Hunting for Toxic Industrial Chemicals: Real-Time Detection of Carbon Disulfide Traces by Means of Ion Mobility Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. IMS Instrument Used
2.2. PID Instrument Used
2.3. Sampling and Work Flow Procedure
3. Results
- Total disappearance of the reactant ion peak RIP did not happen. It means, therefore, that saturation of the IMS instrument was not reached. In other words, contamination of the IMS cell has been successfully avoided, and, consequently, we may rely on the quantitative data provided by the IMS device.
- The minimum concentration measured was 100 ppbv (ca. 0.31 mg m−3) and the estimated minimum concentration level is thought to be ca. 30 ppbv (ca. 0.10 mg m−3).
- Saturation is thought to occur at around 20 ppmv (ca. 63 mg m−3) CS2, which is in total accordance with the well-known fact that the dynamic range of any IMS instrument that is equipped with a radioactive source extends to about two orders of magnitude.
4. Discussion
Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Eiceman, G.; Karpas, Z. Ion. Mobility Spectrometry, 2nd ed.; Raton, B., Ed.; Taylor & Francis: Boca Raton, FL, USA, 2013; ISBN 0824758536. [Google Scholar]
- Bocos-Bintintan, V. Modern Techniques in Ultra-Trace Analysis, with Impact in Industrial Hygiene, Environmental Protection and Security Applications; Cluj University Press: Cluj Napoca, Romania, 2004. [Google Scholar]
- Ratiu, I.A.; Ligor, T.; Bocos-Bintintan, V.; Buszewski, B. Mass spectrometric techniques for the analysis of volatile organic compounds emitted from bacteria. Bioanalysis 2017, 9, 1069–1092. [Google Scholar] [CrossRef] [PubMed]
- Ratiu, I.A.; Bocos-Bintintan, V.; Monedeiro, F.; Milanowski, M.; Ligor, T.; Buszewski, B. An Optimistic Vision of Future: Diagnosis of Bacterial Infections by Sensing Their Associated Volatile Organic Compounds. Crit. Rev. Anal. Chem. 2019, 50, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Sun, T.; Zhao, J.; Wang, D.; Zhang, Z.; Yu, W. Development of a plug-type IMS-MS instrument and its applications in resolving problems existing in in-situ detection of illicit drugs and explosives by IMS. Talanta 2018, 184, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Giannoukos, S.; Brkić, B.; Taylor, S.; Marshall, A.; Verbeck, G.F. Chemical Sniffing Instrumentation for Security Applications. Chem. Rev. 2016, 116, 8146–8172. [Google Scholar] [CrossRef]
- Ghira, G.B.; Raţiu, I.A.; Bocoş-Binţinţan, V. Fast characterization of pyridine using ion mobility spectrometry and photoionization detection. Environ. Eng. Manag. J. 2013, 12, 251–256. [Google Scholar]
- Bocos-Bintintan, V.; Ghira, G.B.; Anton, M.; Martiniuc, A.V.; Ratiu, I.A. Sensing precursors of illegal drugs—Rapid detection of acetic anhydride vapors at trace levels using photoionization detection and ion mobility spectrometry. Molecules 2020, 25, 1852. [Google Scholar] [CrossRef] [Green Version]
- Bocos-Bintintan, V.; Brittain, A.; Thomas, C.L.P. The response of a membrane inlet ion mobility spectrometer to chlorine and the effect of water contamination of the drying media on ion mobility spectrometric responses to chlorine. Analyst 2001, 126, 1539–1544. [Google Scholar] [CrossRef]
- Bocos-Bintintan, V.; Brittain, A.; Thomas, C.L.P. Characterisation of the phosgene response of a membrane inlet 63Ni ion mobility spectrometer. Analyst 2002, 127, 1211–1217. [Google Scholar] [CrossRef]
- Bocos-Bintintan, V.; Thomas, C.L.P.; Ratiu, I.A. Sensors’ array of aspiration ion mobility spectrometer as a tool for bacteria discrimination. Talanta 2020, 206, 120233. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Bocos-Bintintan, V.; Patrut, A.; Moll, V.H.; Turner, M.; Thomas, C.L.P. Discrimination of bacteria by rapid sensing their metabolic volatiles using an aspiration-type ion mobility spectrometer (a-IMS) and gas chromatography-mass spectrometry GC-MS. Anal. Chim. Acta 2017, 982, 209–217. [Google Scholar] [CrossRef]
- Pietrzak, D.; Bieliński, D.M. Application of multi-capillary column-ion mobility spectrometry (MCC-IMS) in rubber chemistry and technology. Int. J. Ion Mobil. Spectrom. 2018, 21, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Moll, V.; Bocoş-Binţinţan, V.; Raţiu, I.A.; Ruszkiewicz, D.; Thomas, C.L.P. Control of dopants/modifiers in differential mobility spectrometry using a piezoelectric injector. Analyst 2012, 137, 1458–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demartino, A.W.; Zigler, D.F.; Fukuto, J.M.; Ford, P.C. Carbon disulfide. Just toxic or also bioregulatory and/or therapeutic? Chem. Soc. Rev. 2017, 46, 21–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elliott, S. The Solubility of Carbon Disulfide vapor in natural aqueous systems. Atmos. Environ. 1989, 23, 1977–1980. [Google Scholar] [CrossRef]
- WHO. Concise International Chemical Assessment Document (CICAD) 46: Carbon Disulfide; World Health Organization, United Nations Environment Program, International Labor Organization; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Rhodes, C.; Riddel, S.A.; West, J.; Williams, B.P.; Hutchings, G.J. Low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: A review. Catal. Today 2000, 59, 443–464. [Google Scholar] [CrossRef]
- Delpech, A. Note sur les accidents que de’velope, chez les ouvriers en caoutchouc, l’inhalation du sulfure de carbone en vapeur. Acad. Imp. Med. 1856, 21, 350. [Google Scholar]
- Gelbke, H.P.; Göen, T.; Mäurer, M.; Sulsky, S.I. A review of health effects of carbon disulfide in viscose industry and a proposal for an occupational exposure limit. Crit. Rev. Toxicol. 2009, 39, 1–126. [Google Scholar] [CrossRef]
- Sieja, K.; von Mach-Szczypiński, J.; von Mach-Szczypiński, J. Health effect of chronic exposure to carbon disulfide (CS2) on women employed in viscose industry. Med. Pr. 2018, 69, 317–323. [Google Scholar] [CrossRef]
- U.S. Department Of Health And Human Service Public Health Service Agency for Toxic Substances and Disease Registry. Toxicological Profile for Carbon Disulfide; ATSDR: Atlanta, GA, USA, 1996.
- Huang, C.C. Carbon Disulfide Neurotoxicity: Taiwan Experience. Acta Neurol. Taiwanica 2004, 13, 3–9. [Google Scholar] [CrossRef]
- Tolonen, M. Vascular effects of carbon disulfide: A review. Scand. J. Work Environ. Health 1976, 1, 63–77. [Google Scholar] [CrossRef]
- Vanhoorne, M.; DeBacquer, D.; Barbiere, F. Epidemiological study of gastrointestinal and liver effects of carbon disulfide. Int. Arch. Occup. Environ. Health 1992, 63, 517–523. [Google Scholar] [CrossRef] [PubMed]
- OSHA Table Ac-1 Permissible Exposure Limits for Chemical Contaminants. Available online: https://www.dir.ca.gov/title8/ac1.pdf (accessed on 12 October 2020).
- Department Of Health And Human Service, Centers for Disease Control and Prevention National Institute for Occupational Safety and Health. Available online: https://www.cdc.gov/niosh/docs/2005-149/pdfs/2005-149.pdf (accessed on 12 October 2020).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 6348, Carbon Disulfide; National Institute of Health: Bethesda, MD, USA. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6348 (accessed on 10 November 2020).
- Mametov, R.; Ratiu, I.A.; Monedeiro, F.; Ligor, T.; Buszewski, B. Evolution and Evaluation of GC Columns. Crit. Rev. Anal. Chem. 2019, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Al-Suod, H.; Ratiu, I.A.; Ligor, M.; Ligor, T.; Buszewski, B. Determination of sugars and cyclitols isolated from various morphological parts of Medicago sativa L. J. Sep. Sci. 2018, 41, 1118–1128. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Raiu, I.A.; Milanowski, M.; Pomastowski, P.; Ligor, T. The effect of biosilver nanoparticles on different bacterial strains’ metabolism reflected in their VOCs profiles. J. Breath Res. 2018, 12, 027105. [Google Scholar] [CrossRef] [Green Version]
- Ratiu, I.A.; Bocos Bintintan, V.; Turner, M.; Moll, V.H.; Thomas, P. Discrimination of chemical profiles of some bacterial species by analysing culture headspace air samples using TD-GC/MS. Curr. Anal. Chem. 2014, 10, 488–497. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Ligor, T.; Bocos-Bintintan, V.; Szeliga, J.; MacHała, K.; Jackowski, M.; Buszewski, B. GC-MS application in determination of volatile profiles emitted by infected and uninfected human tissue. J. Breath Res. 2019, 13, 026003. [Google Scholar] [CrossRef]
- Ratiu, I.A.; Al-Suod, H.; Ligor, M.; Ligor, T.; Railean-Plugaru, V.; Buszewski, B. Complex investigation of extraction techniques applied for cyclitols and sugars isolation from different species of Solidago genus. Electrophoresis 2018, 39, 1966–1974. [Google Scholar] [CrossRef]
- Phillips, M. Detection of carbon disulfide in breath and air: A possible new risk factor for coronary artery disease. Int. Arch. Occup. Environ. Health 1992, 64, 119–123. [Google Scholar] [CrossRef]
- Campbell, L.; Jones, A.H.; Wilson, H.K. Evaluation of occupational exposure to carbon disulphide by blood, exhaled air, and urine analysis. Am. J. Ind. Med. 1985, 8, 143–153. [Google Scholar] [CrossRef]
- Spanjers, C. Sub 1 mg/kg (1 ppm) Detection of Carbon Disulfide with the Polyarc System Application Note; Activated Research Company, LLC: Eden Prairie, MN, USA, 2017; pp. 1–3. [Google Scholar]
- Pitschmann, V.; Kobliha, Z.; Tušarová, I. Spectrophotometric determination of carbon disulphide in the workplace air. J. Chem. 2013, 2013. [Google Scholar] [CrossRef]
- Riihimäki, V.; Kivistö, H.; Peltonen, K.; Helpiö, E.; Aitio, A. Assessment of exposure to carbon disulfide in viscose production workers from urinary 2-thiothiazolidine-4-carboxylic acid determinations. Am. J. Ind. Med. 1992, 22, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Krstev, S.; Perunicić, B.; Farkić, B.; Varagić, M. Environmental and biological monitoring in carbon disulfide exposure assessment. Med. Lav. 1993, 84, 473–481. [Google Scholar]
- Chu, C.C.; Huang, C.C.; Chen, R.S.; Shih, T.S. Polyneuropathy induced by carbon disulphide in viscose rayon workers. Occup. Environ. Med. 1995, 52, 404–407. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.W.; Lai, J.S.; Lin, M.; Su, E.S. Effects of exposure to carbon disulfide (CS2) on electrocardiographic features of ischemic heart disease among viscose rayon factory workers. Int. Arch. Occup. Environ. Health 1997, 70, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Kuligowski, D. The influence of chronic exposure to carbon disulfide on metabolism of catecholamines and serotonin in women. Ann. Acad. Med. Stetin. 1996, 42, 139–156. [Google Scholar] [PubMed]
- Yang, X.F.; Lee, B.L.; New, A.L.; Ong, H.Y.; Ma, L.; Zhang, Q.; Ong, C.N. Urinary homovanillic acid and vanillylmandelic acid in workers exposed to carbon disulfide. Am. J. Ind. Med. 1996, 29, 269–274. [Google Scholar] [CrossRef]
- Reinhardt, F.; Drexler, H.; Bickel, A.; Claus, D.; Ulm, K.; Angerer, J.; Lehnert, G.; Neundörfer, B. Electrophysiological investigation of central, peripheral and autonomic nerve function in workers with long-term low-level exposure to carbon disulphide in the viscose industry. Int. Arch. Occup. Environ. Health 1997, 70, 249–256. [Google Scholar] [CrossRef]
- Vanhoorne, M.; Van Den Berge, L.; Devreese, A.; Tijtgat, E.; Van Poucke, L.; Van Peteghem, C. Survey of chemical exposures in a viscose rayon plant. Ann. Occup. Hyg. 1991, 35, 619–631. [Google Scholar] [CrossRef]
- De Fruyt, F.; Thiery, E.; De Bacquer, D.; Vanhoorne, M. Neuropsychological effects of occupational exposures to carbon disulfide and hydrogen sulfide. Int. J. Occup. Environ. Health 1998, 4, 139–146. [Google Scholar] [CrossRef]
- Guidotti, T.L.; Hoffman, H. Indicators of cardiovascular risk among workers exposed to high intermittent levels of carbon disulphide. Occup. Med. (Chic. ILL) 1999, 49, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Bocos-Bintintan, V.; Smolenschi, A.; Ratiu, I.-A. Rapid Determination of Indoor Air Contaminants in Shoe Shops using Photoionization Detectors. Stud. Univ. Babes-Bolyai Chem. 2016, 61, 203–212. [Google Scholar]
- Bocos-Bintintan, V.; Ratiu, I.A.; Al-Suod, H. Real time monitoring of soil contamination with diesel fuel using photoionization detectors. Arab J. Basic Appl. Sci. 2019, 26, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Moll, V.H.; Bocoş-Binţinţan, V.; Chappell, J.; Hutt, D.; Raţiu, I.A.; Thomas, C.L.P. Optimisation of piezoelectric injection of dopants and drift gas modifiers in transverse ion mobility spectrometry. Int. J. Ion Mobil. Spectrom. 2010, 13, 149–155. [Google Scholar] [CrossRef]
Substance Name and Formula | Properties | Observations |
---|---|---|
Carbon disulfide CS2 (S=C=S) CAS#: 75-15-0 EC#: 200-843-6 | Molecular mass: 76.15 g mol−1 Boiling point: 46.2 °C Melting point: −111.61 °C Density: 1.263 g cm−3 @ 20 °C Refractive index: 1.6319 @ 20 °C Flash point: −30 °C Auto-ignition temperature: 90 °C Relative density of vapors: 2.67 (air = 1) Vapor pressure: 360 mm Hg @ 25 °C Relative evaporation rate: 22.6 (Butyl acetate = 1) Ionization energy: 10.08 eV Vaporization enthalpy: 84.1 cal g−1 Octanol-water coefficient (log Kow): 1.94 Solubility: water solubility: 2.1 g L−1; Soluble in: ethanol, benzene, ether, chloroform Explosive limits: 1% vol. LEL; 50% vol. UEL | Risks: flammable in both liquid and vapors forms; causes serious skin and eyes irritation; affects fertility and is a teratogenic agent in case of repeated or prolonged exposure. Reactivity: very flammable; stable in storage; upon heating it decomposes to form toxic sulfur oxides; may explode on heating, shock or friction. Conversion: 1 ppmv = 3.16 mg m−3 (20 °C) |
Country | Point of Measurement in Viscose Factory | Recorded Concentration (mg m−3) | Reference | |
---|---|---|---|---|
8-h TWA | Range | |||
Finland | viscose rayon fiber factory | 9.4 | 4.7–25 | [39] |
viscose sheeting production | 13 | 0.6–28 | ||
Yugoslavia | in the spinning rooms | 63 | [40] | |
manufacturing departments | 19 | |||
Taiwan | in the cutting areas | 125–210 | 470–940 | [41] |
in the spinning areas | 47–310 | |||
in the ripening area | 170 | [42] | ||
filament spinning | 61 | |||
Poland | synthetic fibers factory | 9.4–23 | [43] | |
Singapore | in a rayon factory | 8.4–63 | [44] | |
Germany | in viscose rayon factory | 0.6–210 | [45] | |
Belgium | centrifuge operator | 3.1 | [46] | |
in the spinning areas | 150 | |||
Bulgaria | viscose rayon production facility | 9.4–63 | [47] | |
Canada | chemical company | 310–630 | [48] | |
Czechoslovakia | viscose rayon factories | 30.4–152 | [22] |
CCS2—Measured with PID | IMS Data—Negative Ion Mode | |
---|---|---|
Drift Time td (ms) | Peak Height hmax (pA) | |
0 ppbv | NEG RIP 5.68 | 98.0 ± 4.2 |
0.10 ppmv | PIP 5.38 | 3.0 ± 0.2 |
0.25 ppmv | PIP 5.38 | 7.5 ± 0.4 |
0.60 ppmv | PIP 5.38 | 13.0 ± 0.8 |
1.00 ppmv | PIP 5.38 | 18.5 ± 1.1 |
1.70 ppmv | PIP 5.38 | 25.0 ± 1.3 |
3.00 ppmv | PIP 5.38 | 37.8 ± 1.6 |
6.00 ppmv | PIP 5.38 | 47.0 ± 1.9 |
15.00 ppmv | PIP 5.38 | 68.0 ± 2.4 |
Operation Mode | Ion Drift Time, td (ms) | Drift Speed, vd = ld/td (m s−1) | Ion Mobility, K (cm2 V−1 s−1) | Reduced Ion Mobility 1, K0 (cm2 V−1 s−1) |
---|---|---|---|---|
Negative | RIP: 5.68 | 9.68 | 2.421 | 2.130 |
PIP: 5.38 | 10.22 | 2.556 | 2.249 |
Ion Drift Time, td (ms) | Peak Width Al Half Maximum, Δtd (ms) | Resolution, RIMS |
---|---|---|
RIP: 5.68 | 0.13 | 43.7 |
PIP: 5.38 | 0.13 | 41.4 |
Ion Mode | LOD (ppbv) | LOQ (ppbv) | Linear Range (ppbv) | Equation | R2 | S (pA/ppmv) |
---|---|---|---|---|---|---|
Negative | 27 | 90 | 90–3000 | Y = 11.462⋅X + 4.763 | 0.978 | 12.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocos-Bintintan, V.; Ratiu, I.A. Hunting for Toxic Industrial Chemicals: Real-Time Detection of Carbon Disulfide Traces by Means of Ion Mobility Spectrometry. Toxics 2020, 8, 121. https://doi.org/10.3390/toxics8040121
Bocos-Bintintan V, Ratiu IA. Hunting for Toxic Industrial Chemicals: Real-Time Detection of Carbon Disulfide Traces by Means of Ion Mobility Spectrometry. Toxics. 2020; 8(4):121. https://doi.org/10.3390/toxics8040121
Chicago/Turabian StyleBocos-Bintintan, Victor, and Ileana Andreea Ratiu. 2020. "Hunting for Toxic Industrial Chemicals: Real-Time Detection of Carbon Disulfide Traces by Means of Ion Mobility Spectrometry" Toxics 8, no. 4: 121. https://doi.org/10.3390/toxics8040121
APA StyleBocos-Bintintan, V., & Ratiu, I. A. (2020). Hunting for Toxic Industrial Chemicals: Real-Time Detection of Carbon Disulfide Traces by Means of Ion Mobility Spectrometry. Toxics, 8(4), 121. https://doi.org/10.3390/toxics8040121