Genotoxic Effects of Aluminum Chloride and Their Relationship with N-Nitroso-N-Methylurea (NMU)-Induced Breast Cancer in Sprague Dawley Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Animals
2.3. Experimental Design (Treatments)
2.4. Breast Cancer Induction in Rats
2.5. Biotery Handling Conditions
2.6. Diet
2.7. Sampling
2.7.1. Breast Tissue Samples
2.7.2. Blood Samples
2.8. Determination of Aluminum Concentration in Breast Tissues
2.9. Evaluation of Genomic Instability
2.9.1. Histopathological Evaluation
2.9.2. Micronucleus Analysis
2.9.3. Alkaline Electrophoresis Test in Individual Cells (Comet Assay)
2.9.4. Genetic Expression Assay Using RT-qPCR
2.10. Statistical Analysis
3. Results
3.1. Determining Aluminum Concentration in Breast Tissue
3.2. Evaluation of Genomic Instability
3.2.1. Histopathological Evaluation
3.2.2. Micronucleus Analysis
3.2.3. Alkaline Electrophoresis Test in Individual Cells (Comet Assay)
3.2.4. Genetic Expression Assay Using RT-qPCR
4. Discussion
4.1. Determining Aluminum Concentration in Breast Tissue
4.2. Evaluation of Genomic Instability
4.2.1. Histopathological Evaluation
4.2.2. Micronucleus Analysis
4.2.3. Alkaline Electrophoresis Test in Individual Cells (Comet Assay)
4.2.4. Genetic Expression Assay Using RT-qPCR
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- López, F.F.; Cabrera, C.; Lorenzo, M.L.; López, M.C. Aluminium content of drinking waters, fruit juices and soft drinks:contribution to dietary intake. Sci. Total Environ. 2002, 92, 205–213. [Google Scholar] [CrossRef]
- Darbre, P.D. Aluminium, antiperspirants and breast cancer. J. Inorg. Biochem. 2005, 99, 1912–1919. [Google Scholar] [CrossRef]
- Kohara, I.; Tomoda, H.; Watanabe, S. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials. J. Oleo Sci. 2007, 56, 527–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Tomoda, H.; Watanabe, S. Water-soluble metal working fluids additives derived from the esters of acid anhydrides with higher alcohols for aluminum alloy materials. J. Oleo Sci. 2007, 56, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Yokel, R.A.; Hicks, C.L.; Florenc, R.L. Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food Chem. Toxicol. 2008, 46, 2261–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gil, L.A.F.; Da Cunha, C.E.P.; Gustavo, M.S.G.; Salvarani, M.F.M.; Ronnie, A.; Lobato, A.F.C.; Mendonça, M.; Dellagostin, O.A.; Conceição, F.R. Production and evaluation of a recombinant chimeric vaccine against Clostridium botulinum neurotoxin types C and D. PLoS ONE 2013, 8, e69692. [Google Scholar] [CrossRef] [PubMed]
- Güven, E.; Duus, K.; Laursen, I.; Højrup, P.; Houen, G. Aluminum hydroxide adjuvant differentially activates the three complement pathways with major involvement of the alternative pathway. PLoS ONE 2013, 8, e74445. [Google Scholar] [CrossRef] [PubMed]
- Prozialeck, W.C.; Edwards, J.R.; Nebert, D.W. The vascular system as a target of metal toxicity. Toxicol. Sci. 2008, 102, 207–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchounwou, P.B.; Yedjoum, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. EXS 2012, 101, 133–164. [Google Scholar]
- Department of Health and Human Services. Division of Toxicology and Environmental Medicine. USA. 2008. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp22.pdf (accessed on 14 April 2020).
- Pikor, L.; Thu, K.; Vucic, E.; Lam, W. The detection and implication of genome instability in cancer. Cancer Metastasis Rev. 2013, 32, 41–352. [Google Scholar] [CrossRef] [Green Version]
- Abbas, T.; Mignon, A.; Keaton, M.G.; Dutta, A. Genomic instability in cancer. Cold Spring Harb. Perspect. Biol. 2017, 5, a012914. [Google Scholar] [CrossRef] [PubMed]
- Geraki, K.; Farquharson, M.J.; Bradley, D.A. Concentrations of Fe, Cu and Zn in breast tissue: A synchrotron XRF Study. Phys. Med. Biol. 2002, 47, 2327–2339. [Google Scholar] [CrossRef] [PubMed]
- Al-Ebraheem, A.; Farquharson, M.J.; Ryan, E. The evaluations of biologically important trace metals in liver, kidney and breast tissue. Appl. Radiat. Isot. 2009, 7, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.P.; Soave, D.F.; Riberiro-Silva, A.; Poletti, M.E. Trace elements as tumor biomarkers and prognostic factors in breast cáncer: A study throuh energy dispersive x-ray fluorescence. BMC Res. Notes 2012, 5, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Cheng, M.; Zhang, B.; Nie, F.; Jiang, H. Dietary supplementation of blueberry juice enhances hepatic expression of metallothionein and attenuates liver fibrosis in rats. PLoS ONE 2013, 8, e58659. [Google Scholar] [CrossRef] [Green Version]
- Greger, J.L.; Bula, E.N.; Gum, E.T. Mineral metabolism of rats fed moderate levels of various aluminum compounds for short periods of time. J. Nutr. 1985, 115, 1708–1716. [Google Scholar] [CrossRef]
- Hubaux, R.; Becker-Santos, D.D.; Enfield, K.S.S.; La, R.D.E.; Lam, W.L.; Martinez, V.D. Molecular features in arsenic-induced lung tumors. Mol. Cancer 2013, 12, 2–11. [Google Scholar] [CrossRef] [Green Version]
- García-Rodríguez, N.; Díaz de la Loza, M.C.; Anderson, B.; Monje-Casas, F.; Rothstein, R.; Wellinger, R.E. Impaired manganese metabolism causes mitotic misregulation. J. Biol. Chem. 2012, 287, 18717–18729. [Google Scholar] [CrossRef] [Green Version]
- Diwan, B.A.; Kasprzak, K.S.; Anderson, L.M. Promotion of dimethylbenz[a]anthracene-initiated mammary carcinogenesis by iron in female Sprague–Dawley rats. Carcinogenesis 1997, 18, 1757–1762. [Google Scholar] [CrossRef] [Green Version]
- Bobrowska, B.; Skrajnowska, D.; Tokarz, A. Effect of Cu supplementation on genomic instability in chemically-induced mammary carcinogenesis in the rat. J. Biomed. Sci. 2011, 18, 95. [Google Scholar] [CrossRef] [Green Version]
- Rahim, F.; Jalali, A.; Tangestani, R. Breast cancer frequency and exposure to cadmium: A meta-analysis and systematic. Asian Pac. J. Cancer Prev. 2013, 14, 4283–4287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darbre, P.D. Underarm, antiperspirants/deodorants and breast cancer. Breast Cancer Res. 2009, 11 (Suppl. 3), S5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, V.; Boukhari, R.; Nacher, M.; Goullé, J.P.; Roudier, E.; Elguindi, W.; Laquerrière, A.; Carles, G. Plasma and urinary aluminum concentrations in severely anemic geophagous pregnant women in the bas Maroni region of French Guiana: A Case-Control Study. Am. J. Trop. Med. Hyg. 2010, 83, 1100–1105. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; She, Y.; Zhu, Y.; Zhao, H.; Shao, B.; Sun, H.; Hu, C.; Li, Y. Effects of subchronic aluminum exposure on the reproductive function in female rats. Biol. Trace Elem. Res. 2012, 145, 382–387. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Wang, C.; Lv, R.; Song, T. Extremely low-frequency magnetic exposure appears to have no effect on pathogenesis of Alzheimer’s disease in aluminum-overloaded rat. PLoS ONE 2013, 8, e17087. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Han, Y.; Zhao, H.; Li, J.; Hu, C.; Li, Y.; Zhang, Z. Suppressive effect of accumulated aluminum trichloride on the hepatic microsomal cytochrome P450 enzyme system in rats. Food Chem. Toxicol. 2013, 51, 210–214. [Google Scholar] [CrossRef]
- Balasubramanyam, A.; Sailaja, N.; Mahboob, M.; Rahman, M.F.; Hussain, S.M.; Grover, P. In vivo genotoxicity assessment of aluminium oxide nanomaterials in rat peripheral blood cells using the comet assay and micronucleus test. Mutagenesis 2009, 24, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Hirata-Koizumi, M.; Fujii, S.; Ono, A.; Hirose, A.; Imai, T.; Ogawa, K.; Ema, M.; Nishikawa, A. Two-generation reproductive toxicity study of aluminium sulfate in rats. Reprod. Toxicol. 2011, 31, 219–230. [Google Scholar] [CrossRef]
- Gullino, P.; Pettigrew, H.; Grantham, F.N. Nitrosomethylurea is a mammary gland carcinogen in rats. J. Natl. Cancer Inst. 1975, 54, 401–414. [Google Scholar]
- Bobrowska-Korczak, B.; Skrajnowska, D.; Tokarz, A. The effect of dietary zinc—And polyphenols intake on DMBA-induced mammary tumorigenesis in rats. J. Biomed. Sci. 2012, 19, 43. [Google Scholar] [CrossRef] [Green Version]
- Chou, Y.C.; Guzman, R.C.; Swanson, S.M.; Yang, J.; Lui, H.M.; Wu, V.; Nandi, S. Induction of mammary carcinomas by N-methyl-N-nitrosourea in ovariectomized rats treated with epidermal growth factor. Carcinogenesis 1999, 20, 677–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rees, S.L.; Panesar, S.; Steiner, M.; Fleming, A.S. The effects of adrenalectomy and corticosterone replacement on induction of maternal behavior in the virgin female rat. Horm. Behav. 2006, 49, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Norma Oficial Mexicana. NOM-033-ZOO-1995. Sacrificio Humanitario de los Animales Domésticos y Silvestres; SAGARPA: México D.F., Mexico, 1995.
- Norma Oficial Mexicana. NOM-062-ZOO-1999. Especificaciones Técnicas Para la Producción, Cuidado y uso de los Animales de Laboratorio; SAGARPA: México D.F., Mexico, 1999.
- European Medicines Agency (EMEA). Committee for Medicinal Products for Veterinary Use (CVMP). Recommendation on the Evaluation of the Benefit-Risk Balance of Veterinary Medicinal Products; European Medicines Agency: London, UK, 2009. [Google Scholar]
- Food and Drug Administration (FDA). CFR—Code of Federal Regulations Title 21, Chapter I, Subchapter E, Part 511; Revised as of April 1; Food and Drug Administration: Silver Spring, MD, USA, 2014.
- Perkin Elmer. Manual Operation of Equipment Microwave Furnance Model TITAN MPS; Perkin Elmer: Waltham, MD, USA, 2014. [Google Scholar]
- Bohrer, D.; Dessuy, M.B.; Kaizer, R.; Do Nascimento, P.C.; Schetinger, M.R.C.; Morsch, V.M.; Carvalho, L.M.; Garcia, S.C. Tissue digestion for aluminum determination in experimental animal studies. Anal. Biochem. 2008, 377, 120–127. [Google Scholar] [CrossRef]
- Neiva, T.J.C.; Benedetti, A.L.; Tanaka, S.M.C.N.; Santos, J.I.; D’Amico, E.A. Determination of serum aluminum, platelet aggregation and lipid peroxidation in hemodialyzed patients. Braz. J. Med. Biol. Res. 2002, 35, 345–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkin Elmer. Manual Operation of Equipment Atomic Absorption Spectroscopy Model AAnalyst 400; Perkin Elmer: Waltham, MD, USA, 2012. [Google Scholar]
- García-Alegría, A.M.; Gómez-Álvarez, A.; Anduro-Corona, I.; Burgos-Hernández, A.; Ruiz-Bustos, E.; Canett-Romero, R.; Astiazarán-García, H.F. Optimización de las condiciones analíticas ideales para cuantificar aluminio en tejidos de ratas Sprague Dawley, mediante la técnica de absorción atómica. Rev. Int. Contam. Ambient. 2017, 34, 7–24. [Google Scholar] [CrossRef] [Green Version]
- García-Alegría, A.M.; Gómez-Álvarez, A.; Anduro-Corona, I.; Burgos-Hernández, A.; Ruiz-Bustos, E.; Canett-Romero, R.; Soto-Encinas, K.K.; Astiazarán-García, H.F. Validation of analytical method to quantify aluminum in tissues of Sprague Dawley rats by FAAS and GFAAS. Acta Univ. Multidiscip. Sci. J. 2017, 27, 22–35. [Google Scholar]
- García-Alegría, A.M.; Gómez-Álvarez, A.; Anduro-Corona, I.; Burgos-Hernández, A.; Ruiz-Bustos, E.; Canett-Romero, R.; Cáñez-Carrasco, M.G.; Astiazarán-García, H.F. Estimation of the expanded uncertainty of an analytical method to quantify aluminum in tissue of Sprague Dawley rats by FAAS and ETAAS. MAPAN J. Metrol. Soc. India 2017, 32, 131–141. [Google Scholar] [CrossRef]
- Esendagli, G.; Canpinar, H.; Yilmaz, G.; Gunel-Ozcan, A.; Oguz-Guc, M.; Kansu, E.; Guc, D. Primary tumor cells obtained from MNU-induced mammary carcinomas show immune heterogeneity which can be modulated by low-efficiency transfection of CD40L gene. Cancer Biol. Ther. 2009, 8, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Hatton, C.S.R. Hematología: Diagnóstico y Tratamiento; El Manual Modern: México D.F., México, 2014. [Google Scholar]
- García-Medina, S.; Razo-Estrada, C.; Galar-Martínez, M.; Cortéz-Barberena, E.; Gómez-Oliván, L.M.; Álvarez-González, I.; Madrigal-Bujaidar, E. Genotoxic and cytotoxic effects induced by aluminum in the lymphocytes of the common carp (Cyprinus carpio). Comp. Biochem. Physiol. Part C 2011, 153, 113–118. [Google Scholar] [CrossRef]
- Pereira, S.; Cavalie, I.; Camilleri, V.; Gilbin, R.; Adam-Guillermin, C. Comparative genotoxicity of aluminium and cadmium in embryonic zebrafish cells. Mutat. Res. 2013, 750, 19–26. [Google Scholar] [CrossRef]
- Singh, N.P.; Tice, R.R.; Stephensen, R.E.; Schneider, E. A microgel electrophoresis technique for the direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides. Mutat. Res. 1991, 252, 289–296. [Google Scholar] [CrossRef]
- Olive, P.L.; Banáth, J.P.; Durand, R.E. Heterogeneity in radiation-induced DNA damage and repair in tumor and normal cells measured using the comet assay. Radiat. Res. 1990, 122, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, L.; García-Nieto, E.; Rojas, E.; Carrizales, L.; Mejía, J.; Calderón, J.; Razo, I.; Díaz-Barriga, F. DNA damage in blood cells from children exposed to arsenic and lead in a mining area. Environ. Res. 2003, 93, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Desjardins, P.; Conklin, D. NanoDrop microvolume quantitation of nucleic acids. J. Vis. Exp. 2010, 45, e2565. [Google Scholar] [CrossRef] [Green Version]
- Jacobs Protocol. Available online: http://www.openwetware.org/wiki/Jacobs:Protocol_RNA_Agarose_Gel (accessed on 14 April 2020).
- Thompson, H.J.; Singh, M.; McGinley, J. Classification of premalignant and malignant lesions developing in the rat mammary gland after injection of sexually immature rats with 1-methyl-1-nitrosourea. J. Mammary Gland Biol. Neoplasia 2000, 5, 201–210. [Google Scholar] [CrossRef]
- Perše, M.; Cerar, A.; Injac, R.; Štrukelj, B. N-methylnitrosourea induced breast cancer in rat, the histopathology of the resulting tumours and its Drawbacks as a model. Pathol. Oncol. Res. 2009, 15, 115–121. [Google Scholar] [CrossRef]
- Türkez, H.; Yousef, M.I.; Geyikoglu, F. Propolis prevents aluminium-induced genetic and hepatic damages in rat liver. Food Chem. Toxicol. 2010, 48, 2741–2746. [Google Scholar] [CrossRef]
- Geyikoglu, F.; Türkez, H.; Bakir, T.O.; Cicek, M. The genotoxic, hepatotoxic, nephrotoxic, haematotoxic and histopathological effects in rats after aluminium chronic intoxication. Toxicol. Ind. Health 2012, 29, 780–791. [Google Scholar] [CrossRef]
- Oogoshi, K.; Yanagi, S.; Moriyama, T.; Arachi, H. Accumulation of aluminum in cancers of the liver, stomach, duodenum and mammary glands of rats. J. Trace Elem. Electrolytes Health Dis. 1994, 8, 27–31. [Google Scholar]
- Lee, R.; Woo, W.; Wu, B.; Kummer, A.; Duminy, H.; Xu, Z. Zinc accumulation in N-methyl-N-nitrosourea-induced rat mammary tumors is accompanied by an altered expression of ZnT-1 and metallothionein. Exp. Biol. Med. 2003, 228, 689–696. [Google Scholar]
- Lee, S.; Simpson, M.; Nimmo, M.; Xu, Z. Low zinc intake suppressed N-methyl-N-nitrosourea-induced mammary tumorigenesis in Sprague Dawley rats. Carcinogenesis 2004, 25, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M.; Lua, S.; Medlineb, A.; Michael, C.; Archer, M.C. Susceptibility of lean and obese Zucker rats to tumorigenesis induced by N-methyl-N-nitrosourea. Cancer Lett. 2001, 166, 155–160. [Google Scholar] [CrossRef]
- Sharma, R.; Kline, R.P.; Ed, X.; Wu, E.X.; Jose, K.; Katz, J.K. Rapid in vivo taxotere quantitative chemosensitivity response by 4.23 tesla sodium MRI and histo-immunostaining features in N-methyl-N-nitrosourea induced breast tumors in rats. Cancer Cell Int. 2005, 5, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vegh, I.; Enríquez de Salamanca, R. Prolactin, TNF alpha and nitric oxide expression in nitroso-N-methylurea-induced-mammary tumours. J. Carcinog. 2007, 6, 18. [Google Scholar] [CrossRef]
- Goss, P.E.; Strasser-Weipp, K.; Qi, S.; Hu, H. Effects of liarozole fumarate (R85246) in combination with tamoxifen on N-methyl-N-nitrosourea (MNU)-induced mammary carcinoma and uterus in the rat model. BMC Cancer 2007, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, P.; Yan, K.J.; Windler, D.; Tubbs, J.; Grand, R.; Li, B.D.L.; Aldaz, C.M.; McLarty, J.; Kleiner-Hancock, H.E. Citrus auraptene suppresses cyclin D1 and significantly delays N-methyl nitrosourea induced mammary carcinogenesis in female Sprague-Dawley rats. BMC Cancer 2009, 9, 259. [Google Scholar] [CrossRef] [Green Version]
- Faustino-Rocha, A.I.; Silva, A.; Gabriel, J.; Teixeira-Guedes, C.I.; Lopes, C.; Gil da Costa, R.; Gama, A.; Ferreira, R.; Oliveira, P.A.; Ginja, M. Ultrasonographic, thermographic and histologic evaluation of MNU-induced mammary tumors in female Sprague-Dawley rats. Biomed. Pharmacother. 2013, 67, 771–776. [Google Scholar] [CrossRef]
- Rajmani, R.S.; Doley, J.; Singh, P.K.; Kumar, R.; Barathidasan, R.; Kumar, P.; Verma, P.C.; Tiwari, A.K. Induction of mammary gland tumour in rats using N-methyl-N-nitroso urea and their histopathology. Indian J. Vet. Pathol. 2011, 35, 142–146. [Google Scholar]
- Mughal, A.; Vikram, A.; Ramarao, P.; Jena, G.B. Micronucleus and comet assay in the peripheral blood of juvenile rat: Establishment of assay feasibility, time of sampling and the induction of DNA damage. Mutat. Res. 2010, 700, 86–94. [Google Scholar] [CrossRef]
- Balasubramanyam, A.; Sailaja, N.; Mahboob, M.; Rahman, M.F.; Misra, S.; Hussain, S.M.; Grover, P. Evaluation of genotoxic effects of oral exposure to Aluminum oxide nanomaterials in rat bone marrow. Mutat. Res. 2009, 676, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Klien, K.; Godnić-Cvar, J. Genotoxicity of metals nanoparticules: Focus on in vivo studies. Arh. Hig. Rada Toksikol. 2012, 63, 133–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Türkez, H.; Geyikoglu, F.; Colak, S. The protective effect of boric acid on aluminum-induced hepatotoxicity and genotoxicity in rats. Turk. J. Biol. 2011, 35, 293–301. [Google Scholar]
- Türkez, H.; Geyikoglu, F.; Tatar, A. Borax counteracts genotoxicity of aluminum in rat liver. Toxicol. Ind. Health 2012, 29, 775–779. [Google Scholar] [CrossRef]
- AL-Obaidy, O.R.K.; Al-Samarrai, A.S.M.; Al-Samarrai, Y.S.Y. Genotoxicity of aluminum chloride (AlCl3) on the albino rat Rattus norvegicus. Iraqi J. Cancer Med. Genet. 2016, 9, 18–24. [Google Scholar]
- Banasik, A.; Lankoff, A.; Piskulak, A.; Adamowska, K.; Lisowsk, H.; Wojcik, A. Aluminium-induced micronuclei and apoptosisin human peripheral blood lymphocytes treated during different phases of the cell cycle. Environ. Toxicol. 2005, 20, 402–406. [Google Scholar] [CrossRef]
- Ayala, M.C.; Hernández, Y.G.; Piñeiro, J.C.G.; González, E.P. Uso del ensayo cometa para evaluar el efecto de la temperatura sobre la reparación del daño genético inducido por peróxido de hidrógeno y la radiación ultravioleta A en células sanguíneas humanas. Acta Farm. Bonaerense. 2004, 23, 277–284. [Google Scholar]
- Stanić, D.; Plećaš-Solarović, B.; Petrović, J.; Bogavac-Stanojević, N.; Sopić, M.; Kotur-Stevuljević, J.; Ignjatović, S.; Pešić, V. Hydrogen peroxide-induced oxidative damage in peripheral blood lymphocytes from rats chronically treated with corticosterone: The protective effect of oxytocin treatment. Chem. Biol. Interact. 2016, 256, 134–141. [Google Scholar] [CrossRef]
- Kumar, V.; Bal, A.; Gill, K.D. Aluminium-induced oxidative DNA damage recognition and cell-cycle disruption in different regions of rat brain. Toxicology 2009, 264, 137–144. [Google Scholar] [CrossRef]
- Lankoff, A.; Banasik, A.; Duma, A.; Ochniak, E.; Lisowska, H.; Kuszewski, T.; Góźdź, S.; Wojcik, A. A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes. Toxicol. Lett. 2006, 161, 27–36. [Google Scholar] [CrossRef]
- Hartmann, A.; Schumacher, M.; Plappert-Helbig, U.; Lowe, P.; Suter, W.; Mueller, L. Use of the alkaline in vivo comet assay for mechanistic genotoxicity investigations. Mutagenesis 2004, 19, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Lu, L.Y.; Yu, X. The role of BRCA1 in DNA damage response. Protein Cell 2010, 1, 117–123. [Google Scholar] [CrossRef] [Green Version]
- Li, M.L.; Greenberg, R.A. Links between genome integrity and BRCA1 tumor suppression. Trends Biochem. Sci. 2012, 37, 418–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, K.I.; Harkin, D.P. BRCA1, a ‘complex’ protein involved in the maintenance of genomic stability. FEBS J. 2015, 282, 630–646. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, S.E.; White, J.K.; Howson, J.M.M.; Pask, R.; Smith, A.N.; Brayne, C.; Evanse, J.G.; Xuereb, J.; Cairns, N.J.; Rubinszteina, D.C.; et al. Candidate gene association study of solute carrier family 11a members 1 (SLC11A1) and 2 (SLC11A2) genes in Alzheimer’s disease. Neurosci. Lett. 2005, 374, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Mims, M.P.; Prchal, J.T. Divalent metal transporter 1. Hematology 2005, 10, 339–345. [Google Scholar] [CrossRef]
- Iolascon, A.; d’Apolito, M.; Servedio, V.; Cimmino, F.; Piga, A.; Camaschella, C. Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood 2006, 107, 349–354. [Google Scholar] [CrossRef] [Green Version]
- Salazar, J.; Mena, N.; Hunot, S.; Prigent, A.; Alvarez-Fischer, D.; Arredondo, M.; Duyckaerts, C.; Sazdovitch, V.; Zhao, L.; Garrick, L.M.; et al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2008, 105, 18578–18583. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Yamaji, N.; Kasai, T.; Ma, J.F. Plasma membrane-localized transporter for aluminum in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 18381–18385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanduyn, N.; Settivari, R.; LeVora, J.; Zhou, S.; Unrine, J.; Nass, R. The metal transporter SMF-3/DMT-1 mediates aluminum-induced dopamine neuron degeneration. J. Neurochem. 2013, 124, 147–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, G.; Zhou, G.; Jin, T.; Zhou, T.; Hammarström, S.; Bergh, A.; Nordberg, G. Apoptosis and p53 gene expression in male reproductive tissues of cadmium exposed rats. Biometals 1998, 12, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Peres, R.M.; Cadore, S.; Febraio, S.; Heinrich, J.K.; Serra, K.P.; Derchain, S.F.M.; Vassallo, J.; Sarian, L.O. Tissue aluminum concentration does not affect the genomic stability of ERBB2, C-MYC, and CCND1 genes in breast cancer. Biol. Trace Elem. Res. 2013, 154, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Lukiw, W.J.; Percy, M.E.; Kruck, T.P. Nanomolar aluminum induces pro-inflammatory and pro-apoptotic gene expression in human brain cells in primary culture. J. Inorg. Biochem. 2005, 99, 1895–1898. [Google Scholar] [CrossRef] [PubMed]
- Pogue, A.I.; Lukiw, W.J. Aluminum, the genetic apparatus of the human CNS and Alzheimer’s disease (AD). Morphologie 2016, 100, 56–64. [Google Scholar] [CrossRef]
TREATMENTS * | |||||
---|---|---|---|---|---|
Variables | −Al/−NMU | +2000Al/+NMU | +2000Al/−NMU | −Al/+NMU | p Value ** |
n | 8 | 8 | 8 | 7 | |
Mammary gland tissue | 11.395 a | 12.288 a | 38.17 b | 17.929 a | 0.0001 |
Treatments | 5 Days | 10 Days | 15 Days | ||||||
---|---|---|---|---|---|---|---|---|---|
1 MN | 2 MN | >2 MN | 1 MN | 2 MN | >2 MN | 1 MN | 2 MN | >2 MN | |
(A) −Al/−NMU | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(B) +2000Al/+NMU | 0 | 0 | 0 | 4 | 0 | 0 | 8 | 0 | 0 |
(C) +2000Al/−NMU | 0 | 0 | 0 | 9.3 | 0 | 0 | 28.6 | 2.6 | 0 |
(D) −Al/+NMU | 1 | 0 | 0 | 8 | 0 | 0 | 18.6 | 0.6 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Alegría, A.M.; Gómez-Álvarez, A.; Anduro-Corona, I.; Burgos-Hernández, A.; Ruíz-Bustos, E.; Canett-Romero, R.; González-Ríos, H.; López-Cervantes, J.G.; Rodríguez-Martínez, K.L.; Astiazaran-Garcia, H. Genotoxic Effects of Aluminum Chloride and Their Relationship with N-Nitroso-N-Methylurea (NMU)-Induced Breast Cancer in Sprague Dawley Rats. Toxics 2020, 8, 31. https://doi.org/10.3390/toxics8020031
García-Alegría AM, Gómez-Álvarez A, Anduro-Corona I, Burgos-Hernández A, Ruíz-Bustos E, Canett-Romero R, González-Ríos H, López-Cervantes JG, Rodríguez-Martínez KL, Astiazaran-Garcia H. Genotoxic Effects of Aluminum Chloride and Their Relationship with N-Nitroso-N-Methylurea (NMU)-Induced Breast Cancer in Sprague Dawley Rats. Toxics. 2020; 8(2):31. https://doi.org/10.3390/toxics8020031
Chicago/Turabian StyleGarcía-Alegría, Alejandro Monserrat, Agustín Gómez-Álvarez, Iván Anduro-Corona, Armando Burgos-Hernández, Eduardo Ruíz-Bustos, Rafael Canett-Romero, Humberto González-Ríos, José Guillermo López-Cervantes, Karen Lillian Rodríguez-Martínez, and Humberto Astiazaran-Garcia. 2020. "Genotoxic Effects of Aluminum Chloride and Their Relationship with N-Nitroso-N-Methylurea (NMU)-Induced Breast Cancer in Sprague Dawley Rats" Toxics 8, no. 2: 31. https://doi.org/10.3390/toxics8020031
APA StyleGarcía-Alegría, A. M., Gómez-Álvarez, A., Anduro-Corona, I., Burgos-Hernández, A., Ruíz-Bustos, E., Canett-Romero, R., González-Ríos, H., López-Cervantes, J. G., Rodríguez-Martínez, K. L., & Astiazaran-Garcia, H. (2020). Genotoxic Effects of Aluminum Chloride and Their Relationship with N-Nitroso-N-Methylurea (NMU)-Induced Breast Cancer in Sprague Dawley Rats. Toxics, 8(2), 31. https://doi.org/10.3390/toxics8020031