Changes in Arsenic, Copper, Iron, Manganese, and Zinc Levels Resulting from the Application of Poultry Litter to Agricultural Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Field Sampling
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
3.1. Cu, Fe, Mn, Zn and As Application Rates
3.2. Metal Concentrations from Soils
4. Discussion
4.1. Arsenic
4.2. Micronutrients
4.3. Iron and Manganese
4.4. Copper and Zinc
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Office of Global Analysis. Livestock and Poultry: World Markets and Trade; Foreign Agricultural Service/USDA: Washington, DC, USA, 2017; p. 26. [Google Scholar]
- National Agricultural Statistics Service. U.S. Department of Agriculture: Washington, DC, USA, 2018. Available online: https://www.nass.usda.gov/Data_and_Statistics/ (accessed on 8 February 2018).
- U.S. Food and Drug Administration. Questions and Answers on Arsenic-Based Animal Drugs. Available online: https://www.fda.gov/AnimalVeterinary/SafetyHealth/ProductSafetyInformation/ucm440660.htm#approval (accessed on 14 February 2018).
- Anderson, B.K.; Chamblee, T.N. The effect of dietary 3-nitro-4-hydroxyphenylarsonic acid (roxarsone) on the total arsenic level in broiler excreta and broiler litter123. J. Appl. Poult. Res. 2001, 10, 323–328. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Arsenic-Based Animal Drugs and Poultry. Available online: http://www.fda.gov/AnimalVeterinary/SafetyHealth/ProductSafetyInformation/ucm257540.htm (accessed on 17 September 2017).
- Lasky, T.; Sun, W.; Kadry, A.; Hoffman, M.K. Mean total arsenic concentrations in chicken 1989–2000 and estimated exposures for consumers of chicken. Environ. Health Perspect. 2004, 112, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Lasky, T. Arsenic in chicken: A tale of data and policy. J. Epidemiol. Commun. Health 2017, 71, 1. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Huang, L.; He, Z.; Zhou, C.; Lu, W.; Bai, C. Delivery of roxarsone via chicken diet→chicken→chicken manure→soil→rice plant. Sci. Total Environ. 2016, 566, 1152–1158. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, W.; Cheng, H.; Tao, S. Public health risk of arsenic species in chicken tissues from live poultry markets of Guangdong province, China. Environ. Sci. Technol. 2017, 51, 3508–3517. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, J.R.; Bednar, A.J.; Rutherford, D.W.; Beyer, R.S.; Wershaw, R.L. Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting. Environ. Sci. Technol. 2003, 37, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Stolz, J.F.; Perera, E.; Kilonzo, B.; Kail, B.; Crable, B.; Fisher, E.; Ranganathan, M.; Wormer, L.; Basu, P. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ. Sci. Technol. 2007, 41, 818–823. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.L.; Blaney, L.; Zhou, D.M. Natural degradation of roxarsone in contrasting soils: Degradation kinetics and transformation products. Sci. Total Environ. 2017, 607, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Cortinas, I.; Field, J.A.; Kopplin, M.; Garbarino, J.R.; Gandolfi, A.J.; Sierra-Alvarez, R. Anaerobic biotransformation of roxarsone and related n-substituted phenylarsonic acids. Environ. Sci. Technol. 2006, 40, 2951–2957. [Google Scholar] [CrossRef] [PubMed]
- Liang, T.; Ke, Z.; Chen, Q.; Liu, L.; Chen, G. Degradation of roxarsone in a silt loam soil and its toxicity assessment. Chemosphere 2014, 112, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Hughes, M.F.; Beck, B.D.; Chen, Y.; Lewis, A.S.; Thomas, D.J. Arsenic exposure and toxicology: A historical perspective. Toxicol. Sci. 2011, 123, 305–352. [Google Scholar] [CrossRef] [PubMed]
- Bednar, A.J.; Garbarino, J.R.; Ferrer, I.; Rutherford, D.W.; Wershaw, R.L.; Ranville, J.F.; Wildeman, T.R. Photodegradation of roxarsone in poultry litter leachates. Sci. Total Environ. 2003, 302, 237–245. [Google Scholar] [CrossRef]
- Kawalek, J.C.; Carson, M.; Conklin, S.; Lancaster, V.; Howard, K.; Ward, J.; Farrell, D.; Meyers, M.; Swain, H.; Jeanettes, P.; et al. Provide Data on Various Arsenic Species Present in Broilers Treated with Roxarsone: Comparison with Untreated Birds; Center for Veterinary Medicine, U.S. Food and Drug Administration: Laurel, MD, USA, 2011; p. 39. [Google Scholar]
- Brye, K.R.; Slaton, N.A.; Norman, R.J.; Savin, M.C. Short-term effects of poultry litter form and rate on soil bulk density and water content. Commun. Soil Sci. Plant Anal. 2004, 35, 2311–2325. [Google Scholar] [CrossRef]
- Harmel, R.; Torbert, H.; Haggard, B.; Haney, R.; Dozier, M. Water quality impacts of converting to a poultry litter fertilization strategy. J. Environ. Qual. 2004, 33, 2229–2242. [Google Scholar] [CrossRef] [PubMed]
- Kibet, L.C.; Allen, A.L.; Church, C.; Kleinman, P.J.A.; Feyereisen, G.W.; Saporito, L.S.; Hashem, F.; May, E.B.; Way, T.R. Transport of dissolved trace elements in surface runoff and leachate from a coastal plain soil after poultry litter application. J. Soil Water Conserv. 2013, 68, 212–220. [Google Scholar] [CrossRef]
- McMullen, R.L.; Brye, K.R.; Daigh, A.L.; Miller, D.M.; Gbur, E.E.; Pirani, A.L.; Evans-White, M.A.; Mason, R.E. Long-term leachate water quality trends from a broiler-litter-amended udult in a karst region. Vadose Zone J. 2014, 13, 1–14. [Google Scholar] [CrossRef]
- Menjoulet, B.C.; Brye, K.R.; Pirani, A.L.; Haggard, B.E.; Gbur, E.E. Runoff water quality from broiler litter-amended tall fescue in response to natural precipitation in the Ozark Highlands. J. Environ. Qual. 2009, 38, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Oyewumi, O.; Schreiber, M.E. Release of arsenic and other trace elements from poultry litter: Insights from a field experiment on the Delmarva Peninsula, Delaware. Appl. Geochem. 2012, 27, 1979–1990. [Google Scholar] [CrossRef]
- Shah, S.B.; Hutchison, K.J.; Hesterberg, D.L.; Grabow, G.L.; Huffman, R.L.; Hardy, D.H.; Parsons, J.T. Leaching of nutrients and trace elements from stockpiled turkey litter into soil. J. Environ. Qual. 2009, 38, 1053–1065. [Google Scholar] [CrossRef] [PubMed]
- Brown, B.L.; Slaughter, A.D.; Schreiber, M.E. Controls on roxarsone transport in agricultural watersheds. Appl. Geochem. 2005, 20, 123–133. [Google Scholar] [CrossRef]
- Rutherford, D.W.; Bednar, A.J.; Garbarino, J.R.; Needham, R.; Staver, K.W.; Wershaw, R.L. Environmental fate of roxarsone in poultry litter. Part ii. Mobility of arsenic in soils amended with poultry litter. Environ. Sci. Technol. 2003, 37, 1515–1520. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.L.; He, J.Z.; Blaney, L.; Zhou, D.M. Sorption of roxarsone onto soils with different physicochemical properties. Chemosphere 2016, 159, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Walrod, J.H.; Burriss, D.; Blue, L.Y.; Beck, G.E.; Atwood, D.A. Arsenic mobility in Karnak soils after multi-year application of poultry litter containing roxarsone. Main Group Chem. 2016, 15, 365–373. [Google Scholar] [CrossRef]
- Han, F.; Kingery, W.; Selim, H.; Gerard, P. Accumulation of heavy metals in a long-term poultry waste-amended soil. Soil Sci. 2000, 165, 260–268. [Google Scholar] [CrossRef]
- Jackson, B.P.; Bertsch, P.M.; Cabrera, M.L.; Camberato, J.J.; Seaman, J.C.; Wood, C.W. Trace element speciation in poultry litter. J. Environ. Qual. 2003, 32, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Tazisong, I.A.; Senwo, Z.N.; Taylor, R.W. Trends in trace elements in an ultisol impacted by long-term applied broiler litter. Bull. Environ. Contam. Toxicol. 2005, 75, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Van der Watt, H.V.H.; Sumner, M.E.; Cabrera, M.L. Bioavailability of copper, manganese, and zinc in poultry litter. J. Environ. Qual. 1994, 23, 43–49. [Google Scholar] [CrossRef]
- Toor, G.S.; Haggard, B.E.; Donoghue, A.M. Water extractable trace elements in poultry litters and granulated products. J. Appl. Poult. Res. 2007, 16, 351–360. [Google Scholar] [CrossRef]
- Kingery, W.; Wood, C.; Delaney, D.; Williams, J.; Mullins, G. Impact of long-term land application of broiler litter on environmentally related soil properties. J. Environ. Qual. 1994, 23, 139–147. [Google Scholar] [CrossRef]
- Jaja, N.; Mbila, M.; Codling, E.E.; Reddy, S.S.; Reddy, C.K. Trace metal enrichment and distribution in a poultry litter-amended soil under different tillage practices. Open Agric. J. 2013, 7, 88–95. [Google Scholar] [CrossRef]
- Netthisinghe, A.; Woosley, P.; Gilfillen, R.; Willian, T.; Sistani, K.; Rowland, N. Corn grain yield and soil properties after 10 years of broiler litter amendment. Agron. J. 2016, 108, 1816–1823. [Google Scholar] [CrossRef]
- Adeli, A.; Sistani, K.R.; Tewolde, H.; Rowe, D.E. Broiler litter application effects on selected trace elements under conventional and no-till systems. Soil Sci. 2007, 172, 349–365. [Google Scholar] [CrossRef]
- Uprety, D.; Hejcman, M.; Száková, J.; Kunzová, E.; Tlustoš, P. Concentration of trace elements in arable soil after long-term application of organic and inorganic fertilizers. Nutr. Cycl. Agroecosyst. 2009, 85, 241–252. [Google Scholar] [CrossRef]
- Gupta, G.; Charles, S. Trace elements in soils fertilized with poultry litter. Poult. Sci. 1999, 78, 1695–1698. [Google Scholar] [CrossRef] [PubMed]
- DeLaune, P.B.; Moore, P.A., Jr. Factors affecting arsenic and copper runoff from fields fertilized with poultry litter. J. Environ. Qual. 2014, 43, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Cadet, E.L.; Kpomblekou-a, K.; Mortley, D.G.; Eggett, D.L. Inferring mobility of trace elements resulting from long-term poultry litter additions to benchmark alabama soils. Soil Sci. 2012, 177, 580–590. [Google Scholar] [CrossRef]
- Wilder, M.S. Soil Survey of Rockingham County, Virginia. Available online: https://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/virginia/rockinghamVA1982/rockinghamVA1982.pdf (accessed on 7 April 2018).
- Eash, N.S.; Green, C.J.; Razvi, A.; Bennett, W.F. Soil Science Simplified, 5th ed.; Blackwell Publishing: Oxford, UK, 2008. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold: New York, NY, USA, 1987; p. 320. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Mylavarapu, R.S.; Sanchez, J.F.; Nguyen, J.H.; Bartos, J.M. Evaluation of Mehlich-1 and Mehlich-3 extraction procedures for plant nutrients in acid mineral soils of Florida*. Commun. Soil Sci. Plant Anal. 2002, 33, 807–820. [Google Scholar] [CrossRef]
- Method 7000B, Flame Atomic Absorption Spectrophotometry, Revision 2. In Final Update III to the Third Edition of the Test Methods for Evaluations Solid Waste; Physical/Chemical Methods; EPA Publication SW-846: Washington, DC, USA, 2007.
- Method 7010, Graphite Furnace Atomic Absorption Spectrophotometry, Revision 0. In Final Update III to the Third Edition of the Test Methods for Evaluations Solid Waste; Physical/Chemical Methods; EPA Publication SW-846: Washington, DC, USA, 2007.
- Method 3050B, Acid Digestion of Sediments, Sludges, and Soils, Revision 2. In Final Update III to the Third Edition of the Test Methods for Evaluating Solid Waste; Physical/Chemical Methods; EPA Publication SW-846: Wasshington, DC, USA, 1996.
- Hintze, J. NCSS 9, 9.0.10; NCSS, LLC: Kaysville, UT, USA, 2013. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1984; p. 718. [Google Scholar]
- Kpomblekou-A, K.; Ankumah, R.O.; Ajwa, H.A. Trace and nontrace element contents of broiler litter. Commun. Soil Sci. Plant Anal. 2002, 33, 1799–1811. [Google Scholar] [CrossRef]
- Tewolde, H.; Sistani, K.R.; McLaughlin, M.R. Residual effect of poultry litter applications on no-till cotton lint yield. Agron. J. 2016, 108, 1405–1414. [Google Scholar] [CrossRef]
- Krauskopf, K.B. Geochemistry of micronutrients. In Micronutrients in Agriculture; Mortvedt, J.J., Giordano, P.M., Lindsay, W.L., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1972; pp. 7–40. [Google Scholar]
- Bowen, H.J.M. Trace Elements in Biochemistry; Academic Press: New York, NY, USA, 1966; p. 241. [Google Scholar]
- Anjum, N.A.; Singh, H.P.; Khan, M.I.R.; Masood, A.; Per, T.S.; Negi, A.; Batish, D.R.; Khan, N.A.; Duarte, A.C.; Pereira, E.; et al. Too much is bad-an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ. Sci. Pollut. Res. 2015, 22, 3361–3382. [Google Scholar] [CrossRef] [PubMed]
- Kogelmann, W.J.; Sharpe, W.E. Soil acidity and manganese in declining and nondeclining sugar maple stands in Pennsylvania. J. Environ. Qual. 2006, 35, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.; Wallace, G.A.; Cha, J.W. Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents-the special case of iron. J. Plant Nutr. 1992, 15, 1589–1598. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Schwab, A.P. The chemistry of iron in soils and its availability to plants. J. Plant Nutr. 1982, 5, 821–840. [Google Scholar] [CrossRef]
- Krämer, U. Metal hyperaccumulation in plants. Ann. Rev. Plant Biol. 2010, 61, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Trehan, S.P.; Grewal, J.S. Response to zinc, copper and iron and their critical levels for potato. J. Indian Soc. Soil Sci. 1995, 43, 89–91. [Google Scholar]
- Elgala, A.M.; Ismail, A.S.; Ossman, M.A. Critical levels of iron, manganese, and zinc in Egyptian soils as measured by DTPA extract and maize plants. Egypt. J. Soil Sci. 1986, 26, 125–137. [Google Scholar]
- Fageria, N.K.; Barbosa Filho, M.P.; Porto de Carvalho, J.R. Effect of iron on growth and absorption of phosphorus, potassium, calcium and magnesium by rice plant in nutrient solution. Pesqui. Agropecu. Bras. 1981, 16, 483–488. [Google Scholar]
- Singh, K. The critical level of zinc in soil and plant for predicting response of cluster bean to zinc fertilization. Plant Soil 1986, 94, 285–288. [Google Scholar] [CrossRef]
- Khoshgoftarmansh, A.H.; Abadi, H.K.; Khanmohammadi, Z.; Sararoudi, F.A.; Barzin, M.; Shahri, A.R.P. Critical deficiency level of zinc for corn on calcareous salt-affected soils in central Iran. J. Plant Nutr. 2012, 35, 1806–1818. [Google Scholar] [CrossRef]
- Brink, G.E.; Sistani, K.R.; Rowe, D.E. Nutrient uptake of hybrid and common Bermudagrass fertilized with broiler litter. Agron. J. 2004, 96, 1509–1515. [Google Scholar] [CrossRef]
- Shukla, S.K.; Singh, K.; Singh, B.; Gautam, N.N. Biomass productivity and nutrient availability of Cynodon dactylon (L.) pers. Growing on soils of different sodicity stress. Biomass Bioenergy 2011, 35, 3440–3447. [Google Scholar] [CrossRef]
- Provin, T.L.; Wright, A.L.; Hons, F.M.; Zuberer, D.A.; White, R.H. Seasonal dynamics of soil micronutrients in compost-amended bermudagrass turf. Bioresour. Technol. 2008, 99, 2672–2679. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.M.; Watts, D.W.; Stone, K.C. Copper and zinc accumulation, profile distribution, and crop removal in coastal plain soils receiving long-term, intensive applications of swine manure. Trans. Am. Soc. Agric. Eng. 2004, 47, 1513–1522. [Google Scholar] [CrossRef]
Date | Cu | Mn | Zn | Analyst |
---|---|---|---|---|
1 March 1999 | 704 | 293 | 409 | Maryland Cooperative Extension Service |
10 February 2000 | 789 | 491 | 418 | Maryland Cooperative Extension Service |
4 March 2004 | 721 | 552 | 465 | Clemson University Extension Service |
18 February 2005 | 674 | 615 | 457 | Clemson University Extension Service |
28 February 2007 | 391 | 579 | 469 | Clemson University Extension Service |
16 May 2007 | 391 | 614 | 489 | Clemson University Extension Service |
22 May 2008 | 316 | 511 | 404 | Clemson University Extension Service |
28 August 2009 | 373 | 560 | 363 | Clemson University Extension Service |
22 April 2010 | 306 | 517 | 355 | Clemson University Extension Service |
1 September 2010 | 222 | 482 | 349 | Clemson University Extension Service |
22 August 2012 | 287 | 375 | 331 | Clemson University Extension Service |
6 August 2014 | 450 | 831 | 674 | Clemson University Extension Service |
Median Values | 391 | 535 | 414 | |
Std. Deviation | 188 | 189 | 113 |
Date | Cu | Mn | Zn |
---|---|---|---|
1 March 1999 | 2.37 | 0.99 | 1.38 |
10 Febuary 2000 | 2.66 | 1.65 | 1.41 |
4 March 2004 | 2.43 | 1.86 | 1.57 |
18 Febuary 2005 | 2.27 | 2.07 | 1.54 |
28 Febuary 2007 | 1.32 | 1.95 | 1.58 |
16 May 2007 | 1.32 | 2.07 | 1.65 |
22 May 2008 | 1.06 | 1.72 | 1.36 |
28 August 2009 | 1.26 | 1.89 | 1.22 |
22 April 2010 | 1.03 | 1.74 | 1.20 |
1 September 2010 | 0.75 | 1.62 | 1.18 |
22 August 2012 | 0.97 | 1.26 | 1.12 |
6 August 2014 | 1.52 | 2.80 | 2.27 |
Median Values | 1.32 | 1.80 | 1.39 |
Std. Deviation | 0.61 | 0.61 | 0.37 |
Sample | Cu | Fe | Mn | Zn |
---|---|---|---|---|
Litter from 2012 | 281 ± 13.4 | 1106 ± 296 | 1032 ± 71 | 687 ± 22 |
Litter from 2014 | 441 ± 38 | 2200 ± 104 | 788 ± 65 | 570 ± 60 |
Sample | Litter Concentrations | Application Rates | Analyst | ||
---|---|---|---|---|---|
Fe | As | Fe | As | ||
Litter from 2012 | 2200 ± 252 | 2.5 ± 3.0 | 7.41 | 0.009 | This study |
Litter from 2014 | 1106 ± 89 | 5.2 ± 0.4 | 3.73 | 0.013 | This study |
Soil Sample | Fe | Mn | Cu | Zn | As |
---|---|---|---|---|---|
Treated—Surface | 104 ± 44 | 29 ± 19 | 10.3 ± 3.5 | 12.3 ± 4.6 | 10.5 ± 6.6 |
Treated—Subsurface | 56 ± 13 | 24 ± 15 | 2.9 ± 1.9 | 3.6 ± 1.8 | 13.6 ± 6.6 |
Comparison—Surface | 149 ± 50 | 138 ± 87 | 1.0 ± 0.6 | 6.3 ± 3.9 | 10.4 ± 5.1 |
Comparison—Subsurface | 83 ± 31 | 63 ± 27 | 0.35 ± 0.2 | 2.3 ± 0.5 | 10.3 ± 6.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foust, R.D.; Phillips, M.; Hull, K.; Yehorova, D. Changes in Arsenic, Copper, Iron, Manganese, and Zinc Levels Resulting from the Application of Poultry Litter to Agricultural Soils. Toxics 2018, 6, 28. https://doi.org/10.3390/toxics6020028
Foust RD, Phillips M, Hull K, Yehorova D. Changes in Arsenic, Copper, Iron, Manganese, and Zinc Levels Resulting from the Application of Poultry Litter to Agricultural Soils. Toxics. 2018; 6(2):28. https://doi.org/10.3390/toxics6020028
Chicago/Turabian StyleFoust, Richard D., Michael Phillips, Killian Hull, and Dariia Yehorova. 2018. "Changes in Arsenic, Copper, Iron, Manganese, and Zinc Levels Resulting from the Application of Poultry Litter to Agricultural Soils" Toxics 6, no. 2: 28. https://doi.org/10.3390/toxics6020028
APA StyleFoust, R. D., Phillips, M., Hull, K., & Yehorova, D. (2018). Changes in Arsenic, Copper, Iron, Manganese, and Zinc Levels Resulting from the Application of Poultry Litter to Agricultural Soils. Toxics, 6(2), 28. https://doi.org/10.3390/toxics6020028