Environmental Health Surveillance System for a Population Using Advanced Exposure Assessment
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Sensor-Based Air Monitoring and Internet of Things Technology
3.2. Indoor Air Exposure
3.3. Exposure Scenario Using Time–Activity Patterns
3.4. Big Data Mining and Exposure Distribution
3.5. Environmental Health Surveillance System
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Urban Ambient Air Pollution Database. Available online: http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/ (accessed on 31 July 2020).
- Cincinelli, A.; Martellini, T. Indoor air quality and health. Int. J. Environ. Res. Public Health 2017, 14, 1286. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A.; Dockery, D.W. Health effects of fine particulate air pollution: lines and connect. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef]
- Donzelli, G.; Llopis-Gonzalez, A.; Llopis-Morales, A.; Cioni, L.; Morales-Suárez-varela, M. Particulate matter exposure and attention-deficit/hyperactivity disorder in children: A systematic review of epidemiological studies. Int. J. Environ. Res. Public Health 2020, 17, 67. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Li, J.; Sun, S.; Tang, R.; Qiu, H.; Huang, Q.; Mason, T.G.; Tian, L. Major air pollutants and risk of COPD exacerbations: A systematic review and meta-analysis. Int. J. COPD 2016, 11, 3079–3091. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, C.B.B.; Foltescu, V.; de Leeuw, F. Air quality status and trends in Europe. Atmos. Environ. 2014, 98, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc. 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valari, M.; Markakis, K.; Powaga, E.; Collignan, B.; Perrussel, O. EXPLUME v1.0: A model for personal exposure to ambient O3 and PM2.5. Geosci. Model Dev. 2020, 13, 1075–1094. [Google Scholar] [CrossRef] [Green Version]
- Breen, M.; Xu, Y.; Schneider, A.; Williams, R.; Devlin, R. Modeling individual exposures to ambient PM2.5 in the diabetes and the environment panel study (DEPS). Sci. Total Environ. 2018, 626, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Henneman, L.R.F.; Liu, C.; Mulholland, J.A.; Russell, A.G. Evaluating the effectiveness of air quality regulations: A review of accountability studies and frameworks. J. Air Waste Manag. Assoc. 2017, 67, 144–172. [Google Scholar] [CrossRef]
- Baxter, L.K.; Dionisio, K.L.; Burke, J.; Ebelt Sarnat, S.; Sarnat, J.A.; Hodas, N.; Rich, D.Q.; Turpin, B.J.; Jones, R.R.; Mannshardt, E.; et al. Exposure prediction approaches used in air pollution epidemiology studies: Key findings and future recommendations. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 654–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Tagle, M.; Rojas, F.; Reyes, F.; Vásquez, Y.; Hallgren, F.; Lindén, J.; Kolev, D.; Watne, Å.K.; Oyola, P. Field performance of a low-cost sensor in the monitoring of particulate matter in Santiago, Chile. Environ. Monit. Assess. 2020, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, E.E.P.N.; Nway, N.C.; Aung, W.Y.; Thant, Z.; Wai, T.H.; Hlaing, K.K.; Maung, C.; Yagishita, M.; Ishigaki, Y.; Win-Shwe, T.T.; et al. Preliminary monitoring of concentration of particulate matter (PM2.5) in seven townships of Yangon City, Myanmar. Environ. Health Prev. Med. 2018, 23, 1–8. [Google Scholar] [CrossRef]
- Glasgow, M.L.; Rudra, C.B.; Yoo, E.H.; Demirbas, M.; Merriman, J.; Nayak, P.; Crabtree-Ide, C.; Szpiro, A.A.; Rudra, A.; Wactawski-Wende, J.; et al. Using smartphones to collect time-activity data for long-term personal-level air pollution exposure assessment. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 356–364. [Google Scholar] [CrossRef]
- McGeehin, M.A.; Qualters, J.R.; Sue Niskar, A. National environmental public health tracking program: Bridging the information gap. Environ. Health Perspect. 2004, 112, 1409–1413. [Google Scholar] [CrossRef]
- Joas, A.; Schöpel, M.; David, M.; Casas, M.; Koppen, G.; Esteban, M.; Knudsen, L.E.; Vrijheid, M.; Schoeters, G.; Calvo, A.C.; et al. Environmental health surveillance in a future European health information system. Arch. Public Health 2018, 76, 27. [Google Scholar] [CrossRef] [Green Version]
- Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the performance of low-cost sensors for air quality monitoring. Atmosphere 2019, 10, 506. [Google Scholar] [CrossRef] [Green Version]
- Lioy, P.J. Exposure science: A view of the past and milestones for the future. Environ. Health Perspect. 2010, 118, 1081–1090. [Google Scholar] [CrossRef] [Green Version]
- Washington State Department of Ecology. Air Monitoring Site Selection and Installation Procedure. 2020. Available online: https://fortress.wa.gov/ecy/publications/summarypages/1602021.html (accessed on 31 July 2020).
- Nyhan, M.M.; Kloog, I.; Britter, R.; Ratti, C.; Koutrakis, P. Quantifying population exposure to air pollution using individual mobility patterns inferred from mobile phone data. J. Expo. Sci. Environ. Epidemiol. 2018, 29, 238–247. [Google Scholar] [CrossRef]
- Su, J.G.; Jerrett, M.; Meng, Y.Y.; Pickett, M.; Ritz, B. Integrating smart-phone based momentary location tracking with fixed site air quality monitoring for personal exposure assessment. Sci. Total Environ. 2015, 506–507, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Unnisabegum, A.; Hussain, M.A.; Shaik, M. Data Mining Techniques for Big Data, Vol. 6, Special Issue. Int. J. Adv. Res. Sci. Eng. Technol. 2019, 6, 4–8. [Google Scholar] [CrossRef]
- Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.; Preuss, P.W. The changing paradigm of air pollution monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [Google Scholar] [CrossRef] [PubMed]
- Caplin, A.; Ghandehari, M.; Lim, C.; Glimcher, P.; Thurston, G. Advancing environmental exposure assessment science to benefit society. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaivonen, S.; Ngai, E.C.H. Real-time air pollution monitoring with sensors on city bus. Digit. Commun. Netw. 2019, 6, 23–30. [Google Scholar] [CrossRef]
- Taştan, M.; Gökozan, H. Real-time monitoring of indoor air quality with internet of things-based e-nose. Appl. Sci. 2019, 9, 3435. [Google Scholar] [CrossRef]
- Britter, R.E.; Hanna, S.R. Flow and dispersion in urban areas. Annu. Rev. Fluid Mech. 2003, 35, 469–496. [Google Scholar] [CrossRef]
- Dong, X.; Zhao, X.; Peng, F.; Wang, D. Population based Air Pollution Exposure and its influence factors by Integrating Air Dispersion Modeling with GIS Spatial Analysis. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Qi, Q.; Jiang, L.; Zhou, F.; Wang, J. Population Exposure to PM2.5 in the Urban Area of Beijing. PLoS ONE 2013, 8, e0063486. [Google Scholar] [CrossRef] [Green Version]
- Chojer, H.; Branco, P.T.B.S.; Martins, F.G.; Alvim-Ferraz, M.C.M.; Sousa, S.I.V. Development of low-cost indoor air quality monitoring devices: Recent advancements. Sci. Total Environ. 2020, 727, 138385. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Air Sensor Guidebook. 2014. Available online: https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=519616 (accessed on 30 July 2020).
- Lin, Y.C.; Chi, W.J.; Lin, Y.Q. The improvement of spatial-temporal resolution of PM2.5 estimation based on micro-air quality sensors by using data fusion technique. Environ. Int. 2020, 134, 105305. [Google Scholar] [CrossRef]
- Madakam, S.; Ramaswamy, R.; Tripathi, S. Internet of Things (IoT): A Literature Review. J. Comput. Commun. 2015, 3, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Khatoon, N.; Roy, S.; Pranav, P. A Survey on Applications of Internet of Things in Healthcare. Intell. Syst. Ref. Libr. 2020, 180, 89–106. [Google Scholar] [CrossRef]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef]
- Arano, K.A.G.; Sun, S.; Ordieres-Mere, J.; Gong, B. The use of the internet of things for estimating personal pollution exposure. Int. J. Environ. Res. Public Health 2019, 16, 3130. [Google Scholar] [CrossRef] [Green Version]
- Dias, D.; Tchepel, O. Spatial and temporal dynamics in air pollution exposure assessment. Int. J. Environ. Res. Public Health 2018, 15, 558. [Google Scholar] [CrossRef] [Green Version]
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Anal. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Lee, K.; Yoon, C.; Yu, S.; Park, K.; Choi, W. Determinants of residential indoor and transportation activity times in Korea. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 310–316. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.; Yoo, S.K.; Seo, J.; Kim, T.; Kim, P.; Kim, P.J.; Park, J.; Heo, J.; Yang, W. Development of General Exposure Factors for Risk Assessment in Korean Children. Int. J. Environ. Res. Public Health 2020, 17, 1988. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, L.; Taylor, J.; Davies, M.; Shrubsole, C.; Symonds, P.; Dimitroulopoulou, S. Exposure to indoor air pollution across socio-economic groups in high-income countries: A scoping review of the literature and a modelling methodology. Environ. Int. 2020, 143, 105748. [Google Scholar] [CrossRef]
- Piasecki, M.; Kostyrko, K.B. Combined model for IAQ assessment: Part 1- morphology of the model and selection of substantial air quality impact sub-models. Appl. Sci. 2019, 9, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Bo, M.; Salizzoni, P.; Clerico, M.; Buccolieri, R. Assessment of indoor-outdoor particulate matter air pollution: A review. Atmosphere 2017, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- Ji, W.; Zhao, B. Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: A model-based estimation. Build. Environ. 2015, 90, 196–205. [Google Scholar] [CrossRef]
- Zuo, J.X.; Ji, W.; Ben, Y.J.; Hassan, M.A.; Fan, W.H.; Bates, L.; Dong, Z.M. Using big data from air quality monitors to evaluate indoor PM2.5 exposure in buildings: Case study in Beijing. Environ. Pollut. 2018, 240, 839–847. [Google Scholar] [CrossRef]
- Mannucci, P.M.; Franchini, M. Health effects of ambient air pollution in developing countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- Diapouli, E.; Chaloulakou, A.; Koutrakis, P. Estimating the concentration of indoor particles of outdoor origin: A review. J. Air Waste Manag. Assoc. 2013, 63, 1113–1129. [Google Scholar] [CrossRef]
- Wei, W.; Ramalho, O.; Malingre, L.; Sivanantham, S.; Little, J.C.; Mandin, C. Machine learning and statistical models for predicting indoor air quality. Indoor Air 2019, 29, 704–726. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, B. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmos. Environ. 2011, 45, 275–288. [Google Scholar] [CrossRef]
- Yu, T.C.; Lin, C.C.; Chen, C.C.; Lee, W.L.; Lee, R.G.; Tseng, C.H.; Liu, S.P. Wireless sensor networks for indoor air quality monitoring. Med. Eng. Phys. 2013, 35, 231–235. [Google Scholar] [CrossRef]
- Fuentes, M.; Song, H.R.; Ghosh, S.K.; Holland, D.M.; Davis, J.M. Spatial association between speciated fine particles and mortality. Biometrics 2006, 62, 855–863. [Google Scholar] [CrossRef]
- Sarnat, S.E.; Coull, B.A.; Schwartz, J.; Gold, D.R.; Suh, H.H. Factors affecting the association between ambient concentrations and personal exposures to particles and gases. Environ. Health Perspect. 2006, 114, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.R.; Langstaff, J.E.; Graham, S.; Fujita, E.M.; Campbell, D.E. A multipollutant evaluation of APEX using microenvironmental ozone, carbon monoxide, and particulate matter (PM2.5) concentrations measured in Los Angeles by the exposure classification project. Cogent Environ. Sci. 2018, 4. [Google Scholar] [CrossRef]
- Kruize, H.; Hänninen, O.; Breugelmans, O.; Lebret, E.; Jantunen, M. Description and demonstration of the EXPOLIS simulation model: Two examples of modeling population exposure to particulate matter. J. Expo. Anal. Environ. Epidemiol. 2003, 13, 87–99. [Google Scholar] [CrossRef]
- Picornell, M.; Ruiz, T.; Borge, R.; García-Albertos, P.; de la Paz, D.; Lumbreras, J. Population dynamics based on mobile phone data to improve air pollution exposure assessments. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 278–291. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E. Quantifying human exposure to air pollution-Moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci. Total Environ. 2013, 443, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Reis, S.; Seto, E.; Northcross, A.; Quinn, N.W.T.; Convertino, M.; Jones, R.L.; Maier, H.R.; Schlink, U.; Steinle, S.; Vieno, M.; et al. Integrating modelling and smart sensors for environmental and human health. Environ. Model. Softw. 2015, 74, 238–246. [Google Scholar] [CrossRef] [Green Version]
- De Nazelle, A.; Seto, E.; Donaire-Gonzalez, D.; Mendez, M.; Matamala, J.; Nieuwenhuijsen, M.J.; Jerrett, M. Improving estimates of air pollution exposure through ubiquitous sensing technologies. Environ. Pollut. 2013, 176, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Breen, M.S.; Long, T.C.; Schultz, B.D.; Crooks, J.; Breen, M.; Langstaff, J.E.; Isaacs, K.K.; Tan, Y.M.; Williams, R.W.; Cao, Y.; et al. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: Model evaluation in central North Carolina. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 412–420. [Google Scholar] [CrossRef]
- De Nadai, M.; Cardoso, A.; Lima, A.; Lepri, B.; Oliver, N. Strategies and limitations in app usage and human mobility. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyhan, M.; Grauwin, S.; Britter, R.; Misstear, B.; McNabola, A.; Laden, F.; Barrett, S.R.H.; Ratti, C. “exposure track”—The impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution. Environ. Sci. Technol. 2016, 50, 9671–9681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alaoui, S.S.; Aksasse, B.; Farhaoui, Y. Air pollution prediction through internet of things technology and big data analytics. Int. J. Comput. Intell. Stud. 2019, 8, 177. [Google Scholar] [CrossRef]
- Yarza, S.; Hassan, L.; Shtein, A.; Lesser, D.; Novack, L.; Katra, I.; Kloog, I.; Novack, V. Novel approaches to air pollution exposure and clinical outcomes assessment in environmental health studies. Atmosphere 2020, 11, 122. [Google Scholar] [CrossRef] [Green Version]
- Kang, G.K.; Gao, J.Z.; Chiao, S.; Lu, S.; Xie, G. Air Quality Prediction: Big Data and Machine Learning Approaches. Int. J. Environ. Sci. Dev. 2018, 9, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Fu, F.; Tian, R. A deep learning and image-based model for air quality estimation. Sci. Total Environ. 2020, 724, 138178. [Google Scholar] [CrossRef]
- Bai, L.; Wang, J.; Ma, X.; Lu, H. Air pollution forecasts: An overview. Int. J. Environ. Res. Public Health 2018, 15, 780. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Jumaah, H.J.; Ameen, M.H.; Kalantar, B.; Rizeei, H.M.; Jumaah, S.J. Air quality index prediction using IDW geostatistical technique and OLS-based GIS technique in Kuala Lumpur, Malaysia. Geomat. Nat. Hazards Risk 2019, 10, 2185–2199. [Google Scholar] [CrossRef]
- Shen, H.; Zhou, M.; Li, T.; Zeng, C. Integration of remote sensing and social sensing data in a deep learning framework for hourly urban PM2.5 mapping. Int. J. Environ. Res. Public Health 2019, 16, 4102. [Google Scholar] [CrossRef] [Green Version]
- Vienneau, D.; de Hoogh, K.; Briggs, D. A GIS-based method for modelling air pollution exposures across Europe. Sci. Total Environ. 2009, 408, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Berrocal, V.J.; Guan, Y.; Muyskens, A.; Wang, H.; Reich, B.J.; Mulholland, J.A.; Chang, H.H. A comparison of statistical and machine learning methods for creating national daily maps of ambient PM2.5 concentration. Atmos. Environ. 2020, 222, 1–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moschandreas, D.J.; Watson, J.; D’Abreton, P.; Scire, J.; Zhu, T.; Klein, W.; Saksena, S. Chapter three: Methodology of exposure modeling. Chemosphere 2002, 49, 923–946. [Google Scholar] [CrossRef]
- Thacker, S.B.; Stroup, D.F. Future directions for comprehensive public health surveillance and health information systems in the United States. Am. J. Epidemiol. 1994, 140, 383–397. [Google Scholar] [CrossRef]
- Thacker, S.B.; Stroup, D.F.; Parrish, G.; Anderson, H.A. Surveillance in environmental public health: Issues, systems, and sources. Am. J. Public Health 1996, 86, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Center for Disease Control and Prevention. Tracking Network Implementation Plan. 2010. Available online: https://www.cdc.gov/nceh/tracking/pdfs/TNIP_V1.pdf (accessed on 31 July 2020).
- Owodunni, T.; Close, R.; Muhammad, U.; Loon, B.; Behbod, B.; Crabbe, H.; Meara, J.; Oliver, I.; Kamanyire, R.; Verne, J.; et al. Developing an Environmental Public Health Surveillance System for England; International Society for Environmental Epidemiology (ISEE): Rome, Italy, 2016. [Google Scholar]
- Wang, S.; Zhao, Y.; Chen, G.; Wang, F.; Aunan, K.; Hao, J. Assessment of population exposure to particulate matter pollution in Chongqing, China. Environ. Pollut. 2008, 153, 247–256. [Google Scholar] [CrossRef]
- Xie, X.; Semanjski, I.; Gautama, S.; Tsiligianni, E.; Deligiannis, N.; Rajan, R.T.; Pasveer, F.; Philips, W. A review of urban air pollution monitoring and exposure assessment methods. ISPRS Int. J. Geo-Inf. 2017, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Gariazzo, C.; Carlino, G.; Silibello, C.; Renzi, M.; Finardi, S.; Pepe, N.; Radice, P.; Forastiere, F.; Michelozzi, P.; Viegi, G.; et al. A multi-city air pollution population exposure study: Combined use of chemical-transport and random-Forest models with dynamic population data. Sci. Total Environ. 2020, 724, 138102. [Google Scholar] [CrossRef]
- Abelsohn, A.; Frank, J.; Eyles, J. Environmental Public Health Tracking/Surveillance in Canada: A commentary. Healthc. Policy 2009, 4, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Mather, F.J.; White, L.A.E.; Langlois, E.C.; Shorter, C.F.; Swalm, C.M.; Shaffer, J.G.; Hartley, W.R. Statistical methods for linking health, exposure, and hazards. Environ. Health Perspect. 2004, 112, 1440–1445. [Google Scholar] [CrossRef]
- Liew, Z.; Von Ehrenstein, O.S.; Ling, C.; Yuan, Y.; Meng, Q.; Cui, X.; Park, A.S.; Uldall, P.; Olsen, J.; Cockburn, M.; et al. Ambient Exposure to Agricultural Pesticides during Pregnancy and Risk of Cerebral Palsy: A Population-Based Study in California. Toxics 2020, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Seto, E.; Carvlin, G.; Austin, E.; Shirai, J.; Bejarano, E.; Lugo, H.; Olmedo, L.; Calderas, A.; Jerrett, M.; King, G.; et al. Next-generation community air quality sensors for identifying air pollution episodes. Int. J. Environ. Res. Public Health 2019, 16, 3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Guidelines for Indoor Air Quality. 2020. Available online: https://www.euro.who.int/document/e94535.pdf (accessed on 31 July 2020).
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, B.; Na, J.I.; Thorsteinsson, T.; Cruz, A.M. Participatory approach to gap analysis between policy and practice regarding air pollution in ger areas of Ulaanbaatar, Mongolia. Sustainability 2020, 12, 3309. [Google Scholar] [CrossRef] [Green Version]
- Part, J.; Ryu, H.; Kim, E.; Choe, Y.; Heo, J.; Lee, J.; Cho, S.H.; Sung, K.; Cho, M.; Yang, W. Ass Assessment of PM2.5 population exposure of a community using sensor-based air monitoring instruments and similar time-activity groups. Atmos. Pollut. Res. 2020. [Google Scholar] [CrossRef]
- Dewulf, B.; Neutens, T.; Lefebvre, W.; Seynaeve, G.; Vanpoucke, C.; Beckx, C.; Van de Weghe, N. Dynamic assessment of exposure to air pollution using mobile phone data. Int. J. Health Geogr. 2016, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Park, J.; Cho, M.; Lee, C.; Lee, J.; Lee, C. Environmental Health Surveillance System for a Population Using Advanced Exposure Assessment. Toxics 2020, 8, 74. https://doi.org/10.3390/toxics8030074
Yang W, Park J, Cho M, Lee C, Lee J, Lee C. Environmental Health Surveillance System for a Population Using Advanced Exposure Assessment. Toxics. 2020; 8(3):74. https://doi.org/10.3390/toxics8030074
Chicago/Turabian StyleYang, Wonho, Jinhyeon Park, Mansu Cho, Cheolmin Lee, Jeongil Lee, and Chaekwan Lee. 2020. "Environmental Health Surveillance System for a Population Using Advanced Exposure Assessment" Toxics 8, no. 3: 74. https://doi.org/10.3390/toxics8030074
APA StyleYang, W., Park, J., Cho, M., Lee, C., Lee, J., & Lee, C. (2020). Environmental Health Surveillance System for a Population Using Advanced Exposure Assessment. Toxics, 8(3), 74. https://doi.org/10.3390/toxics8030074