A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Specimen Collection and Analysis
2.3. Estimation of Excretion Rates
2.4. Estimated Glomerular Filtration Rates
2.5. Statistical Analysis
3. Results
3.1. Descriptive Characteristics of Study Population
3.2. Predictors of eGFR
3.3. Quantitation of Effects of Cadmium and Lead on the Decline of eGFR
3.4. The Prevalence Odds of Reduced eGFR across the Quartiles of Urinary Cd and Urinary Pb
4. Discussion
5. Strengths and Limitations
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Satarug:, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Ruangyuttikarn, W.; Nishijo, M.; Ruiz, P. Urinary cadmium threshold to prevent kidney disease development. Toxics 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shefa, S.T.; Héroux, P. Both physiology and epidemiology support zero tolerable blood lead levels. Toxicol. Lett. 2017, 280, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Harari, F.; Sallsten, G.; Christensson, A.; Petkovic, M.; Hedblad, B.; Forsgard, N.; Melander, O.; Nilsson, P.M.; Borné, Y.; Engström, G.; et al. Blood lead levels and decreased kidney function in a population-based cohort. Am. J. Kidney Dis. 2018, 72, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satarug, S. Dietary cadmium intake and its effects on kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC (International Agency for Research on Cancer). Cadmium and cadmium compounds. In Beryllium, Cadmium, Mercury and Exposures in the Glass Manufacturing Industry; IARC: Lyon, France, 1993; Volume 58, pp. 120–238. [Google Scholar]
- Liao, L.M.; Friesen, M.C.; Xiang, Y.B.; Cai, H.; Koh, D.H.; Ji, B.T.; Yang, G.; Li, H.L.; Locke, S.J.; Rothman, N.; et al. Occupational lead exposure and associations with selected cancers: The Shanghai men’s and women’s health study cohorts. Environ. Health Perspect. 2016, 124, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steenland, K.; Barry, V.; Anttila, A.; Sallmén, M.; McElvenny, D.; Todd, A.C.; Straif, K. A cohort mortality study of lead-exposed workers in the USA, Finland and the UK. Occup. Environ. Med. 2017, 74, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Buser, M.C.; Ingber, S.Z.; Raines, N.; Fowler, D.A.; Scinicariello, F. Urinary and blood cadmium and lead and kidney function: NHANES 2007–2012. Int. J. Hyg. Environ. Health 2016, 219, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Schaumberg, D.A.; Park, S.K. Cadmium and lead exposure and risk of cataract surgery in U.S. adults. Int. J. Hyg. Environ. Health 2016, 219, 850–856. [Google Scholar] [CrossRef] [Green Version]
- Shim, Y.K.; Lewin, M.D.; Ruiz, P.; Eichner, J.E.; Mumtaz, M.M. Prevalence and associated demographic characteristics of exposure to multiple metals and their species in human populations: The United States NHANES, 2007–2012. J. Toxicol. Environ. Health A 2017, 80, 502–512. [Google Scholar] [CrossRef]
- Jin, R.; Zhu, X.; Shrubsole, M.J.; Yu, C.; Xia, Z.; Dai, Q. Associations of renal function with urinary excretion of metals: Evidence from NHANES 2003–2012. Environ. Int. 2018, 121, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Saravanabhavan, G.; Werry, K.; Walker, M.; Haines, D.; Malowany, M.; Khoury, C. Human biomonitoring reference values for metals and trace elements in blood and urine derived from the Canadian Health Measures Survey 2007–2013. Int. J. Hyg. Environ. Health 2017, 220, 189–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, K.W.; Pan, W.H.; Liou, S.H.; Sun, C.W.; Huang, P.C.; Wang, S.L. Levels and temporal variations of urinary lead, cadmium, cobalt, and copper exposure in the general population of Taiwan. Environ. Sci. Pollut. Res. Int. 2019, 26, 6048–6064. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.S.; Ahn, J.; Lee, B.K.; Park, J.; Kim, Y. Environmental exposures to lead, mercury, and cadmium among South Korean teenagers (KNHANES 2010–2013): Body burden and risk factors. Environ. Res. 2017, 156, 468–476. [Google Scholar] [CrossRef] [PubMed]
- De Nicola, L.; Zoccali, C. Chronic kidney disease prevalence in the general population: Heterogeneity and concerns. Nephrol. Dial. Transplant. 2016, 31, 331–335. [Google Scholar] [CrossRef]
- Glassock, R.J.; David, G.; Warnock, D.G.; Delanaye, P. The global burden of chronic kidney disease: Estimates, variability and pitfalls. Nat. Rev. Nephrol. 2017, 13, 104–114. [Google Scholar] [CrossRef]
- George, C.; Mogueo, A.; Okpechi, I.; Echouffo-Tcheugui, J.B.; Kengne, A.P. Chronic kidney disease in low-income to middle-income countries: The case for increased screening. BMJ Glob. Health 2017, 2, e000256. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.; Castro, A.F., III; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Levey, A.S.; Inker, L.A.; Coresh, J. GFR estimation: From physiology to public health. Am. J. Kidney Dis. 2014, 63, 820–834. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: A systematic review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef] [Green Version]
- White, C.A.; Allen, C.M.; Akbari, A.; Collier, C.P.; Holland, D.C.; Day, A.G.; Knoll, G.A. Comparison of the new and traditional CKD-EPI GFR estimation equations with urinary inulin clearance: A study of equation performance. Clin. Chim. Acta 2019, 488, 189–195. [Google Scholar] [CrossRef]
- Sommar, J.N.; Svensson, M.K.; Björ, B.M.; Elmståhl, S.I.; Hallmans, G.; Lundh, T.; Schön, S.M.; Skerfving, S.; Bergdahl, I.A. End-stage renal disease and low level exposure to lead, cadmium and mercury; a population-based, prospective nested case-referent study in Sweden. Environ. Health 2013, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Grau-Perez, M.; Pichler, G.; Galan-Chilet, I.; Briongos-Figuero, L.S.; Rentero-Garrido, P.; Lopez-Izquierdo, R.; Navas-Acien, A.; Weaver, V.; García-Barrera, T.; Gomez-Ariza, J.L.; et al. Urine cadmium levels and albuminuria in a general population from Spain: A gene-environment interaction analysis. Environ. Int. 2017, 106, 27–36. [Google Scholar] [CrossRef]
- Myong, J.P.; Kim, H.R.; Baker, D.; Choi, B. Blood cadmium and moderate-to-severe glomerular dysfunction in Korean adults: Analysis of KNHANES 2005−2008 data. Int. Arch. Occup. Environ. Health 2012, 85, 885–893. [Google Scholar] [CrossRef]
- Navas-Acien, A.; Tellez-Plaza, M.; Guallar, E.; Muntner, P.; Silbergeld, E.; Jaar, B.; Weaver, V. Blood cadmium and lead and chronic kidney disease in US adults: A joint analysis. Am. J. Epidemiol. 2009, 170, 1156–1164. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, P.M.; Costanzi, S.; Naticchia, A.; Sturniolo, A.; Gambaro, G. Low level exposure to cadmium increases the risk of chronic kidney disease: Analysis of the NHANES 1999–2006. BMC Public Health 2010, 10, 304. [Google Scholar] [CrossRef] [Green Version]
- Madrigal, J.M.; Ricardo, A.C.; Persky, V.; Turyk, M. Associations between blood cadmium concentration and kidney function in the U.S. population: Impact of sex, diabetes and hypertension. Environ. Res. 2018, 169, 180–188. [Google Scholar] [CrossRef]
- Zhu, X.J.; Wang, J.J.; Mao, J.H.; Shu, Q.; Du, L.Z. Relationships between cadmium, lead and mercury levels and albuminuria: Results from the National Health and Nutrition Examination Survey Database 2009−2012. Am. J. Epidemiol. 2019, 188, 1281–1287. [Google Scholar] [CrossRef]
- Shi, Z.; Taylor, A.W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clin. Nutr. 2017, 5614, 31366–31368. [Google Scholar]
- Swaddiwudhipong, W.; Limpatanachote, P.; Mahasakpan, P.; Krintratun, S.; Punta, B.; Funkhiew, T. Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: A five-year follow-up. Environ. Res. 2012, 112, 194–198. [Google Scholar] [CrossRef]
- Swaddiwudhipong, W.; Nguntra, P.; Kaewnate, Y.; Mahasakpan, P.; Limpatanachote, P.; Aunjai, T.; Jeekeeree, W.; Punta, B.; Funkhiew, T.; Phopueng, I. Human health effects from cadmium exposure: Comparison between persons living in cadmium-contaminated and non-contaminated areas in northwestern Thailand. Southeast Asian J. Trop. Med. Public Health 2015, 46, 133–142. [Google Scholar]
- Satarug, S.; Boonprasert, K.; Gobe, G.C.; Ruenweerayut, R.; Johnson, D.W.; Na-Bangchang, K.; Vesey, D.A. Chronic exposure to cadmium is associated with a marked reduction in glomerular filtration rate. Clin. Kidney J. 2018, 12, 468–475. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Nishijo, M.; Ruangyuttikarn, W.; Gobe, G.C. The inverse association of glomerular function and urinary β2-MG excretion and its implications for cadmium health risk assessment. Environ. Res. 2019, 173, 40–47. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Ruangyuttikarn, W.; Nishijo, M.; Gobe, G.C.; Phelps, K.R. The source and pathophysiologic significance of excreted cadmium. Toxics 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Roels, H.A.; Lauwerys, R.R.; Buchet, J.P.; Bernard, A.M.; Vos, A.; Oversteyns, M. Health significance of cadmium induced renal dysfunction: A five year follow up. Occup. Environ. Med. 1989, 46, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Jarup, L.; Persson, B.; Elinder, C.G. Decreased glomerular filtration rate in solderers exposed to cadmium. Occup. Environ. Med. 1995, 52, 818–822. [Google Scholar] [CrossRef] [Green Version]
- Reilly, R.; Spalding, S.; Walsh, B.; Wainer, J.; Pickens, S.; Royster, M.; Villanacci, J.; Little, B.B. Chronic environmental and occupational lead exposure and kidney function among African Americans: Dallas Lead Project II. Int. J. Environ. Res. Public Health 2018, 15, 12. [Google Scholar] [CrossRef] [Green Version]
- Akesson, A.; Lundh, T.; Vahter, M.; Bjellerup, P.; Lidfeldt, J.; Nerbrand, C.; Samsioe, G.; Strömberg, U.; Skerfving, S. Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ. Health Perspect. 2005, 113, 1627–1631. [Google Scholar] [CrossRef]
- Hwangbo, Y.; Weaver, V.M.; Tellez-Plaza, M.; Guallar, E.; Lee, B.K.; Navas-Acien, A. Blood cadmium and estimated glomerular filtration rate in Korean adults. Environ. Health Perspect. 2011, 119, 1800–1805. [Google Scholar] [CrossRef] [Green Version]
- Weaver, V.M.; Kim, N.S.; Jaar, B.G.; Schwartz, B.S.; Parsons, P.J.; Steuerwald, A.J.; Todd, A.C.; Simon, D.; Lee, B.K. Associations of low-level urine cadmium with kidney function in lead workers. Occup. Environ. Med. 2011, 68, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Sanders, A.P.; Mazzella, M.J.; Malin, A.J.; Hair, G.M.; Busgang, S.A.; Saland, J.M.; Curtin, P. Combined exposure to lead, cadmium, mercury, and arsenic and kidney health in adolescents age 12–19 in NHANES 2009–2014. Environ. Int. 2019, 131, 104993. [Google Scholar] [CrossRef] [PubMed]
- Pollack, A.Z.; Mumford, S.L.; Mendola, P.; Perkins, N.J.; Rotman, Y.; Wactawski-Wende, J.; Schisterman, E.F. Kidney biomarkers associated with blood lead, mercury, and cadmium in premenopausal women: A prospective cohort study. J. Toxicol. Environ Health A 2015, 78, 119–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, V.M.; Vargas, G.G.; Silbergeld, E.K.; Rothenberg, S.J.; Fadrowski, J.J.; Rubio-Andrade, M.; Parsons, P.J.; Steuerwald, A.J.; Navas-Acien, A.; Guallar, E. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ. Res. 2014, 132, 226–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weaver, V.M.; Kotchmar, D.J.; Fadrowski, J.J.; Silbergeld, E.K. Challenges for environmental epidemiology research: Are biomarker concentrations altered by kidney function or urine concentration adjustment? J. Expo. Sci. Environ. Epidemiol. 2016, 26, 1–8. [Google Scholar] [CrossRef]
- Galal-Gorchev, H. Dietary intake, levels in food and estimated intake of lead, cadmium, and mercury. Food Addit. Contam. 1993, 10, 115–128. [Google Scholar] [CrossRef]
- Phelps, K.R.; Stote, K.S.; Mason, D. Tubular calcium reabsorption and other aspects of calcium homeostasis in primary and secondary hyperparathyroidism. Clin. Nephrol. 2014, 82, 83–91. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Arteaga, C.; McManus, C.; Smith, J.; Moffitt, S. Measurement of muscle mass in humans: Validity of the 24-h urinary creatinine method. Am. J. Clin. Nutr. 1983, 37, 478–494. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Gobe, G.C. Health risk assessment of dietary cadmium intake: Do current guidelines indicate how much is safe? Environ. Health Perspect. 2017, 125, 284–288. [Google Scholar] [CrossRef]
- Jenny-Burri, J.; Haldiman, M.; Bruschweiler, B.J.; Bochud, M.; Burnier, M.; Paccaud, F.; Dudler, V. Cadmium body burden of the Swiss population. Food Addit. Contam. Part Anal. Chem. Control Expo. Risk Assess. 2015, 32, 1265–1272. [Google Scholar] [CrossRef] [Green Version]
- De Craemer, S.; Croes, K.; van Larebeke, N.; De Henauw, S.; Schoeters, G.; Govarts, E.; Loots, I.; Nawrot, T.; Nelen, V.; Den Hond, E.; et al. Metals, hormones and sexual maturation in Flemish adolescents in three cross-sectional studies (2002–2015). Environ. Int. 2017, 102, 190–199. [Google Scholar] [CrossRef]
- Barr, D.B.; Wilder, L.C.; Caudill, S.P.; Gonzalez, A.J.; Needham, L.L.; Pirkle, J.L. Urinary creatinine concentrations in the U.S. population: Implications for urinary biologic monitoring measurements. Environ. Health Perspect. 2005, 113, 192–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.S.; Ho, W.C.; Caffrey, J.L.; Sonawane, B. Low serum zinc is associated with elevated risk of cadmium nephrotoxicity. Environ. Res. 2014, 134, 33–38. [Google Scholar] [CrossRef]
- Schnaper, H.W. The tubulointerstitial pathophysiology of progressive kidney disease. Adv. Chronic Kidney Dis. 2017, 24, 107–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horiguchi, H.; Oguma, E.; Sasaki, S.; Okubo, H.; Murakami, K.; Miyamoto, K.; Hosoi, Y.; Murata, K.; Kayama, F. Age-relevant renal effects of cadmium exposure through consumption of home-harvested rice in female Japanese farmers. Environ. Int. 2013, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Oliver-Williams, C.; Howard, A.G.; Navas-Acien, A.; Howard, B.V.; Tellez-Plaza, M.; Franceschini, N. Cadmium body burden, hypertension, and changes in blood pressure over time: Results from a prospective cohort study in American Indians. J. Am. Soc. Hypertens. 2018, 12, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Scinicariello, F.; Abadin, H.G.; Murray, H.E. Association of low-level blood lead and blood pressure in NHANES 1999–2006. Environ. Res. 2011, 111, 1249–1257. [Google Scholar] [CrossRef]
- Nakagawa, H.; Nishijo, M. Environmental cadmium exposure, hypertension and cardiovascular risk. J. Cardiovasc. Risk 1996, 3, 11–17. [Google Scholar] [CrossRef]
- Kurihara, I.; Kobayashi, E.; Suwazono, Y.; Uetani, M.; Inaba, T.; Oishiz, M.; Kido, T.; Nakagawa, H.; Nogawa, K. Association between exposure to cadmium and blood pressure in Japanese peoples. Arch. Environ. Health 2004, 59, 711–776. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO) World Health Organization (WHO) Summary and Conclusions. In Proceedings of the Joint FAO/WHO Expert Committee on Food Additives Seventy-Third Meeting, Geneva, Switzerland, 8–17 June 2010. Available online: http://www.who.int/foodsafety/publications/chem/summary73.pdf (accessed on 13 January 2020).
Parameters/Factors | All Subjects n = 392 | Men n = 195 | Women n = 197 | p-Values |
---|---|---|---|---|
Age, years | 34.9 ± 9.6 (16−60) | 32.8 ± 8.8 (16−57) | 36.9 ± 10 (19−60) | <0.001 * |
Smoking (%) | 24.7 | 49.7 | 0 | <0.001 * |
Serum ferritin, μg/L | 89.0 ± 134 (3−378) | 159 ± 153 (14−978) | 50.0 ± 61.3 (3−353) | <0.001 * |
Low body iron stores (%) a | 13.0 | 3.6 | 22.3 | <0.001 * |
eGFR, mL/min/1.73 m2 b | 105 ± 14 (70−139) | 104 ± 14 (70−138) | 106 ± 13 (72−139) | 0.170 |
eGFR <90 mL/min/1.73 m2 | 13.0 | 12.3 | 13.7 | 0.681 |
BUN, mg/dL | 11.1 ± 2.8 (5−24) | 11.8 ± 2.8 (5−24) | 10.4 ± 2.8 (5−19) | <0.001 * |
Total plasma protein, g/dL | 7.85 ± 0.46 (6−9.1) | 7.86 ± 0.46 (6−9.1) | 7.84 ± 0.47 (6.9−9.1) | 0.385 |
Plasma creatinine, mg/dL | 0.82 ± 0.16 (0.5−1.3) | 0.95 ± 0.11 (0.5−1.3) | 0.71 ± 0.10 (0.5−1.0) | <0.001 * |
Urine creatinine, mg/dL | 59.5 ± 68.4 (7.2−377) | 74.2 ± 79.1 (11−377) | 47.8 ± 49.1 (7.2−294) | <0.001 * |
Total urine protein, mg/dL | 1.60 ± 8.41 (0.02−70) | 1.80 ± 9.14 (0.02−65) | 1.43 ± 7.57 (0.02−75) | 0.162 |
Urinary concentrations | ||||
Cd, μg/L | 0.25 ± 0.68 (0.04−9.4) | 0.28 ± 0.84 (0.04−9.4) | 0.23 ± 0.49 (0.04−4.2) | 0.117 |
Pb, μg/L | 0.89 ± 1.73 (0.02−19) | 0.80 ± 1.66 (0.02−13) | 1.00 ± 1.80 (0.1−19) | 0.239 |
Urinary metals normalized to excretion of creatinine | ||||
ECd/Ecr, µg/g of creatinine | 0.45 ± 0.46 (0.03−3.8) | 0.39 ± 0.46 (0.03−3.8) | 0.51 ± 0.46 (0.04−2.4) | <0.001 * |
EPb/Ecr, µg/g of creatinine | 1.52 ± 2.16 (0.05−33) | 1.10 ± 1.42 (0.05−13) | 2.10 ± 2.62 (0.05−33) | <0.001 * |
Urinary metals normalized to creatinine clearance | ||||
ECd/Ccr × 100, μg/L | 0.35 ± 0.38 (0.03−3.1) | 0.36 ± 0.42 (0.03−3.1) | 0.34 ± 0.34 (0.03−1.9) | 0.842 |
EPb/Ccr × 100, μg/L | 1.23 ± 1.70 (0.04−27) | 1.02 ± 1.20 (0.04−19) | 1.48 ± 2.08 (0.04−27) | 0.062 |
Independent Variables | eGFR, mL/min/1.73 m2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
All, n = 392 | Men, n = 195 | Women, n = 197 | Non-Smokers, n = 295 | Smokers, n = 97 | ||||||
β | p | β | p | β | p | β | p | β | p | |
Age | −0.436 | <0.001 * | −0.501 | <0.001 * | −0.378 | <0.001 * | −0.405 | <0.001 * | −0.510 | <0.001 |
BUN | −0.157 | 0.001 * | −0.125 | 0.044 * | −0.170 | 0.008 * | −0.135 | 0.012 * | −0.207 | 0.016 * |
Urine Cd | −0.126 | 0.006 * | −0.082 | 0.219 | −0.132 | 0.043 * | −0.119 | 0.026 * | −0.122 | 0.182 |
Urine Pb | −0.072 | 0.115 | −0.060 | 0.333 | −0.130 | 0.044 | −0.092 | 0.092 | −0.056 | 0.513 |
Ferritin | 0.076 | 0.156 | 0.147 | 0.017 * | 0.002 | 0.969 | 0.059 | 0.330 | 0.101 | 0.227 |
Gender | 0.222 | 0.001 * | − | − | − | − | 0.208 | 0.001 * | − | − |
Smoking | 0.075 | 0.166 | 0.062 | 0.317 | − | − | − | − | − | − |
Adjusted R2 | 0.272 | <0.001 † | 0.334 | <0.001 † | 0.259 | <0.001 † | 0.254 | <0.001 † | 0.402 | <0.001 † |
Independent Variables/Factors | eGFR Levels <96 mL/min/1.73 m2 | ||||
---|---|---|---|---|---|
β Coefficients | POR a | 95% CI for POR | p | ||
(SE) | Lower | Upper | Value | ||
Age (years) | −0.071 (0.015) | 0.931 | 0.904 | 0.959 | <0.001 |
Gender | −1.020 (0.345) | 0.361 | 0.184 | 0.709 | 0.003 |
Smoking | −0.475 (0.367) | 0.622 | 0.303 | 1.277 | 0.195 |
Low body iron store status b | −0.015 (0.437) | 0.985 | 0.418 | 2.320 | 0.972 |
ECd/Ccr × 100, μg/L | |||||
Q1 (0.03−0.21) | Referent | 1.000 | 1.000 | 1.000 | |
Q2 (0.22−0.38) | 0.529 (0.338) | 1.697 | 0.875 | 3.291 | 0.117 |
Q3 (0.39−0.61) | 0.920 (0.370) | 2.510 | 1.216 | 5.181 | 0.013 |
Q4 (0.62−3.10) | 1.053 (0.396) | 2.867 | 1.319 | 6.236 | 0.008 |
EPb/Ccr × 100, μg/L | |||||
Q1 (0.04−1.07) | Referent | 1.000 | 1.000 | 1.000 | |
Q2 (1.08−1.42) | 0.469 (0.365) | 1.598 | 0.782 | 3.265 | 0.198 |
Q3 (1.43−1.93) | 0.115 (0.535) | 1.122 | 0.562 | 2.241 | 0.744 |
Q4 (1.94−26.5) | 0.803 (0.388) | 2.233 | 1.043 | 4.780 | 0.039 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satarug, S.; Gobe, G.C.; Ujjin, P.; Vesey, D.A. A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead. Toxics 2020, 8, 18. https://doi.org/10.3390/toxics8010018
Satarug S, Gobe GC, Ujjin P, Vesey DA. A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead. Toxics. 2020; 8(1):18. https://doi.org/10.3390/toxics8010018
Chicago/Turabian StyleSatarug, Soisungwan, Glenda C. Gobe, Pailin Ujjin, and David A. Vesey. 2020. "A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead" Toxics 8, no. 1: 18. https://doi.org/10.3390/toxics8010018
APA StyleSatarug, S., Gobe, G. C., Ujjin, P., & Vesey, D. A. (2020). A Comparison of the Nephrotoxicity of Low Doses of Cadmium and Lead. Toxics, 8(1), 18. https://doi.org/10.3390/toxics8010018