Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Standards
2.3. Identification and Quantification of Pesticides
2.4. Fortification and Extraction Protocol
2.5. Insecticide Extraction
2.6. Instrumental Analysis
2.7. Statistical Analysis
2.8. Study of Glass/Insecticide Interactions
3. Results
3.1. Study of Parent Degradation by GC-ECD
3.2. Study of Glass/Insecticide Interactions by GC-ECD
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barr, D.B. Biomonitoring of exposure to pesticides. J. Chem. Health Saf. 2008, 231, 1–10. [Google Scholar] [CrossRef]
- Atwood, D.; Paisley-Jones, C. Pesticides Industry Sales and Usage: 2008–2012 Market Estimates; United States Environmental Protection Agency: Washington, DC, USA, 2017.
- Lu, C.; Barr, D.B.; Pearson, M.; Bartell, S.; Bravo, R. A longitudinal approach to assessing urban and suburban children’s exposure to pyrethroid pesticides. Environ. Health Perspect. 2006, 114, 1419–1423. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Pesticides in the Diets of Infants and Children; National Academy Press: Washington, DC, USA, 1993. [Google Scholar]
- Chapman, R.A.; Cole, C.M. Observations on the influence of water and soil PH on the persistence of insecticides. J. Environ. Sci. Health. B 1982, 17, 487–504. [Google Scholar] [CrossRef] [PubMed]
- Todd, D.G.; Harper, C.; Burgess, P. Agency for Toxic Substances and Disease Registry: Toxicological Profile for Diazinon; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2008.
- Todd, D.G.; Wohlers, D.; Citra, M. Agency for Toxic Stubstances and Disease Registry: Toxicological Profile for Pyrethrins and Pyrethroids; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2003.
- Radford, S.A.; Panuwet, P.; Hunter, R.E.; Barr, D.B.; Ryan, P.B. HPLC-MS/MS method for the measurement of insecticide degradates in baby food. J. Agric. Food. Chem. 2014, 62, 7085–7091. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. FAO Specifications and Evaluations for Agricultural Pesticides: Diazinon; Food and Agriculture Organization: Rome, Italy, 1999. [Google Scholar]
- Food and Agriculture Organization. FAO Specifications and Evaluations for Agricultural Pesticides: Cyfluthrin; Food and Agriculture Organization: Rome, Italy, 2007. [Google Scholar]
- Food and Agriculture Organization. FAO Specifications and Evaluations for Agricultural Pesticides: Permethrin; Food and Agriculture Organization: Rome, Italy, 2008. [Google Scholar]
- Food and Agriculture Organization. FAO Specifications and Evaluations for Agricultural Pesticides: Chlorpyrifos; Food and Agriculture Organization: Rome, Italy, 2008. [Google Scholar]
- Food and Agriculture Organization. FAO Specifications and Evaluations for Agricultural Pesticides: Deltamethrin; Food and Agriculture Organization: Rome, Italy, 2012. [Google Scholar]
- Food and Agriculture Organization. FAO Specifications and Evaluations for Agricultural Pesticides: Malathion; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Hunter, R.E.; Riederer, A.M.; Ryan, P.B. Method for the determination of organophosphorus and pyrethriod pesticides in food via gas chromatography with electron-capture detection. J. Agric. Food Chem. 2010, 58, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Bravo, R.; Caltabiano, L.M.; Irish, R.M.; Weerasekera, G.; Barr, D.B. The presence of dialkylphosphates in fresh fruit juices: Implication for organophosphorus pesticide exposure and risk assessments. J. Toxicol. Environ. Health A 2005, 68, 209–227. [Google Scholar] [CrossRef] [PubMed]
- Haight, K.G.; Gump, B.H. Red and white grape juice concentrate component ranges. J. Food Compos. Anal. 1995, 8, 71–77. [Google Scholar] [CrossRef]
- Bellman, R.B.; Gallander, J.F. Wine deacidification. In Advances in Food Research; Chinchester, C.O., Mrak, E.M., Stewart, G.F., Eds.; Academic Press: Cambridge, MA, USA, 1979; Volume 25. [Google Scholar]
- US Food and Drug Administration. PH Values of Various Foods; US Food and Drug Administration: Silver Spring, MD, USA, 2015.
- Lee, S.; Gan, J.; Kabashima, J. Recovery of synthetic pyrethroids in water samples during storage and extraction. J. Agric. Food Chem. 2002, 50, 7194–7198. [Google Scholar] [CrossRef] [PubMed]
- Radford, S.A.; Panuwet, P.; Hunter, R.E.; Barr, D.B.; Ryan, P.B. Production of insecticide degradates in juices: Implications for risk assessment J. Agric. Food Chem. 2016, 84, 4633–4638. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, T.; Pan, C.; Ross, J.H.; Krieger, R.I. Preformed biomarkers including dialkylphosphates (DAPS) in produce may confound biomonitoring in pesticide exposure and risk assessment. J. Agric. Food Chem. 2012, 60, 9342–9351. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Driver, J.H.; Li, Y.H.; Ross, J.H.; Krieger, R.I. Dialkyl phosphates (DAPS) in fruits and vegetables may confound biomonitoring in organophosphorus insecticide exposure and risk assessment. J. Agric. Food Chem. 2008, 56, 10638–10645. [Google Scholar] [CrossRef] [PubMed]
- Fenske, R.; Leffinwell, J.T. Method for the determination of dialkyl phosphate metabolites in urine for studies of human exposure to malathion. J. Agric. Food Chem. 1989, 37, 995–998. [Google Scholar] [CrossRef]
- Pico, Y.; Kozmutza, C. Evaluation of pesticide residue in grape juices and the effect of natural antioxidants on their degradation rate. Anal. Bioanal. Chem. 2007, 389, 1805–1814. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K.; Sheldon, L.S.; Jones, P.A.; Croghan, C.W.; Chuang, J.C.; Wilson, N.K. The reliability of using urinary biomarkers to estimate children’s exposures to chlorpyrifos and diazinon. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Rauh, V.A.; Garcia, W.; Whyatt, R.; Horton, M.K.; Barr, D.B.; Louis, E.D. Prenatal exposure to the organophosphate pesticide chlorpyrifos and childhood tremor. Neurotoxicology 2015, 51, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Fortenberry, G.Z.; Meeker, J.D.; Sánchez, B.N.; Barr, D.B.; Panuwet, P.; Bellinger, D.; Schnaas, L.; Solano-González, M.; Ettinger, A.S.; Hernandez-Avila, M.; et al. Urinary 3,5,6-trichloro-2-pyridinol (TCPY) in pregnant women from Mexico City: Distribution, temporal variability, and relationship with child attention and hyperactivity. Int. J. Hyg. Environ. Health 2013, 217, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Eriksson, P.; Fredriksson, A.; Buratovic, S.; Viberg, H. Developmental neurotoxic effects of two pesticides: Behavior and biomolecular studies on chlorpyrifos and carbaryl. Toxicol. Appl. Pharmacol. 2015, 288, 429–438. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Proposal to Revoke Chlorpyrifos Food Residue Tolerances; United States Environmental Protection Agency: Washington, DC, USA, 2015.
- Sun, H.; Xu, X.; Xu, L.; Song, L.; Hong, X.; Chen, J.; Cui, L.; Wang, X. Antiandrogenic activity of pyrethroid pesticides and their metabolite in reporter gene assay. Chemosphere 2007, 66, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.K.; Sheldon, L.S.; Croghan, C.W.; Jones, P.A.; Robertson, G.L.; Chuang, J.C.; Wilson, N.K.; Lyu, C.W. Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environments. J. Expo. Anal. Environ. Epidemiol. 2005, 15, 297–309. [Google Scholar] [CrossRef] [PubMed]
Insecticide | Retention Time (min) |
---|---|
diazinon | 16.0 |
malathion | 17.9 |
chlorpyrifos | 18.2 |
permethrin | 24.5 |
cyfluthrin | 25.2 |
cypermethrin | 25.5 |
deltamethrin | 27.4 |
Regression Slope a | Std. Error b | p-Value | Half Life c | % Recovery d | |
---|---|---|---|---|---|
Water | |||||
diazinon | 1.99× 10−2 | 6.85× 10−3 | 0.0274 | 15.2 | 69.50% |
malathion | 6.75× 10−3 | 1.85× 10−3 | 0.0107 | 44.6 | 125.20% |
chlorpyrifos | 8.92× 10−3 | 3.30× 10−3 | 0.0355 | 33.8 | 77.40% |
permethrin | 3.70× 10−3 | 1.24× 10−3 | 0.0244 | 81.5 | 105.30% |
cyfluthrin | 6.75× 10−3 | 2.13× 10−3 | 0.1284 | 44.6 | 97.80% |
cypermethrin | 8.12× 10−3 | 8.58× 10−4 | 0.0001 | 37.1 | 104.00% |
deltamethrin | 6.13× 10−3 | 2.48× 10−3 | 0.0480 | 49.1 | 104.40% |
Grape Juice | |||||
diazinon | 9.20× 10−2 | 1.69× 10−2 | 0.0016 | 3.3 | 76.30% |
malathion | 4.61× 10−3 | 2.82× 10−3 | 0.1535 | 65.3 | 137.10% |
chlorpyrifos | 1.62× 10−2 | 5.14× 10−3 | 0.0199 | 18.6 | 85.30% |
permethrin | 1.49× 10−2 | 1.97× 10−3 | 0.0003 | 20.2 | 90.80% |
cyfluthrin | 4.61× 10−3 | 2.65× 10−3 | 0.0002 | 65.3 | 80.50% |
cypermethrin | 1.80× 10−2 | 3.06× 10−3 | 0.0011 | 16.7 | 89.20% |
deltamethrin | 1.72× 10−2 | 5.28× 10−3 | 0.0174 | 17.5 | 73.60% |
Red Wine | |||||
diazinon | 1.29× 10−1 | 1.14× 10−2 | 0.0003 | 2.3 | 40.70% |
malathion | 8.90× 10−3 | 3.86× 10−3 | 0.0606 | 33.8 | 111.40% |
chlorpyrifos | 1.25× 10−2 | 5.84× 10−3 | 0.0766 | 24.1 | 68.40% |
permethrin | 9.99× 10−3 | 2.78× 10−3 | 0.0114 | 30.1 | 106.90% |
cyfluthrin | 1.18× 10−2 | 3.57× 10−3 | 0.0161 | 25.5 | 105.10% |
cypermethrin | 1.04× 10−2 | 3.17× 10−3 | 0.0167 | 28.9 | 119.30% |
deltamethrin | 1.32× 10−2 | 4.02× 10−3 | 0.0170 | n/a | 109.90% |
Orange Juice | |||||
diazinon | 2.34× 10−2 | 1.15× 10−2 | 0.0881 | 12.9 | 97.00% |
malathion | 6.33× 10−3 | 3.64× 10−3 | 0.1331 | 47.6 | 140.20% |
chlorpyrifos | 8.06× 10−3 | 6.89× 10−3 | 0.2865 | 37.3 | 93.00% |
permethrin | 6.97× 10−4 | 2.34× 10−3 | 0.7761 | n/a | 88.10% |
cyfluthrin | 3.20× 10−3 | 3.07× 10−3 | 0.3377 | 94.1 | 78.70% |
cypermethrin | 4.82× 10−3 | 1.62× 10−3 | 0.0250 | 62.5 | 82.10% |
deltamethrin | -1.82× 10−3 | 3.74× 10−3 | 0.6442 | n/a | 69.60% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radford, S.A.; Panuwet, P.; Hunter Jr., R.E.; Barr, D.B.; Ryan, P.B. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment. Toxics 2018, 6, 11. https://doi.org/10.3390/toxics6010011
Radford SA, Panuwet P, Hunter Jr. RE, Barr DB, Ryan PB. Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment. Toxics. 2018; 6(1):11. https://doi.org/10.3390/toxics6010011
Chicago/Turabian StyleRadford, Samantha A., Parinya Panuwet, Ronald E. Hunter Jr., Dana Boyd Barr, and P. Barry Ryan. 2018. "Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment" Toxics 6, no. 1: 11. https://doi.org/10.3390/toxics6010011
APA StyleRadford, S. A., Panuwet, P., Hunter Jr., R. E., Barr, D. B., & Ryan, P. B. (2018). Degradation of Organophosphorus and Pyrethroid Insecticides in Beverages: Implications for Risk Assessment. Toxics, 6(1), 11. https://doi.org/10.3390/toxics6010011