Expression of Genes Involved in Stress, Toxicity, Inflammation, and Autoimmunity in Relation to Cadmium, Mercury, and Lead in Human Blood: A Pilot Study
Abstract
:1. Introduction
2. Methods
2.1. Participant Recruitment
2.2. Blood Biomarkers: Collection and Analysis of Blood Hg, Cd, and Pb
2.3. Gene Expression by Reverse Transcription-Polymerase Chain Reaction PCR (RT-PCR)
2.4. Data and Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Human Subjects
References
- ATSDR. The 2011 ATSDR Substance Priority List. 2011. Available online: https://www.atsdr.cdc.gov/spl/resources/2011_atsdr_substance_priority_list.html (accessed on 25 March 2017).
- ATSDR. Toxicological Profile for Lead cas#7439-92-1. 2007. Available online: https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=96&tid=22 (accessed on 25 March 2017).
- ATSDR. Toxicological Profile for Cadmium cas#7440-43-9. 2012. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15 (accessed on 25 March 2017).
- ATSDR. Toxicological Profile for Mercury cas#7439-97-6. 1999. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=115&tid=24 (accessed on 25 March 2017).
- Sweet, L.I.; Zelikoff, J.T. Toxicology and immunotoxicology of mercury: A comparative review in fish and humans. J. Toxicol. Environ. Health Part B Crit. Rev. 2001, 4, 161–205. [Google Scholar] [CrossRef]
- Kakkar, P.; Jaffery, F.N. Biological markers for metal toxicity. Environ. Toxicol. Pharmacol. 2005, 19, 335–349. [Google Scholar] [CrossRef] [PubMed]
- Osuna, C.E.; Grandjean, P.; Weihe, P.; El-Fawal, H.A. Autoantibodies associated with prenatal and childhood exposure to environmental chemicals in faroese children. Toxicol. Sci. 2014, 142, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Carey, J.B.; Allshire, A.; van Pelt, F.N. Immune modulation by cadmium and lead in the acute reporter antigen-popliteal lymph node assay. Toxicol. Sci. 2006, 91, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Coelho, P.; Garcia-Leston, J.; Costa, S.; Costa, C.; Silva, S.; Fuchs, D.; Geisler, S.; Dall’Armi, V.; Zoffoli, R.; Bonassi, S.; et al. Immunological alterations in individuals exposed to metal(loid)s in the Panasqueira mining area, central Portugal. Sci. Total Environ. 2014, 475, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Houston, M.C. The role of mercury and cadmium heavy metals in vascular disease, hypertension, coronary heart disease, and myocardial infarction. Altern. Ther. Health Med. 2007, 13, S128–S133. [Google Scholar] [PubMed]
- Hodgson, S.; Nieuwenhuijsen, M.J.; Elliott, P.; Jarup, L. Kidney disease mortality and environmental exposure to mercury. Am. J. Epidemiol. 2007, 165, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Pollard, K.M.; Hultman, P.; Kono, D.H. Toxicology of autoimmune diseases. Chem. Res. Toxicol. 2010, 23, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Karagas, M.R.; Choi, A.L.; Oken, E.; Horvat, M.; Schoeny, R.; Kamai, E.; Cowell, W.; Grandjean, P.; Korrick, S. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 2012, 120, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradl, H. Heavy Metals in the Environment: Origin, Interaction, and Remediation; Academic Press: London, UK, 2002; Volume 6, pp. 17–27. [Google Scholar]
- Kawata, K.; Yokoo, H.; Shimazaki, R.; Okabe, S. Classification of heavy-metal toxicity by human DNA microarray analysis. Environ. Sci. Technol. 2007, 41, 3769–3774. [Google Scholar] [CrossRef] [PubMed]
- Li, G.Y.; Kim, M.; Kim, J.H.; Lee, M.O.; Chung, J.H.; Lee, B.H. Gene expression profiling in human lung fibroblast following cadmium exposure. Food Chem. Toxicol. 2008, 46, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Tokumoto, M.; Fujiwara, Y.; Satoh, M. Gene expression analysis using DNA microarray in hk-2 human proximal tubular cells treated with cadmium. J. Toxicol. Sci. 2013, 38, 959–962. [Google Scholar] [CrossRef] [PubMed]
- Breton, J.; Le Clere, K.; Daniel, C.; Sauty, M.; Nakab, L.; Chassat, T.; Dewulf, J.; Penet, S.; Carnoy, C.; Thomas, P.; et al. Chronic ingestion of cadmium and lead alters the bioavailability of essential and heavy metals, gene expression pathways and genotoxicity in mouse intestine. Arch. Toxicol. 2013, 87, 1787–1795. [Google Scholar] [CrossRef] [PubMed]
- Bartosiewicz, M.J.; Jenkins, D.; Penn, S.; Emery, J.; Buckpitt, A. Unique gene expression patterns in liver and kidney associated with exposure to chemical toxicants. J. Pharmacol. Exp. Ther. 2001, 297, 895–905. [Google Scholar] [PubMed]
- Eyssen-Hernandez, R.; Ladoux, A.; Frelin, C. Differential regulation of cardiac heme oxygenase-1 and vascular endothelial growth factor mrna expressions by hemin, heavy metals, heat shock and anoxia. FEBS Lett. 1996, 382, 229–233. [Google Scholar] [CrossRef]
- Zhou, T.; Jia, X.; Chapin, R.E.; Maronpot, R.R.; Harris, M.W.; Liu, J.; Waalkes, M.P.; Eddy, E.M. Cadmium at a non-toxic dose alters gene expression in mouse testes. Toxicol. Lett. 2004, 154, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.M.; Myers, J.P. Environmental exposures and gene regulation in disease etiology. Cien Saude Colet 2008, 13, 269–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Bakheet, S.A.; Attafi, I.M.; Maayah, Z.H.; Abd-Allah, A.R.; Asiri, Y.A.; Korashy, H.M. Effect of long-term human exposure to environmental heavy metals on the expression of detoxification and DNA repair genes. Environ. Pollut. 2013, 181, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Bitto, A.; Interdonato, M.; Galfo, F.; Irrera, N.; Mecchio, A.; Pallio, G.; Ramistella, V.; De Luca, F.; Minutoli, L.; et al. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the milazzo-valle del mela area (Sicily, Italy). Redox Biol. 2014, 2, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Neuburg, D.; Li, C.; Su, L.; Kim, J.Y.; Chen, J.C.; Christiani, D.C. Global gene expression profiling in whole-blood samples from individuals exposed to metal fumes. Environ. Health Perspect. 2005, 113, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Korashy, H.M.; Attafi, I.M.; Famulski, K.S.; Bakheet, S.A.; Hafez, M.M.; Alsaad, A.M.S.; Al-Ghadeer, A.R.M. Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metal exposure. Environ. Pollut. 2017, 221, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Fitzgerald, T.P.; Fisher, N.S. A quantitative synthesis of mercury in commercial seafood and implications for exposure in the united states. Environ. Health Perspect. 2012, 120, 1512–1519. [Google Scholar] [CrossRef] [PubMed]
- Karimi, R.; Fisher, N.S.; Meliker, J.R. Mercury-nutrient signatures in seafood and in the blood of avid seafood consumers. Sci. Total Environ. 2014, 496, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, F., Jr.; Tanus-Santos, J.E.; Gerlach, R.F.; Parsons, P.J. A critical review of biomarkers used for monitoring human exposure to lead: Advantages, limitations, and future needs. Environ. Health Perspect. 2005, 113, 1669–1674. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar]
- Awla, D.; Abdulla, A.; Zhang, S.; Roller, J.; Menger, M.D.; Regner, S.; Thorlacius, H. Lymphocyte function antigen-1 regulates neutrophil recruitment and tissue damage in acute pancreatitis. Br. J. Pharmacol. 2011, 163, 413–423. [Google Scholar] [CrossRef] [PubMed]
- McDonald, P.P.; Bald, A.; Cassatella, M.A. Activation of the nf-kappab pathway by inflammatory stimuli in human neutrophils. Blood 1997, 89, 3421–3433. [Google Scholar] [PubMed]
- Roebuck, K.A. Regulation of interleukin-8 gene expression. J. Interf. Cytokine Res. 1999, 19, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Tecchio, C.; Micheletti, A.; Cassatella, M.A. Neutrophil-derived cytokines: Facts beyond expression. Front. Immunol. 2014, 5, 508. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.H.; Canetti, C.; Ribeiro, R.A.; Cunha, F.Q. Neutrophil migration induced by IL-1beta depends upon LTB4 released by macrophages and upon TNF-alpha and IL-1beta released by mast cells. Inflammation 2008, 31, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Perretti, M.; Flower, R.J. Modulation of IL-1-induced neutrophil migration by dexamethasone and lipocortin 1. J. Immunol. 1993, 150, 992–999. [Google Scholar] [PubMed]
- Chen, C.Y.; Ezzeddine, N.; Shyu, A.B. Messenger RNA half-life measurements in mammalian cells. Methods Enzymol. 2008, 448, 335–357. [Google Scholar] [PubMed]
Variable | Average | SD | Min. | Max. | T Test Average Difference p by Sex |
---|---|---|---|---|---|
Age (years) | 58 | 13 | 19 | 78 | 0.82 |
Hg (µg/L) | 16.1 | 14.5 | 0.30 | 44.6 | 0.32 |
Pb (µg/L) | 26.8 | 12.6 | 11.4 | 60.1 | 0.29 |
Cd (µg/L) | 0.43 | 0.36 | 0.01 | 1.47 | 0.85 |
Gene Symbol | Associated Metal | Adjusted R Square | Β | p Value | BH-Corrected p |
---|---|---|---|---|---|
IL1RAP | Hg | 0.36 | −0.34 | 0.03 | 0.95 |
CXCR1 | Hg | 0.19 | −2.26 | 0.04 | 0.95 |
ITGB2 | Hg | 0.11 | −1.95 | 0.05 | 0.95 |
ITGB2 | Cd | 0.18 | 89.13 | 0.02 | 0.87 |
C3AR1 | Cd | 0.34 | 14.22 | 0.01 | 0.87 |
TLR9 | Cd | 0.16 | −1.61 | 0.04 | 0.96 |
TNFRSF10A | Cd | 0.12 | −2.75 | 0.04 | 0.96 |
VEGFA | Pb | 0.37 | 0.04 | 0.01 | 0.50 |
TNFRSF1A | Pb | 0.19 | 1.29 | 0.01 | 0.50 |
ULK1 | Pb | 0.22 | 0.14 | 0.02 | 0.50 |
SQSTM1 | Pb | 0.14 | 1.41 | 0.02 | 0.50 |
MMP9 | Pb | 0.11 | 1.32 | 0.03 | 0.59 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monastero, R.N.; Vacchi-Suzzi, C.; Marsit, C.; Demple, B.; Meliker, J.R. Expression of Genes Involved in Stress, Toxicity, Inflammation, and Autoimmunity in Relation to Cadmium, Mercury, and Lead in Human Blood: A Pilot Study. Toxics 2018, 6, 35. https://doi.org/10.3390/toxics6030035
Monastero RN, Vacchi-Suzzi C, Marsit C, Demple B, Meliker JR. Expression of Genes Involved in Stress, Toxicity, Inflammation, and Autoimmunity in Relation to Cadmium, Mercury, and Lead in Human Blood: A Pilot Study. Toxics. 2018; 6(3):35. https://doi.org/10.3390/toxics6030035
Chicago/Turabian StyleMonastero, Rebecca N., Caterina Vacchi-Suzzi, Carmen Marsit, Bruce Demple, and Jaymie R. Meliker. 2018. "Expression of Genes Involved in Stress, Toxicity, Inflammation, and Autoimmunity in Relation to Cadmium, Mercury, and Lead in Human Blood: A Pilot Study" Toxics 6, no. 3: 35. https://doi.org/10.3390/toxics6030035
APA StyleMonastero, R. N., Vacchi-Suzzi, C., Marsit, C., Demple, B., & Meliker, J. R. (2018). Expression of Genes Involved in Stress, Toxicity, Inflammation, and Autoimmunity in Relation to Cadmium, Mercury, and Lead in Human Blood: A Pilot Study. Toxics, 6(3), 35. https://doi.org/10.3390/toxics6030035