Methylmercury Epigenetics
Abstract
:1. Introduction
2. Epigenetic Modifications In Vitro
3. Epigenetic Modifications In Vivo
4. Transgenerational Inheritance
5. DNA Methylation in Human Populations
6. Conclusions
Funding
Conflicts of Interest
References
- Martinez-Zamudio, R.; Ha, H.C. Environmental epigenetics in metal exposure. Epigenetics 2011, 6, 820–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, C.; Castoldi, A.F.; Onishchenko, N.; Manzo, L.; Vahter, M.; Ceccatelli, S. Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox. Res. 2007, 11, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Kiefer, J.C. Epigenetics in development. Dev. Dyn. 2007, 236, 1144–1156. [Google Scholar] [CrossRef] [PubMed]
- Wolffe, A.P.; Matzke, M.A. Epigenetics: Regulation through repression. Science 1999, 286, 481–486. [Google Scholar] [CrossRef]
- Chuang, J.C.; Jones, P.A. Epigenetics and microRNAs. Pediatr. Res. 2007, 61, 24R–29R. [Google Scholar] [CrossRef]
- Suganuma, T.; Workman, J.L. Crosstalk among Histone Modifications. Cell 2008, 135, 604–607. [Google Scholar] [CrossRef] [Green Version]
- Bollati, V.; Baccarelli, A. Environmental epigenetics. Heredity (Edinb) 2010, 105, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Kundakovic, M.; Jaric, I. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes (Basel) 2017, 8, 104. [Google Scholar] [CrossRef]
- Cambier, S.; Fujimura, M.; Bourdineaud, J.P. A likely placental barrier against methylmercury in pregnant rats exposed to fish-containing diets. Food Chem. Toxicol. 2018, 122, 11–20. [Google Scholar] [CrossRef]
- Debes, F.; Budtz-Jorgensen, E.; Weihe, P.; White, R.F.; Grandjean, P. Impact of prenatal methylmercury exposure on neurobehavioral function at age 14 years. Neurotoxicol. Teratol. 2006, 28, 536–547. [Google Scholar] [CrossRef] [Green Version]
- Debes, F.; Weihe, P.; Grandjean, P. Cognitive deficits at age 22 years associated with prenatal exposure to methylmercury. Cortex 2016, 74, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Grandjean, P.; Weihe, P.; White, R.F.; Debes, F.; Araki, S.; Yokoyama, K.; Murata, K.; Sorensen, N.; Dahl, R.; Jorgensen, P.J. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. Neurotoxicol. Teratol. 1997, 19, 417–428. [Google Scholar] [CrossRef]
- Mergler, D.; Anderson, H.A.; Chan, L.H.; Mahaffey, K.R.; Murray, M.; Sakamoto, M.; Stern, A.H.; Panel on Health, R.; Toxicological Effects of, M. Methylmercury exposure and health effects in humans: A worldwide concern. Ambio 2007, 36, 3–11. [Google Scholar] [CrossRef]
- Pallocca, G.; Fabbri, M.; Sacco, M.G.; Gribaldo, L.; Pamies, D.; Laurenza, I.; Bal-Price, A. miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol. Toxicol. 2013, 29, 239–257. [Google Scholar] [CrossRef]
- Suh, M.R.; Lee, Y.; Kim, J.Y.; Kim, S.K.; Moon, S.H.; Lee, J.Y.; Cha, K.Y.; Chung, H.M.; Yoon, H.S.; Moon, S.Y.; et al. Human embryonic stem cells express a unique set of microRNAs. Dev. Biol. 2004, 270, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Bracken, C.P.; Gregory, P.A.; Kolesnikoff, N.; Bert, A.G.; Wang, J.; Shannon, M.F.; Goodall, G.J. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008, 68, 7846–7854. [Google Scholar] [CrossRef]
- He, X.; Yan, Y.L.; Eberhart, J.K.; Herpin, A.; Wagner, T.U.; Schartl, M.; Postlethwait, J.H. miR-196 regulates axial patterning and pectoral appendage initiation. Dev. Biol. 2011, 357, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yan, M.; Zhao, L.; Wu, Q.; Wu, C.; Chang, X.; Zhou, Z. Low-Dose Methylmercury-Induced Genes Regulate Mitochondrial Biogenesis via miR-25 in Immortalized Human Embryonic Neural Progenitor Cells. Int J. Mol. Sci 2016, 17, 2058. [Google Scholar] [CrossRef]
- Kumar, M.; Lu, Z.; Takwi, A.A.; Chen, W.; Callander, N.S.; Ramos, K.S.; Young, K.H.; Li, Y. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 2011, 30, 843–853. [Google Scholar] [CrossRef]
- Marchi, S.; Lupini, L.; Patergnani, S.; Rimessi, A.; Missiroli, S.; Bonora, M.; Bononi, A.; Corra, F.; Giorgi, C.; De Marchi, E.; et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol. 2013, 23, 58–63. [Google Scholar] [CrossRef]
- Tian, S.; Huang, S.; Wu, S.; Guo, W.; Li, J.; He, X. MicroRNA-1285 inhibits the expression of p53 by directly targeting its 3’ untranslated region. Biochem. Biophys. Res. Commun. 2010, 396, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Ceccatelli, S.; Bose, R.; Edoff, K.; Onishchenko, N.; Spulber, S. Long-lasting neurotoxic effects of exposure to methylmercury during development. J. Intern. Med. 2013, 273, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Guida, N.; Laudati, G.; Mascolo, L.; Valsecchi, V.; Sirabella, R.; Selleri, C.; Di Renzo, G.; Canzoniero, L.M.; Formisano, L. p38/Sp1/Sp4/HDAC4/BDNF Axis Is a Novel Molecular Pathway of the Neurotoxic Effect of the Methylmercury. Front. Neurosci. 2017, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guida, N.; Laudati, G.; Anzilotti, S.; Sirabella, R.; Cuomo, O.; Brancaccio, P.; Santopaolo, M.; Galgani, M.; Montuori, P.; Di Renzo, G.; et al. Methylmercury upregulates RE-1 silencing transcription factor (REST) in SH-SY5Y cells and mouse cerebellum. Neurotoxicology 2016, 52, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Guida, N.; Valsecchi, V.; Laudati, G.; Serani, A.; Mascolo, L.; Molinaro, P.; Montuori, P.; Di Renzo, G.; Canzoniero, L.M.; Formisano, L. The miR206-JunD Circuit Mediates the Neurotoxic Effect of Methylmercury in Cortical Neurons. Toxicol. Sci. 2018, 163, 569–578. [Google Scholar] [CrossRef]
- Williams, A.H.; Valdez, G.; Moresi, V.; Qi, X.; McAnally, J.; Elliott, J.L.; Bassel-Duby, R.; Sanes, J.R.; Olson, E.N. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science 2009, 326, 1549–1554. [Google Scholar] [CrossRef]
- Tapocik, J.D.; Barbier, E.; Flanigan, M.; Solomon, M.; Pincus, A.; Pilling, A.; Sun, H.; Schank, J.R.; King, C.; Heilig, M. microRNA-206 in rat medial prefrontal cortex regulates BDNF expression and alcohol drinking. J. Neurosci. 2014, 34, 4581–4588. [Google Scholar] [CrossRef]
- Onishchenko, N.; Karpova, N.; Sabri, F.; Castren, E.; Ceccatelli, S. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J. Neurochem. 2008, 106, 1378–1387. [Google Scholar] [CrossRef]
- Go, S.; Kurita, H.; Matsumoto, K.; Hatano, M.; Inden, M.; Hozumi, I. Methylmercury causes epigenetic suppression of the tyrosine hydroxylase gene in an in vitro neuronal differentiation model. Biochem. Biophys. Res. Commun. 2018, 502, 435–441. [Google Scholar] [CrossRef]
- Shilatifard, A. Chromatin modifications by methylation and ubiquitination: Implications in the regulation of gene expression. Annu. Rev. Biochem. 2006, 75, 243–269. [Google Scholar] [CrossRef]
- Posser, T.; Dunkley, P.R.; Dickson, P.W.; Franco, J.L. Human neuroblastoma cells transfected with tyrosine hydroxylase gain increased resistance to methylmercury-induced cell death. Toxicol. In Vitro 2010, 24, 1498–1503. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.D.; Ahlbom, E.; Ogren, S.O.; Nicotera, P.; Ceccatelli, S. Prenatal exposure to methylmercury alters locomotor activity of male but not female rats. Exp. Brain Res. 1997, 117, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Bose, R.; Onishchenko, N.; Edoff, K.; Janson Lang, A.M.; Ceccatelli, S. Inherited effects of low-dose exposure to methylmercury in neural stem cells. Toxicol. Sci. 2012, 130, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, M.V.C.; Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol 2019, 20, 590–607. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, M.; Strazzullo, M.; Matarazzo, M.R. DNMT3B Functions: Novel Insights From Human Disease. Front. Cell Dev. Biol. 2018, 6, 140. [Google Scholar] [CrossRef]
- Millan, M.J. An epigenetic framework for neurodevelopmental disorders: From pathogenesis to potential therapy. Neuropharmacology 2013, 68, 2–82. [Google Scholar] [CrossRef]
- Basu, N.; Head, J.; Nam, D.H.; Pilsner, J.R.; Carvan, M.J.; Chan, H.M.; Goetz, F.W.; Murphy, C.A.; Rouvinen-Watt, K.; Scheuhammer, A.M. Effects of methylmercury on epigenetic markers in three model species: Mink, chicken and yellow perch. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2013, 157, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Rudgalvyte, M.; VanDuyn, N.; Aarnio, V.; Heikkinen, L.; Peltonen, J.; Lakso, M.; Nass, R.; Wong, G. Methylmercury exposure increases lipocalin related (lpr) and decreases activated in blocked unfolded protein response (abu) genes and specific miRNAs in Caenorhabditis elegans. Toxicol. Lett. 2013, 222, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.; Zuccato, C.; Belyaev, N.D.; Guest, D.J.; Cattaneo, E.; Buckley, N.J. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol Dis 2008, 29, 438–445. [Google Scholar] [CrossRef]
- Hu, H.; Shi, Y.; Zhang, Y.; Wu, J.; Asweto, C.O.; Feng, L.; Yang, X.; Duan, J.; Sun, Z. Comprehensive gene and microRNA expression profiling on cardiovascular system in zebrafish co-exposured of SiNPs and MeHg. Sci. Total Environ. 2017, 607–608, 795–805. [Google Scholar] [CrossRef]
- Rudgalvyte, M.; Peltonen, J.; Lakso, M.; Wong, G. Chronic MeHg exposure modifies the histone H3K4me3 epigenetic landscape in Caenorhabditis elegans. Comp. Biochem Physiol C Toxicol Pharmacol 2017, 191, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuettengruber, B.; Chourrout, D.; Vervoort, M.; Leblanc, B.; Cavalli, G. Genome regulation by polycomb and trithorax proteins. Cell 2007, 128, 735–745. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.; Meade, G.; Foley, V.M.; Dowd, C.A. Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 2001, 360, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Balthrop, J.E.; Braddon, S.A. Effects of selenium and methylmercury upon glutathione and glutathione-S-transferase in mice. Arch. Environ. Contam. Toxicol. 1985, 14, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Desaulniers, D.; Xiao, G.H.; Lian, H.; Feng, Y.L.; Zhu, J.; Nakai, J.; Bowers, W.J. Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. Int. J. Toxicol. 2009, 28, 294–307. [Google Scholar] [CrossRef] [PubMed]
- Olsvik, P.A.; Williams, T.D.; Tung, H.S.; Mirbahai, L.; Sanden, M.; Skjaerven, K.H.; Ellingsen, S. Impacts of TCDD and MeHg on DNA methylation in zebrafish (Danio rerio) across two generations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2014, 165, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Singh, R.D.; Tiwari, R.; Gangopadhyay, S.; Roy, S.K.; Singh, D.; Srivastava, V. Mercury exposure induces cytoskeleton disruption and loss of renal function through epigenetic modulation of MMP9 expression. Toxicology 2017, 386, 28–39. [Google Scholar] [CrossRef]
- Carvan, M.J., 3rd; Kalluvila, T.A.; Klingler, R.H.; Larson, J.K.; Pickens, M.; Mora-Zamorano, F.X.; Connaughton, V.P.; Sadler-Riggleman, I.; Beck, D.; Skinner, M.K. Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS ONE 2017, 12, e0176155. [Google Scholar] [CrossRef]
- Xu, X.; Weber, D.; Martin, A.; Lone, D. Trans-generational transmission of neurobehavioral impairments produced by developmental methylmercury exposure in zebrafish (Danio rerio). Neurotoxicol. Teratol. 2016, 53, 19–23. [Google Scholar] [CrossRef]
- Skinner, M.K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 2008, 25, 2–6. [Google Scholar] [CrossRef]
- Burk, R.F.; Hill, K.E. Selenoprotein P-expression, functions, and roles in mammals. Biochim. Biophys. Acta 2009, 1790, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Dolgova, N.V.; Nehzati, S.; MacDonald, T.C.; Summers, K.L.; Crawford, A.M.; Krone, P.H.; George, G.N.; Pickering, I.J. Disruption of selenium transport and function is a major contributor to mercury toxicity in zebrafish larvae. Metallomics 2019, 11, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, W.; Zhao, J.; Lin, X.; Liu, J.; Cui, L.; Gao, Y.; Zhang, T.L.; Li, B.; Li, Y.F. Selenoprotein P as the major transporter for mercury in serum from methylmercury-poisoned rats. J. Trace Elem. Med. Biol. 2018, 50, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Basnet, R.M.; Zizioli, D.; Taweedet, S.; Finazzi, D.; Memo, M. Zebrafish Larvae as a Behavioral Model in Neuropharmacology. Biomedicines 2019, 7, 23. [Google Scholar] [CrossRef]
- Reed, M.N.; Banna, K.M.; Donlin, W.D.; Newland, M.C. Effects of gestational exposure to methylmercury and dietary selenium on reinforcement efficacy in adulthood. Neurotoxicol. Teratol. 2008, 30, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Camsari, C.; Folger, J.K.; Rajput, S.K.; McGee, D.; Latham, K.E.; Smith, G.W. Transgenerational Effects of Periconception Heavy Metal Administration on Adipose Weight and Glucose Homeostasis in Mice at Maturity. Toxicol. Sci. 2019, 168, 610–619. [Google Scholar] [CrossRef]
- Ruszkiewicz, J.A.; Bowman, A.B.; Farina, M.; Rocha, J.B.T.; Aschner, M. Sex- and structure-specific differences in antioxidant responses to methylmercury during early development. Neurotoxicology 2016, 56, 118–126. [Google Scholar] [CrossRef]
- Grandjean, P.; Budtz-Jorgensen, E.; Jorgensen, P.J.; Weihe, P. Umbilical cord mercury concentration as biomarker of prenatal exposure to methylmercury. Environ. Health Perspect. 2005, 113, 905–908. [Google Scholar] [CrossRef]
- Goodrich, J.M.; Basu, N.; Franzblau, A.; Dolinoy, D.C. Mercury biomarkers and DNA methylation among Michigan dental professionals. Environ. Mol. Mutagen. 2013, 54, 195–203. [Google Scholar] [CrossRef]
- Hanna, C.W.; Bloom, M.S.; Robinson, W.P.; Kim, D.; Parsons, P.J.; vom Saal, F.S.; Taylor, J.A.; Steuerwald, A.J.; Fujimoto, V.Y. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum. Reprod. 2012, 27, 1401–1410. [Google Scholar] [CrossRef]
- Leung, Y.K.; Ouyang, B.; Niu, L.; Xie, C.; Ying, J.; Medvedovic, M.; Chen, A.; Weihe, P.; Valvi, D.; Grandjean, P.; et al. Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics 2018, 13, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Deaton, A.M.; Bird, A. CpG islands and the regulation of transcription. Genes Dev. 2011, 25, 1010–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardenas, A.; Koestler, D.C.; Houseman, E.A.; Jackson, B.P.; Kile, M.L.; Karagas, M.R.; Marsit, C.J. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics 2015, 10, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, R.A.; Ladd-Acosta, C.; Wen, B.; Wu, Z.; Montano, C.; Onyango, P.; Cui, H.; Gabo, K.; Rongione, M.; Webster, M.; et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 2009, 41, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Bakulski, K.M.; Lee, H.; Feinberg, J.I.; Wells, E.M.; Brown, S.; Herbstman, J.B.; Witter, F.R.; Halden, R.U.; Caldwell, K.; Mortensen, M.E.; et al. Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. Int. J. Epidemiol 2015, 44, 1249–1262. [Google Scholar] [CrossRef]
- Cardenas, A.; Rifas-Shiman, S.L.; Agha, G.; Hivert, M.F.; Litonjua, A.A.; DeMeo, D.L.; Lin, X.; Amarasiriwardena, C.J.; Oken, E.; Gillman, M.W.; et al. Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood. Sci. Rep. 2017, 7, 288. [Google Scholar] [CrossRef]
- Maccani, J.Z.; Koestler, D.C.; Lester, B.; Houseman, E.A.; Armstrong, D.A.; Kelsey, K.T.; Marsit, C.J. Placental DNA Methylation Related to Both Infant Toenail Mercury and Adverse Neurobehavioral Outcomes. Environ. Health Perspect. 2015, 123, 723–729. [Google Scholar] [CrossRef] [Green Version]
Epigenetic Modification | Model | Effect | Dose and Duration | Reference |
---|---|---|---|---|
miRNA | rat cortical neurons | decreased miR-206 expression | 1 μM MeHg for 12 or 24 h | [25] |
carcinoma, pluripotent human stem cell-derived neurons and glial cells | increased miR-302b, miR-367, miR-372, miR-196b, and miR-141 expression | 400 nM MeHg during neuronal differentiation (day 2 to 36 in vitro) | [14] | |
immortalized human embryonic neural progenitor cells | decreased miR-1285, miR-25, and miR-30d expression | 50 nM MeHg for 24 h | [18] | |
Histone modifications | Human fetal brain-derived immortalized cells | increased H3K27 trimethylation at TH promotor | 1 nM MeHg during neuronal differentiation (day 2 to 8 in vitro) | [29] |
SH-SY5Y human neuroblastoma cells | decreased global H4 acetylation | 1 μM MeHg for 24 h | [24] | |
SH-SY5Y human neuroblastoma cells | increased HDAC4 mRNA, protein, and binding to BDNF promotor | 1 μM MeHg for 24 h | [23] | |
rat cortical neurons | increased HDAC4 protein | 1 μM MeHg for 24 h | ||
DNA methylation | rat cortical neural stem cells | decreased global DNA methylation; decreased DNMT-3b mRNA | 2.5 or 5 nM MeHg for 48 h | [33] |
Epigenetic Modifications | Model | Effect | Dose and Duration | Reference |
---|---|---|---|---|
miRNA | zebrafish | decreased dre-miR-7147 and dre-miR-26a; increased dre-miR-375 and dre-miR-206 expression | microinjected 48 hpf embryos with 0.01 mg/ml MeHg for 24 h | [40] |
Caenorhabditis elegans | decreased miR-37-3p, miR-41-5p, miR-70-3p, and miR-75-3p expression | 10 μM MeHg from embryo to L4 stage | [38] | |
Histone modifications | Caenorhabditis elegans | increased H3K4 trimethylation | 10 μM MeHg to L1 to L4 stage | [41] |
adult male C57Bl/6 mice (neural) | decreased H4 acetylation | subcutaneous injection of 10 mg/kg MeHg for 10 days | [24] | |
C57Bl/6 mice (neural) | increased H3K27 trimethylation and decreased H3 acetylation at BDNF promotor | dams exposed to 0.5 mg/kg MeHg in drinking water from GD 7 to PND 7 | [28] | |
hypermethylation of BDNF promotor | ||||
DNA methylation | juvenile male mink (neural) | decreased global DNA methylation | 0.1–2 mg/kg in diet for 3 months | [37] |
decreased DNMT activity | 0.5–2 mg/kg in diet for 3 months | |||
Sprague-Dawley rats (hepatic) | decreased DNMT-1 and DNMT-3b mRNA; no effect on global DNA methylation | dams exposed from GD 1 to PND 21 in diet to 2 mg/kg MeHg | [45] | |
adult female Wister rats (nephro) | hypomethylation of exon 1 of MMP9; increased MMP9 mRNA and protein | 0.5 or 5 ppm MeHg for 28 days by oral gavage | [47] | |
zebrafish (hepatic) | no effect on global DNA methylation | adult females fed 10 mg/kg in diet for 47 days | [46] |
Model | Effect | Dose and Duration | Reference |
---|---|---|---|
CD-1 mice |
| adult female mice subcutaneously injected with combination cadmium and MeHg (2 mg/kg) from 4 days before to 4 days after conception | [56] |
zebrafish |
| embryos exposed to 0, 1, 3, 10, 30, or 100 nM MeHg until 24 hpf | [48] |
zebrafish |
| embryos exposed to 0, 0.01, 0.10 μM MeHg from 2 to 24 hpf | [49] |
zebrafish |
| adult females fed 10 mg/kg MeHg in diet for 47 days | [46] |
Population | MeHg Measurement | Effect | Reference |
---|---|---|---|
newborns (Baltimore, MD, USA) | cord blood | MeHg concentration associated with overlapping DMR within TCEANC2 | [65] |
mother-infant pairs (USA) | maternal toenail | associated with hypermethylated north shore regions of CpG islands | [63] |
mother-child pairs (Massachusetts, USA) | maternal blood | associated with lower regional cord blood DNA methylation at PON1 in males at 2.9–4.9 years | [66] |
dental professionals (Michigan, USA) | hair and urine | hair Hg associated with SEPP1 hypomethylation in males | [59] |
women undergoing IVF (San Francisco, CA, USA) | hair and urine | associated with GSTM 1/5 promotor hypermethylation | [60] |
Faroese birth cohort | cord blood and maternal hair | no CpG site methylation changes associated with cord blood; 5 CpG site methylation changes associated with maternal hair | [61] |
infants (Rhode Island, USA) | infant toenail | associated with EMID2 hypomethylation in infant placenta | [67] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Culbreth, M.; Aschner, M. Methylmercury Epigenetics. Toxics 2019, 7, 56. https://doi.org/10.3390/toxics7040056
Culbreth M, Aschner M. Methylmercury Epigenetics. Toxics. 2019; 7(4):56. https://doi.org/10.3390/toxics7040056
Chicago/Turabian StyleCulbreth, Megan, and Michael Aschner. 2019. "Methylmercury Epigenetics" Toxics 7, no. 4: 56. https://doi.org/10.3390/toxics7040056
APA StyleCulbreth, M., & Aschner, M. (2019). Methylmercury Epigenetics. Toxics, 7(4), 56. https://doi.org/10.3390/toxics7040056