Sequential Extraction of Potentially Toxic Metals: Alteration of Method for Cu-Ni Polluted Peat Soil of Industrial Barren
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling and Preparation
2.2. Methods of Analysis
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Industrially Polluted Peat Soil
3.2. Effect of pH of AAB on the Content of the Actually Mobile Form of Metals
3.3. Effect of Extraction Conditions on the Fractions Extracted by Water, AAB, and 0.1 N HNO3
3.4. Potentially Mobile Form of Chemical Elements
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tokalioğlu, Ş.; Kartal, Ş.; Birol, G. Application of a three-stage sequential extraction procedure for the determination of extractable metal contents in highway soils. Turk. J. Chem. 2003, 27, 333–346. [Google Scholar]
- Tokunaga, S.; Park, S.W.; Ulmanu, M. Extraction behavior of metallic contaminants and soil constituents from contaminated soils. Environ. Technol. 2005, 26, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.H.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Silveira, M.L.; Alleoni, L.R.F.; O’Connor, G.A.; Chang, A.C. Heavy metal sequential extraction methods—A modification for tropical soils. Chemosphere 2006, 64, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Plyaskina, O.V.; Ladonin, D.V. Heavy metal pollution of urban soils. Eur. Soil Sci. 2009, 42, 816–823. [Google Scholar] [CrossRef]
- Quevauviller, P.; Rauret, G.; Griepink, B. Single and sequential extraction in sediments and soils. Int. J. Environ. Anal. Chem. 1993, 51, 231–235. [Google Scholar] [CrossRef]
- Rao, C.R.M.; Sahuquillo, A.; Lopez Sancher, J.F. A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Pollut. 2008, 189, 291–333. [Google Scholar] [CrossRef]
- Del Castilho, P.; Rix, I. Ammonium acetate extraction for soil heavy metal speciation; model aided soil test interpretation. Int. J. Environ. Anal. Chem. 1993, 51, 59–64. [Google Scholar] [CrossRef]
- Forms of compounds of heavy metals in industrially contaminated soils. Available online: https://dlib.rsl.ru/viewer/01006646507#?page=1 (accessed on 29 May 2020).
- Unsal, Y.E.; Tuzen, M.; Soylak, M. Sequential extraction procedure for the determination of some trace elements in fertilizer samples. J. AOAC Int. 2014, 97, 1034–1038. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Minkina, T.M.; Motuzova, G.V.; Nazarenko, O.G.; Kryshchenko, V.S.; Mandzhieva, S.S. Combined approach for fractioning metal compounds in soils. Eur. Soil Sci. 2008, 41, 1171–1179. [Google Scholar] [CrossRef]
- Minkina, T.M.; Motuzova, G.V.; Mandzhieva, S.S.; Nazarenko, O.G.; Burachevskaya, M.V.; Antonenko, E.M. Fractional and group composition of the Mn, Cr, Ni, and Cd compounds in the soils of technogenic landscapes in the impact zone of the Novocherkassk Power Station. Eur. Soil Sci. 2013, 46, 375–385. [Google Scholar] [CrossRef]
- Minkina, T.M.; Mandzhieva, S.S.; Burachevskaya, M.V.; Bauer, T.V.; Sushkova, S.N. Method of determining loosely bound compounds of heavy metals in the soil. MethodsX 2018, 5, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Sungur, A.; Soylak, M.; Ozcan, H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: Relationship between soil properties and heavy metals availability. Chem. Speciat. Bioavailab. 2014, 26, 219–230. [Google Scholar] [CrossRef] [Green Version]
- Sabienë, N.; Brazauskienë, D.M.; Rimmer, D. Determination of heavy metal mobile forms by different extraction methods. Ekologija 2004, 1, 36–41. [Google Scholar]
- Ure, A.M. Single extraction schemes for soil analysis and related applications. Sci. Total Environ. 1996, 178, 3–10. [Google Scholar] [CrossRef]
- Takeda, A.; Tsukada, H.; Takaku, Y.; Hisamatsu, S.; Inaba, J.; Nanzyo, M. Extractability of major and trace elements from agricultural soils using chemical extraction methods: Application for phytoavailability assessment. Soil Sci. Plant Nutr. 2006, 52, 406–417. [Google Scholar] [CrossRef]
- Normandin, V.; Kotuby-Amacher, J.; Miller, R.O. Modification of the ammonium acetate extractant for the determination of exchangeable cations in calcareous soils. Commun. Soil Sci. Plant Anal. 1998, 29, 1785–1791. [Google Scholar] [CrossRef]
- Scokart, P.O.; Meeus-Verdinne, K.; De Borger, R. Mobility of heavy metals in polluted soils near zinc smelters. Water Air Soil Pollut. 1983, 20, 451–463. [Google Scholar] [CrossRef]
- Misra, S.G.; Pande, P. Evaluation of a suitable extractant for available nickel in soils. Plant Soil 1974, 41, 697–700. [Google Scholar] [CrossRef]
- Fedotova, E.V.; Mosendz, I.A.; Kremenetskaya, I.P.; Drogobuzhskaya, S.V. Forms of deposition of copper and nickel by sungulite and thermovermiculite. Proc. Kola Sci. Cent. RAS 2017, 8, 212–218. (In Russian) [Google Scholar]
- Kozlov, M.V.; Zvereva, E.L. Industrial barrens: Extreme habitats created by non-ferrous metallurgy. Rev. Environ. Sci. Bio/Technol. 2007, 6, 231–259. [Google Scholar] [CrossRef]
- Kashulina, G.M. Extreme pollution of soils by emissions of the copper–nickel industrial complex in the Kola Peninsula. Eurasian Soil Sci. 2017, 50, 837–849. [Google Scholar] [CrossRef]
- Slukovskaya, M.V.; Kremenetskaya, I.P.; Ivanova, L.A.; Vasilieva, T.N. Remediation in conditions of an operating copper-nickel plant: Results of perennial experiment. Non-Ferr. Met. 2017, 2, 20–26. [Google Scholar] [CrossRef]
- Slukovskaya, M.V.; Vasenev, V.I.; Ivashchenko, K.V.; Morev, D.V.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Kremenetskaya, I.P. Technosols on mining wastes in the Subarctic: Efficiency of remediation under Cu-Ni atmospheric pollution. Int. Soil Water Conserv. Res. 2019, 7, 297–307. [Google Scholar] [CrossRef]
- Slukovskaya, M.V.; Kremenetskaya, I.P.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Mosendz, I.A.; Novikov, A.I. Serpentine mining wastes—Materials for soil rehabilitation in Cu-Ni polluted wastelands. Soil Sci. 2018, 183, 141–149. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R. Soil Sampling and Methods of Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 201–202. [Google Scholar]
- Kichigin, O.V. Potentiometric study of the stability of complexes of polymer chelate sorbents with ions of multivalent metals. Bull. Voronezh State Univ. Ser. 2005, 1, 46–48. (In Russian) [Google Scholar]
- Jones, J.B. Universal soil extractants: Their composition and use. Commun. Soil Sci. Plant Anal. 1990, 21, 1091–1101. [Google Scholar] [CrossRef]
- Shuman, L.M.; Duncan, R.R. Soil exchangeable cations and aluminum measured by ammonium chloride, potassium chloride, and ammonium acetate. Commun. Soil Sci. Plant Anal. 1990, 21, 1217–1228. [Google Scholar] [CrossRef]
- Gumbara, R.H.; Sumawinata, B. A comparison of cation exchange capacity of organic soils determined by ammonium acetate solutions buffered at some pHs ranging between around field pH and 7.0. IOP Conf. Ser. Earth Environ. Sci. 2019, 393, 012015. [Google Scholar] [CrossRef]
- Ciesielski, H.; Sterckeman, T.; Santerne, M.; Willery, J.P. A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils. Agron. EDP Sci. 1997, 17, 9–16. [Google Scholar] [CrossRef] [Green Version]
Metal Fraction | Extractant | Mechanism of Extraction | Migration Forms | Mobile Forms |
---|---|---|---|---|
Water-soluble | H2O | Dissolution | Biologically available | Actual mobile |
Exchangeable | NH4CH3COO | Ion exchange, complexation | ||
Bound by Fe/Mn (hydr)oxides | NH2OH∙HCl | Destruction of carrier phases (reducible conditions) | Strongly associated with carrier phases | Potentially mobile |
Bound by OM | H2O2 | Destruction of carrier phases (oxidizable conditions) | ||
Residual | HF + HClO4 | Full autopsy | Not migrate | Strongly bound |
Element | Ca | Mg | Al | Si | Fe | Mn | Pb | Zn | Cr | Cd | Co | Ni | Cu | Sb | Se |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | 3376 | 1623 | 11 | 64 | 26 | 265 | 19 | 93 | 132 | 0.38 | 83 | 2344 | 5955 | 1.15 | 7.3 |
Mobile | 718 | 103 | 85 | 30 | 2553 | 15 | 6 | 4 | 7 | 0.10 | 3 | 440 | 3200 | 0.20 | 2 |
Mobile/total, % | 21 | 6 | 1 | 0.05 | 10 | 5 | 32 | 5 | 6 | 26 | 4 | 19 | 54 | 18 | 27 |
Element | Number of Treatments | Content, ppm | Distribution, % | |||||
---|---|---|---|---|---|---|---|---|
Exch. | Fe/Mn-ox. | OM | Sum | Exch. | Fe/Mn-ox. | OM | ||
Cu | 1 | 2081 | 2309 | 1917 | 6308 | 33 | 37 | 30 |
3 | 3695 | 1084 | 1166 | 5945 | 62 | 18 | 20 | |
Ni | 1 | 472 | 340 | 303 | 1114 | 42 | 31 | 27 |
3 | 795 | 144 | 172 | 1111 | 72 | 13 | 15 | |
Co | 1 | 17 | 15 | 7 | 40 | 43 | 39 | 18 |
3 | 40 | 9 | 4 | 53 | 75 | 16 | 8 | |
Fe | 1 | 1535 | 10 | 6398 | 18 | 8 | 57 | 35 |
3 | 2697 | 8242 | 5533 | 16 | 16 | 50 | 34 | |
Mn | 1 | 92 | 56 | 26 | 175 | 53 | 32 | 15 |
3 | 135 | 31 | 20 | 186 | 73 | 17 | 11 | |
Cr | 1 | 11 | 34 | 26 | 71 | 15 | 49 | 36 |
3 | 39 | 31 | 25 | 95 | 41 | 33 | 27 | |
Pb | 1 | 3 | 6 | 8 | 17 | 16 | 38 | 46 |
3 | 5 | 5 | 7 | 18 | 29 | 30 | 41 | |
Cd | 1 | 0.70 | 0.26 | 0.07 | 1.03 | 68 | 25 | 7 |
3 | 0.94 | 0.09 | 0.04 | 1.07 | 88 | 8 | 4 | |
Al | 1 | 517 | 1088 | 2852 | 4457 | 12 | 24 | 64 |
3 | 971 | 585 | 2347 | 3904 | 25 | 15 | 60 | |
Ca | 1 | 1310 | 868 | 720 | 2898 | 45 | 30 | 25 |
3 | 2613 | 539 | 643 | 3795 | 69 | 14 | 17 | |
Mg | 1 | 327 | 175 | 409 | 911 | 36 | 19 | 45 |
3 | 471 | 113 | 446 | 1030 | 46 | 11 | 43 | |
Si | 1 | 21 | 916 | 1092 | 2028 | 1 | 45 | 54 |
3 | 213 | 664 | 1231 | 2108 | 10 | 31 | 58 | |
K | 1 | 39 | 41 | 49 | 129 | 30 | 32 | 38 |
3 | 48 | 27 | 70 | 145 | 33 | 19 | 48 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slukovskaya, M.V.; Kremenetskaya, I.P.; Drogobuzhskaya, S.V.; Novikov, A.I. Sequential Extraction of Potentially Toxic Metals: Alteration of Method for Cu-Ni Polluted Peat Soil of Industrial Barren. Toxics 2020, 8, 39. https://doi.org/10.3390/toxics8020039
Slukovskaya MV, Kremenetskaya IP, Drogobuzhskaya SV, Novikov AI. Sequential Extraction of Potentially Toxic Metals: Alteration of Method for Cu-Ni Polluted Peat Soil of Industrial Barren. Toxics. 2020; 8(2):39. https://doi.org/10.3390/toxics8020039
Chicago/Turabian StyleSlukovskaya, Marina V., Irina P. Kremenetskaya, Svetlana V. Drogobuzhskaya, and Andrey I. Novikov. 2020. "Sequential Extraction of Potentially Toxic Metals: Alteration of Method for Cu-Ni Polluted Peat Soil of Industrial Barren" Toxics 8, no. 2: 39. https://doi.org/10.3390/toxics8020039
APA StyleSlukovskaya, M. V., Kremenetskaya, I. P., Drogobuzhskaya, S. V., & Novikov, A. I. (2020). Sequential Extraction of Potentially Toxic Metals: Alteration of Method for Cu-Ni Polluted Peat Soil of Industrial Barren. Toxics, 8(2), 39. https://doi.org/10.3390/toxics8020039