G.; Palma, G.; Durán, N. Influence of organic amendment on the biodegradation and movement of pesticides. Crit. Rev. Environ. Sci. Technol. 2007, 37, 233–271. [Google Scholar] [CrossRef]
- Fernández-Bayo, J.D.; Nogales, R.; Romero, E. Effect of vermicompost from waste of the wine and alcohol industries in the persistence and distribution of imidacloprid and diuron on agricultural soils. J. Agric. Food Chem. 2009, 57, 5435–5442. [Google Scholar] [CrossRef] [PubMed]
- López-Piñeiro, A.; Cabrera, D.; Albarrán, A.; Peña, D. Influence of two-phase olive mill waste application to soil on terbuthylazine behavior and persistence under controlled and field conditions. J. Soils Sediments 2011, 11, 771–782. [Google Scholar] [CrossRef]
- Rojas, R.; Morillo, J.; Usero, J.; Delgado-Moreno, L.; Gan, J. Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Sci. Total Environ. 2013, 458–460, 614–623. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.W.; Law, S.C.; Ching, M.L.; Cheung, K.W.; Chen, M.J. Themes for mushroom exploitation in the 21st century: Sustainability, waste management, and conservation. J. Gen. Appl. Microbiol. 2000, 46, 269–282. [Google Scholar] [CrossRef] [PubMed]
- Peregrina, F.; Larrieta, C.; Colina, M.; Mariscal-Sancho, I.; Martín, I.; Martínez-Vidaurre, J.M.; García-Escudero, E. Spent mushroom substrates influence soil quality and nitrogen availability in a semiarid vineyard soil. Soil Sci. Soc. Am. J. 2012, 76, 1655–1666. [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Bustamante, M.A.; Moral, R.; Moreno-Caselles, J. Relationships between soil physico-chemical, chemical and biological properties in a soil amended with spent mushroom substrate. Geoderma 2012, 173–174, 152–161. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Sánchez-Martín, M.J.; Andrades, M.S.; Pérez-Clavijo, M.; Rodríguez-Cruz, M.S. Effect of spent mushroom substrate amendment of vineyard soils on the behavior of fungicides: 1. Adsorption-desorption of penconazole and metalaxyl by soils and subsoils. J. Agric. Food Chem. 2009, 57, 9634–9642. [Google Scholar] [CrossRef] [PubMed]
- Marín-Benito, J.M.; Rodríguez-Cruz, M.S.; Andrades, M.S.; Sánchez-Martín, M.J. Assessment of spent mushroom substrate as sorbent of fungicides: Influence of sorbent and sorbate properties. J. Environ. Qual. 2012, 41, 814–822. [Google Scholar]
- Marín-Benito, J.M.; Andrades, M.S.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Changes in the sorption–desorption of fungicides over time in an amended sandy clay loam soil under laboratory conditions. J. Soils Sediments 2012, 12, 1111–1123. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Hernández, E.; Marín-Benito, J.M.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Field versus laboratory experiments to evaluate the fate of azoxystrobin in an amended vineyard soil. J. Environ. Manag. 2015, 163, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Herrero-Hernández, E.; Andrades, M.S.; Marín-Benito, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Field-scale dissipation of tebuconazole in a vineyard soil amended with spent mushroom substrate and its potential environmental impact. Ecotoxicol. Environ. Saf. 2011, 74, 1480–1488. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Cruz, M.S.; Herrero-Hernández, E.; Ordax, J.M.; Marín-Benito, J.M.; Draoui, K.; Sánchez-Martín, M.J. Adsorption of pesticides by sewage sludge, grape marc, spent mushroom substrate and by amended soils. Int. J. Environ. Anal. Chem. 2012, 92, 933–948. [Google Scholar] [CrossRef]
- PPDB, Pesticide Properties Database. Agriculture & Environment Research Unit (AERU). University of Hertfordshire. 2016. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm (accessed on 19 April 2016).
- Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 2005, 5, 497–525. [Google Scholar] [CrossRef]
- Davie-Martin, C.L.; Hageman, K.J.; Chin, Y-P.; Rougé, V.; Fujita, Y. Influence of temperature, relative humidity, and soil properties on the soil−air partitioning of semivolatile pesticides: Laboratory measurements and predictive models. Environ. Sci. Technol. 2015, 49, 10431–10439. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Barra Caracciolo, A.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Changes in the microbial activity in a soil amended with oak and pine residues and treated with linuron herbicide. Appl. Soil Ecol. 2009, 41, 2–7. [Google Scholar] [CrossRef]
- Jiang, L.; Lin, J.L.; Jia, L.X.; Liu, Y.; Pan, B.; Yang, Y.; Lin, Y. Effects of two different organic amendments addition to soil on sorption-desorption, leaching, bioavailability of penconazole and the growth of wheat (Triticum. aestivum L.). J. Environ. Manag. 2016, 167, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Karanasios, E.; Tsiropoulos, N.G.; Karpouzas, D.G.; Ehaliotis, C. Degradation and adsorption of pesticides in compost-based biomixtures as potential substrates for biobeds in southern Europe. J. Agric. Food Chem. 2010, 58, 9147–9156. [Google Scholar] [CrossRef] [PubMed]
- Karas, P.; Metsoviti, A.; Zisis, V.; Ehaliotis, C.; Omirou, M.; Papadopoulou, E.S.; Menkissoglou-Spiroudi, U.; Manta, S.; Komiotis, D.; Karpouzas, D.G. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents. Sci. Total Environ. 2015, 530–531, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Andrades, M.S.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J.; Sánchez-Camazano, M. Effect of the addition of wine distillery wastes to vineyard soils on the adsorption and mobility of fungicides. J. Agric. Food Chem. 2004, 52, 3022–3029. [Google Scholar] [CrossRef] [PubMed]
- Briceño, G.; Demanet, R.; Mora, M.D.; Palma, G. Effect of liquid cow manure on andisol properties and atrazine adsorption. J. Environ. Qual. 2008, 37, 1519–1526. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.C.; Cox, L.; Hermosín, M.C.; Cornejo, J. Organic amendments affecting sorption, leaching and dissipation of fungicides is soils. Pest Manag. Sci. 2006, 62, 1207–1215. [Google Scholar] [CrossRef] [PubMed]
- Reichenberger, S.; Bach, M.; Skitschak, A.; Frede, H.G. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; A review. Sci. Total Environ. 2007, 384, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Zhang, J.; Wang, S.; Zhang, L.; Zhou, D. Influence of organic amendment on the adsorption and leaching of ethametsulfuron-methyl in acidic soils in China. Geoderma 2006, 130, 66–76. [Google Scholar] [CrossRef]
- Singh, N. Biocompost from sugar distillery effluent: Effect on metribuzin degradation, sorption and mobility. Pest Manag. Sci. 2008, 64, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xing, B.; Torello, W. Effects of organic fertilizer derived dissolved organic matter on pesticides sorption and leaching. Environ. Pollut. 2005, 134, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Cox, L.; Cecchi, A.; Celis, R.; Hermosín, M.C.; Koskinen, W.C.; Cornejo, J. Effect of exogenous carbon on movement of simazine and 2,4-D in soils. Soil Sci. Soc. Am. J. 2001, 65, 1688–1695. [Google Scholar] [CrossRef] [Green Version]
- Marín-Benito, J.M.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Effect of spent mushroom substrate amendment of vineyard oils on the behavior of fungicides: 2. Mobility of penconazole and metalaxyl in undisturbed soil cores. J. Agric. Food Chem. 2009, 57, 9643–9650. [Google Scholar] [CrossRef] [PubMed]
- Marín-Benito, J.M.; Brown, C.D.; Herrero-Hernández, E.; Arienzo, M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Use of raw or incubated organic wastes as amendments in reducing pesticide leaching through soil columns. Sci. Total Environ. 2013, 463–464, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Álvarez Martín, A.; Ordax, J.M.; Rodríguez, M.S.; Sánchez, M.J. Movilidad de tebuconazol en un suelo enmendado: Efecto de diferentes factores implicados en este proceso. In Retos Y Oportunidades En La Ciencia Del Suelo; Macías, F., Díaz-Raviña, M., Barral, M.T., Eds.; Andavira Editora S.L.: Santiago de Compostela, Spain, 2014. [Google Scholar]
- Álvarez Martín, A.; Ordax, J.M.; Rodríguez, M.S.; Sánchez, M.J. Effect of different factors on the mobility of cymoxanil in a vineyard soil. In Proceedings of the 8th European Conference on Pesticides and Related Organic Micropollutants in the Environment, Ioannina, Greece, 18–21 September 2014; pp. 35–36.
- Karas, P.A.; Makri, S.; Papadopoulou, E.S.; Ehaliotis, C.; Menkissoglu-Spiroudi, U.; Karpouzas, D.G. The potential of organic substrates based on mushroom substrate and straw to dissipate fungicides contained in effluents from the fruit-packaging industry—Is there a role for Pleurotus. ostreatus? Ecotoxicol. Environ. Saf. 2016, 124, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Singh, N. Mobility of four triazole fungicides in two Indian soils. Pest Manag. Sci. 2005, 61, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Marín-Benito, J.M.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Dissipation of fungicides in a vineyard soil amended with different spent mushroom substrates. J. Agric. Food Chem. 2012, 60, 6936–6945. [Google Scholar] [CrossRef] [PubMed]
- Marín-Benito, J.M.; Herrero-Hernández, E.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Effect of different organic amendments on the dissipation of linuron, diazinon and myclobutanil in an agricultural soil incubated for different time periods. Sci. Total Environ. 2014, 476–477, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martín, A.; Sánchez-Martín, M.J.; Pose-Juan, E.; Rodríguez-Cruz, M.S. Effect of different rates of spent mushroom substrate on the dissipation and bioavailability of cymoxanil and tebuconazole in an agricultural soil. Sci. Total Environ. 2016, 550, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Martín, A.; Hilton, S.L.; Bending, G.D.; Rodríguez-Cruz, M.S.; Sánchez-Martín, M.J. Changes in activity and structure of the soil microbial community after application of azoxystrobin or pirimicarb and an organic amendment to an agricultural soil. Appl. Soil Ecol. 2016, 106, 47–57. [Google Scholar] [CrossRef]
- Gao, W.; Liang, J.; Pizzul, L.; Feng, X.M.; Zhang, K.; Castillo, M.P. Evaluation of spent mushroom substrate as substitute of peat in Chinese biobeds. Int. Biodeterior. Biodegrad. 2015, 98, 107–112. [Google Scholar] [CrossRef]
- Purnomo, A.S.; Putra, S.R.; Shimizu, K.; Kondo, R. Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Environ. Sci. Pollut. Res. 2014, 21, 11305–11312. [Google Scholar] [CrossRef] [PubMed]
- Purnomo, A.S.; Mori, T.; Kamei, I.; Nishii, T.; Kondo, R. Application of mushroom waste medium from Pleurotus. ostreatus for bioremediation of DDT-contaminated soil. Int. Biodeterior. Biodegrad. 2010, 64, 397–402. [Google Scholar] [CrossRef]
- Liu, J.; Min, H.; Ye, L. The negative interaction between the degradation of phenanthrene and tricyclazole in medium, soil and soil/compost mixture. Biodegradation 2008, 19, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Reid, B.J.; Fervor, T.R.; Semple, K.T. Induction of PAH-catabolism in mushroom compost and its use in the biodegradation of soil-associated phenanthrene. Environ. Pollut. 2002, 118, 65–73. [Google Scholar] [CrossRef]
- García-Delgado, C.; Yunta, F.; Eymar, E. Bioremediation of multi-polluted soil by spent mushroom (Agaricus. bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability. J. Hazard. Mater. 2015, 300, 281–288. [Google Scholar]
- García-Delgado, C.; D’Annibale, A.; Pesciaroli, L.; Yunta, F.; Crognale, S.; Petruccioli, M.; Eymar, E. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus. bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. Sci. Total Environ. 2015, 508, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Kadian, N.; Gupta, A.; Satya, S.; Mehta, R.K.; Malik, A. Biodegradation of herbicide (atrazine) in contaminated soil using various bioprocessed materials. Bioresour. Technol. 2008, 99, 4642–4647. [Google Scholar] [CrossRef] [PubMed]
- Kadian, N.; Malik, A.; Satya, S.; Dureja, P. Effect of organic amendments on microbial activity in chlorpyrifos contaminated soil. J. Environ. Manag. 2012, 95, S199–S202. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.; Gao, S.; Ajwa, H.; Hanson, B.D.; Trout, T.J.; Wang, D.; Guo, M. Interactive effect of organic amendment and environmental factors on degradation of 1,3-dichloropropene and chloropicrin in soil. J. Agric. Food Chem. 2009, 57, 9063–9070. [Google Scholar] [CrossRef] [PubMed]
- Semple, K.T.; Watts, N.U.; Fermor, T.R. Factors affecting the mineralization of (U-14C) benzene in spent mushroom substrate. FEMS Microbiol. Lett. 1998, 164, 317–321. [Google Scholar] [CrossRef]
- Eggen, T. Application of fungal substrate from commercial mushroom production—Pleuorotus. ostreatus—For bioremediation of creosote contaminated soil. Int. Biodeter. Biodegrad. 1999, 44, 117–126. [Google Scholar] [CrossRef]
- Sasek, V.; Bhatt, M.; Cajthaml, T.; Malachová, K.; Lednická, D. Compost-mediated removal of polycyclic aromatic hydrocarbons from contaminated soil. Arch. Environ. Contam. Toxicol. 2003, 44, 336–342. [Google Scholar] [CrossRef] [PubMed]
- Puglisi, E.; Cappa, F.; Fragoulis, G.; Trevisan, M.; Del Re, A.A.M. Bioavailability and degradation of phenanthrene in compost amended soils. Chemosphere 2007, 67, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Eramo, A.; Brennan, R.A. Bioremediation of diesel-contaminated soil using spent mushroom compost. In Proceedings of the 10th International in Situ and on-Site Bioremediation Symposium, Baltimore, MD, USA, 5–8 May 2009.
SMS/Parameter 1 | pH | TOC% | C% | N% | PI | C/N | DOC% | HA/FA | Reference |
---|---|---|---|---|---|---|---|---|---|
Composted Agaricus bisporus | 6.74–7.4 | 25.9–27.4 | 27.7 | 1.95–2.49 | 0.443 | 10.4–14.2 | 1.01–1.19 | 2.82 | Álvarez-Martín et al. (2016) [15] |
Marín-Benito et al. (2009) [30] | |||||||||
Marín-Benito et al. (2012) [31] | |||||||||
Fresh Agaricus bisporus | 6.7–6.97 | 24.5–28.8 | 29.4 | 2.36–2.52 | 0.592 | 11.3–14.2 | 1.91–3.83 | 1.02 | Marín-Benito et al. (2009) [30] |
Marín-Benito et al. (2012) [31] | |||||||||
Fresh Pleurotus spp. | 5.7 | 38.3 | 38.3 | 0.73 | 0.793 | 52.4 | 6.27 | 0.34 | Marín-Benito et al. (2012) [31] |
Fresh Lentinula edodes or shiitake | 4.5 | 31.2 | 31.2 | 1.75 | 0.746 | 17.9 | 10.8 | 0.49 | Marín-Benito et al. (2012) [31,32] |
Composted Agaricus bisporus: Pleurotus spp. (3:1) | 7.1–7.5 | 26.7–27.1 | 28.0 | 2.20–2.24 | 0.587 | 12.1–12.5 | 1.22 | 2.43 | Herrero-Hernández et al. (2015) [33] |
Herrero-Hernández et al. (2011) [34] | |||||||||
Marín-Benito et al. (2012) [32] | |||||||||
Rodríguez-Cruz et al. (2012) [35] |
Compound | Group | Type | Log Kow 1 | Polar/Non-Polar 2 | Water Solubility (mg·L−1) | Kfoc 3 (mL·g−1) | DT50 4 (days) |
---|---|---|---|---|---|---|---|
Azoxystrobin | strobilurin | fungicide | 2.5 | polar | 6.7 | 423 | 78 |
Benalaxyl | acetylalaninate | fungicide | 3.54 | non-polar | 28.6 | 4998 | 49 |
Chlorothalonil | chloronitrile | fungicide | 2.94 | polar | 0.81 | 3032 | 22 |
Cymoxanil | cyanoacetamide oxime | fungicide | 0.67 | polar | 780 | 43.6 | 0.7 |
Cyprodinil | phenyl pyrimidinamine | fungicide | 4.0 | non-polar | 13 | 2277 | 37 |
Diphenylamine | amine | fungicide/insecticide | 3.82 | non-polar | 25.8 | 4104 | - |
Ethoxyquin | quinoline | fungicide | 3.39 | non-polar | 60.0 | 3208 | - |
Imazalil | imidazole | fungicide | 2.56 | polar | 184 | 4753 | 76.3 |
Iprodione | dicarboximide | fungicide | 3.0 | non-polar | 6.8 | 3927 | 36.2 |
Iprovalicarb | carbamate | fungicide | 3.2 | non-polar | 17.8 | 106 | 15.5 |
Metalaxyl | acetylalaninate | fungicide | 1.75 | polar | 8400 | 162.3 | 36 |
Metalaxyl-M | acetylalaninate | fungicide | 1.71 | polar | 26,000 | 78.9 | 6.5 |
Myclobutanil | triazole | fungicide | 2.89 | polar | 132 | 517 | 560 |
Ortho-phenylphenol | phenol | fungicide | 3.18 | non-polar | 560 | 347 | 4 |
Penconazole | triazole | fungicide | 3.72 | non-polar | 73 | 2205 | 117 |
Pyrimethanil | phenyl pyrimidinamine | fungicide | 2.84 | polar | 121 | 301 | 55 |
Tebuconazole | triazole | fungicide | 3.7 | non-polar | 36 | 769 | 63 |
Thiabendazole | benzimidazole | fungicide | 2.39 | polar | 30 | 2091 | 500 |
Triadimenol | triazole | fungicide | 3.18 | non-polar | 72 | 273 | 250 |
Tricyclazole | triazolobenzothiazole | fungicide | 1.4 | polar | 596 | 144 | 450 |
Atrazine | triazine | herbicide | 2.7 | polar | 35 | 174 | 75 |
Metribuzin | triazinone | herbicide | 1.65 | polar | 1165 | 37.92 | 11.5 |
Terbuthylazine | triazine | herbicide | 3.4 | non-polar | 6.6 | 231 | 75.1 |
Buprofezin | unclassified | insecticide/acaricide | 4.93 | non-polar | 0.46 | 5334 | 50 |
Chloropicrin | unclassified | insecticide/nematicide | 2.5 | polar | 10,000 | 60.5 | 3.0 |
Chlorpyrifos | organophosphate | insecticide | 4.7 | non-polar | 1.05 | 8151 | 50 |
DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane) | organochlorine | insecticide | 6.91 | non-polar | 0.006 | 151,000 | 6200 |
Diazinon | organophosphate | insecticide | 3.69 | non-polar | 60 | 643 | 9.1 |
Dimethoate | organophosphate | insecticide/acaricide | 0.704 | polar | 39,800 | 28.3 | 2.6 |
Imidacloprid | neonicotinoid | insecticide | 0.57 | polar | 610 | 225 | 191 |
Indoxacarb | oxadiazine | insecticide | 4.65 | non-polar | 0.2 | 6450 | 17 |
Heptachlor | organochlorine | insecticide | 5.44 | non-polar | 0.056 | 24,000 | 285 |
Heptachlor epoxide | unclassified | metabolite | 4.98 | non-polar | 0.2 | 22,485 | - |
Pirimicarb | carbamate | insecticide | 1.7 | polar | 3100 | 388 | 86 |
1,3-Dichloropropene | halogenated hydrocarbon | nematicide/bactericide | 1.82 | polar | 2485 | 33.7 | 9.3 |
Pesticide | Soil | SMS Type/Dose | Results 1 | Reference |
---|---|---|---|---|
Azoxystrobin Metalaxyl Penconazole Pyrimethanil Iprovalicarb Benalaxyl Tebuconazole Cyprodinil | - | Fresh Agaricus bisporus (F-Ag) (OC 26.4%, DOC 1.19%) Composted Agaricus bisporus (C-Ag) (OC 28.4%, DOC 3.83%) Fresh Pleurotus spp.(F-Pl) (OC 38.3%, DOC 6.27%) Fresh Lentinula edodes (F-Sh) (OC 31.2%, DOC 10.8%) | Adsorption: Kf (13.0–1385) and Kd (9.65–698). Koc influent factors: HA/FA and PI of SMS and Kow of fungicides. Desorption: C-Ag was the most effective for retention all the fungicides (Kfd 2.66–1885) F-Ag, F-Pl and F-Sh only for the most hydrophobic. | Marín-Benito et al. (2012) [31] |
Metalaxyl Penconazole | Sandy clay loam (OC 0.60%, pH 7.8) Sandy clay loam (OC 1.01%, pH 7.7) Sandy clay loam (OC 1.47%, pH 7.8) | Fresh Agaricus bisporus (F-SMS) (OC 28.8%, DOC 3.83%) Composted Agaricus bisporus (C-SMS) (OC 27.4% and DOC 1.19%) Dose: 25 t·ha−1 | Kf adsorption values higher in amended soils (>2.3 times penconazole, >1.3 times metalaxyl). Increased adsorption by F-SMS (penconazole) SMS was not relevant for metalaxyl adsorption. | Marín-Benito et al. (2009) [30] |
Metalaxyl Penconazole Pyrimethanil Iprovalicarb | Sandy clay loam (OC 0.59%, pH 7.8) | Composted Agaricus bisporus: Pleurotus spp. (3:1) (OC 26.7%, DOC 1.22%) Fresh Lentinula edodes or Shiitake (OC 31.2%, DOC 10.8%) Dose: 25 and 125 t·ha−1 | Adsorption: increased in the amended soils (with higher SMS dose and composted SMS associated to higher degree of OC humification) and decreased in the amended soils (with the incubation time by decreasing the OC content over time). Desorption: increased in the amended soils (metalaxyl and iprovalicarb) and decreased (penconazole and pyrimethanil). Opposite effect with the incubation time. | Marín-Benito et al. (2012) [32] |
Linuron Diazinon Myclobutanil | Sandy clay loam (OC 0.69%, pH 7.4) Sandy loam (OC 0.47%, pH 7.9) Sandy clay loam (OC 0.82%, pH 6.5) | Composted Agaricus bisporus: Pleurotus spp. (3:1) (OC 26.7%, DOC 1.22%) Dose: 25 t·ha−1 | Kf (Kd) adsorption values increased 1.21–1.76 times (1.28−1.52 times) in amended soils. Decreased with the incubation time (linuron and diazinon) or increased (myclobutanil) by changes in the OC content or on the OC structure. | Rodríguez-Cruz et al. (2012) [35] |
Azoxystrobin | Sandy loam (OC 1.37%, pH 7.7) | Agaricus bisporus: Pleurotus spp. (3:1) (OC 27.1%, DOC 1.22%) Dose: 50 and 150 t·ha−1 | Kf adsorption values increased in amended soils (S + SMS50 0.9−4.2 times, S + SMS150 4.7–34.3 times) and decreased in the amended soils with the incubation time (S + SMS50 4.9 times, S + SMS150 7.4 times after 378 days) by decreasing the OC content. | Herrero-Hernández et al. (2015) [33] |
Tebuconazole | Sandy loam (OC 1.31%, pH 7.7) | Agaricus bisporus: Pleurotus spp. (3:1) (OC 27.1%, DOC 1.22%) Dose: 40 and 100 t·ha−1 | Kf adsorption values increased in amended soils (S + SMS40 2.65−7.03 times, S + SMS100 5.8−9.5 times) and over time (S + SMS402 65 times, S + SMS100 1.64 times after 355 days) associated to the decrease in the DOC content. | Herrero-Hernández et al. (2011) [34] |
Tebuconazole Triadimenol Cymoxanil Pirimicarb | Sandy loam (OC 0.89%, pH 7.49) Sandy clay loam (OC 0.67%, pH 7.52) Clay loam (OC 1.0%, pH 7.84) | Fresh Agaricus bisporus (OC 24.5%, DOC 1.91%) Dose: 2, 5, 10, 25, 50 and 75% (w/w) | Kf adsorption values increased in amended soils for all pesticides with the SMS dose applied (1.41−19.2 times tebuconazole, 0.9−21 times triadimenol, 1.69−28.5 times cymoxanil and 1.51−44.5 times pirimicarb) | Álvarez-Martín et al. (2016) [15] |
Metalaxyl-M Terbuthylazine Metribuzin Indoxacarb | Sandy clay loam (OC 1.8%, pH 6.57) | Composted Agaricus bisporus (OC 25.9%, DOC 1.01%) Biomixture: SMS/straw/soil (25:50:25 v/v) | Kf adsorption values increased 1.3–7.7 times in the biomixture compared to soil. Desorption lower than 30%. | Karanasios et al. (2010) [41] |
Thiabendazole Imazalil Ortho-phenylphenol Diphenylamine | Clay loam (OC 1.05%, pH 7.55) | Pleurotus ostreatus (OC 71%, pH 6.83) Biomixtures: SMS/soil (50:50 v/v) SMS/straw/soil (50:25:25 v/v) straw/SMS/soil (50:25:25 v/v) | Higher adsorption in the biomixtures than in the soil. | Karas et al. (2015) [42] |
Pesticide | Soil | SMS Type/Dose | Experimental Design | Results | Reference |
---|---|---|---|---|---|
Metalaxyl Penconazole | Sandy clay loam (OC 0.6%–1.47%, pH 7.7–7.8) | Agaricus bisporus fresh (F-SMS) and composted (C-SMS) F-SMS (OC 28.8%, DOC 3.83%) C-SMS (OC 27.4%, DOC 1.19%) Dose: 25 t·ha−1 | Undisturbed soil cores: 40 cm (length) x 9 cm (i.d.) Pesticide dose: 10 mg–2.5 mg·kg−1 Leaching flow: 50 mL–0.8 cm water every day (unsaturated flow). Total volume: 1500 mL (2.5–4.5 PV) | Metalaxyl: Decreasing of leaching peaks up to 24-fold, and increased retention in columns in C-SMS > F-SMS. Penconazole: No leaching, 100% in columns (>60% in the upper layer in C-SMS). | Marín-Benito et al. (2009) [51] |
Tebuconazole Azoxystrobin | Sandy loam (OC 1.31%,pH 7.7) Sandy loam (OC 1.37%,pH 7.7) | Agaricus bisporus: Pleurotus spp. (3:1) (OC 27.1%, DOC 1.22%, pH 7.1) Dose: 40 and 100 t·ha−1 Agaricus bisporus: Pleurotus spp. (3:1) (OC 27.1%, pH 7.1). Dose: 50 and 150 t·ha−1 | Field experiments Tebucoazole dose: 0.25 and 1.25 kg·ha−1 Azoxystrobin dose: 0.25 and 1.25 kg·ha−1 | Increased amounts of fungicides in the soil + SMS profile (0–50 cm) at different times. Amounts up to 20 cm (tebuconazole) and 50 cm (azoxystrobin) over 1 year. | Herrero-Hernández et al. (2011) [34] Herrero-Hernández et al. (2015) [33] |
Linuron Diazinon Myclobutanil | Sandy loam (OC 0.47%, pH 7.9) | Agaricus bisporus: Pleurotus spp. (3:1) (OC 26.7%, DOC 1.98%, pH 7.1) Dose: 5% w/w (25 t·ha−1) | Packed soil columns: 3 cm (i.d.) × 20 cm (length) Pesticides dose: 1 mg Leaching flow: 500 mL/day of water (12–13 PV) (saturated flow) at a constant flow rate of 1 mL·min−1 | Leaching peaks of pesticides in soil + SMS were smaller than in soil and at greater PV. SMS decreased leaching for myclobutanil > linuron > diazinon. | Marín-Benito et al. (2013) [52] |
Tebuconazole Cymoxanil | Sandy clay loam (OC 0.67%, pH 7.52) | Agaricus bisporus (OC 24.5%, DOC 1.91%, pH 6.97) Dose: 5% and 50% w/w | Packed soil columns: 3 cm (i.d.) × 20 cm (length) Pesticides dose: 1 mg Leaching flow: 500 mL of CaCl2 (0.01 M) solution (12–13 PV), (saturated and saturated -non saturated (25 mL/day) flow) | Tebuconazole: Amounts leached decreased 2–3 times in soil + SMS 5 and soil + SMS 50 with both flows. Cymoxanil: Leached amounts only decreased in soil + SMS5 and soil + SMS50 when flow was saturated-non saturated (1.3–2.6 times). | Álvarez-Martín et al. (2014) [53,54] |
Imazalil Ortho-phenylphenol | Clay loam (OC 1.05%, pH 7.55) | Pleurotus ostreatus (OC 20.6%, pH 6.83) SMS/straw/soil (50:25:25 v/v) | Packed soil columns: 12.5 cm (i.d.) × 90 cm (length) | Leaching of wastewater fungicides from citrus fruit-packaging plants decreased at <1% and <5%. | Karas et al. (2016) [55] |
Pesticide | Soil | SMS Type/Dose | Results | Reference |
---|---|---|---|---|
Tebuconazole | Sandy loam (OC 1.31%, pH 7.7) | Agaricus bisporus: Pleurotus spp. (3:1) (OC 27.1%, pH 7.1). Dose: 40 and 100 t·ha−1 | Fungicide dissipation was more rapid in amended soils than in unamended ones. | Herrero-Hernández et al. (2011) [34] |
Azoxystrobin | Sandy loam (OC 1.37%, pH 7.7) | Agaricus bisporus: Pleurotus spp. (3:1) (OC 27.1%, pH 7.1). Dose: 50 and 150 t·ha−1 | Lower fungicide dissipation was found in laboratory versus field experiments. | Herrero-Hernández et al. (2015) [33] |
Iprovalicarb Metalaxyl Penconazole Pyrimethanil | Sandy clay loam (OC 0.59%, pH 7.87) | Agaricus bisporus: Pleurotus sp. (3:1) (OC 26.7%, pH 7.5). Dose: 10% w/w Lentinula edodes or Shiitake (OC 31.2%, pH 4.5) Dose: 10% w/w | Degradation rate was reduced for all fungicides in the soil amended with the composted SMS, and for iprovalicarb and penconazole in fresh SMS-amended soil. | Marín-Benito et al. (2012) [57] |
Linuron Diazinon Myclobutanil. | Sandy loam (OC 0.47%, pH 7.9) | Agaricus bisporus: Pleurotus sp. (3:1) (OC 26.7%, pH 7.1) Dose: 5% w/w (25 t ha-1) | Dissipation increased (linuron) or decreased (diazinon and myclobutanil) in SMS-amended soil. | Marín-Benito et al. (2014) [58] |
Tebuconazole Cymoxanil | Sandy clay loam (OC 0.67%, pH 7.52) | Agaricus bisporus (OC 24.5%, pH 6.97) Dose: 5% and 50% w/w | Fungicide dissipation rate was higher in the SMS-amended soil than in the unamended one. | Álvarez-Martín et al. (2016) [59] |
Pirimicarb Azoxystrobin | Sandy loam (OC 0.89%, pH 7.49) | Agaricus bisporus (OC 24.5%, pH 6.97). Dose: 2% and 5% w/w | SMS facilitated the degradation of pirimicarb at both concentrations and of azoxystrobin at the lower concentration. | Álvarez-Martín et al. (2016) [60] |
Thiabendazole, Imazalil Ortho-phenylphenol Diphenylamine Ethoxyquin | Clay loam (OC 1.05%, pH 7.55) | Pleurotus ostreatus (OC 71.0%, pH 6.83) Mixtures: SMS/soil (50:50 v/v) SMS/straw/soil (50:25:25 v/v/v) Straw/SMS/soil (50:25:25 v/v/v) | SMS rich organic biomixtures, such as SMS/straw/soil (50:25:25) and SMS/soil (50:50), showed the highest dissipation potential for all pesticides particularly of thiabendazole and imazalil. | Karas et al. (2015) [42] |
Chlorothalonil Imidacloprid | Sandy loam (OC 1.96%, pH 7.84) | Pleurotus eryngii (OC 43.79%, pH 5.71) Flammulina velutipes (OC 44.44%, pH 7.76) Lentinula edodes (OC 39.40%, pH 5.09) Mixtures: Soil/straw/SMS (25:50:25 v/v/v) | Microbial activities and pesticide dissipation in SMS biomixtures were comparable to the original biobeds which include peat in their composition. | Gao et al. (2015) [61] |
Metribuzin Buprofezin Azoxystrobin Iprodione, Dimethoate Indoxacarb Terbuthylazine | Sandy clay loam (OC 1.8%, pH 6.7) | Pleurotus ostreatus (OC 71.0%, pH6.83) Biomixtures: SMS/soil (50:50 v/v) SMS/soil (15:85 v/v) SMS/soil (5:95 v/v) | The SMS-biomixture was highly efficient in degrading the pesticide mixture with degradation rates being correlated with the proportion of SMS in the biomixture. | Karanasios et al. (2010) [16] |
Dimethoate, Indoxacarb, Buprofezin, Terbuthylazine, Metribuzin, Metalaxyl-M, Iprodione, Azoxystrobin | Sandy clay loam (OC 1.8%, pH 6.57) | Agaricus bisporus (OC 25.9%, pH 6.74) Biomixture: SMS/Soil/straw (1:1:2 v/v/v) | SMS could be an alternative to peat in biobed or biomixtures in southern Europe where it is largely available at no cost. For most of the pesticides the degradation rate increased in the SMS-biomixture. | Karanasios et al. (2010) [41] |
DDT Heptachlor Heptachlor epoxide | Organic rich soil (OC 3.27%, pH 5.6) | Pleurotus ostreatus SMS/Soil (1:1 w/w) | SMS was efficient to bioremediate soil contaminated by DDT, heptachlor and heptachlor epoxide. | Purnomo et al. (2014) [62] Purnomo et al. (2010) [63] |
Tricyclazole | Soil | Pleurotus ostreatus Soil/SMS (5:1 w/w) | Degradation of tricyclazole was enhanced in soil/SMS mixture compared with soil. | Liu et al. (2008) [64] |
Phenanthrene | Fine loam (subsoil) (OC 3.8%, pH 5.1) | Agaricus bisporus (pH 8) | The SMS could be used for the biodegradation of contaminated soil. | Reid et al. (2002) [65] |
PAH (14 compounds) | Sandy loam (OC 1.91%, pH 8.13) | Agaricus bisporus (OM 63.9%, pH 6.28). Dose: 20%(w/w) | SMS was effective for PAH biodegradation in multi-polluted soil. | García-Delgado et al. (2015) [66] |
PAH (13 compounds) | Clay loam (OC 0.7%, pH 8.20) | Agaricus bisporus (OC 32.4%, pH 6.7). Dose: 20%(w/w) | Sterile SMS application to historically polluted soil removed 3-ring PAH. | García-Delgado et al. (2015) [67] |
Atrazine | Loamy sand (OC 0.15% pH 8.5) | Mushroom spent (OC 12.2%, pH 6.9). Dose: 9 t ha-1 | The SMS accelerated the degradation of atrazine. | Kadian et al. (2008) [68] |
Chlorpyrifos | Sandy loam (OC 0.50% pH 8.5) | Mushroom spent (OC 12.2%, pH 6.9). Dose: 1% (w/w) | The application of SMS to soil increased DHA and pesticide dissipation. | Kadian et al. (2012) [69] |
1,3-Dichloropropene Chloropicrin | Sandy loam (OC 0.7%) | Two SMS Dose: 5% w/w | Both SMS amendments decreased the DT50 values of fumigants in soil. | Qin et al. (2009) [70] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marín-Benito, J.M.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review. Toxics 2016, 4, 17. https://doi.org/10.3390/toxics4030017
Marín-Benito JM, Sánchez-Martín MJ, Rodríguez-Cruz MS. Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review. Toxics. 2016; 4(3):17. https://doi.org/10.3390/toxics4030017
Chicago/Turabian StyleMarín-Benito, Jesús M., María J. Sánchez-Martín, and M. Sonia Rodríguez-Cruz. 2016. "Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review" Toxics 4, no. 3: 17. https://doi.org/10.3390/toxics4030017
APA StyleMarín-Benito, J. M., Sánchez-Martín, M. J., & Rodríguez-Cruz, M. S. (2016). Impact of Spent Mushroom Substrates on the Fate of Pesticides in Soil, and Their Use for Preventing and/or Controlling Soil and Water Contamination: A Review. Toxics, 4(3), 17. https://doi.org/10.3390/toxics4030017