Monitoring Potentially Toxic Element Pollution in Three Wheat-Grown Areas with a Long History of Industrial Activity and Assessment of Their Effect on Human Health in Central Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil and Wheat Sampling and Processing
2.3. Soil and Plant Analyses
2.4. Indices
2.4.1. Contamination Indices
- Transfer coefficient
- 2.
- Contamination factor
- 3.
- Pollution load index
2.4.2. Health Risk Assessment Indices (Noncarcinogenic)
2.5. Statistical Analysis and Data Quality Control
3. Results
3.1. Soil Physicochemical Characteristics
3.2. Total Contents of Trace Elements in Soil
3.3. Principal Component Analysis
3.4. Wheat Tissue and Grain Potentially Toxic Element Concentrations and Soil-to-Plant Transfer
3.5. Hazard Index (HI)
3.5.1. Hazard Index for Soil Particle Ingestion
3.5.2. Hazard Index for Wheat Grain Consumption
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pavlovic, P.; Sawidis, T.; Breuste, J.; Kostic, O.; Cakmak, D.; Ðordevic, D.; Pavlovic, D.; Pavlovic, M.; Perovic, V.; Mitrovic, M. Fractionation of potentially toxic elements (PTEs) in urban soils from Salzburg, Thessaloniki and Belgrade: An insight into source identification and human health risk assessment. Int. J. Environ. Res. Public Health 2021, 18, 6014. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Mansour, S.N.; Najafi, M.L.; Toolabi, A.; Abdolahnejad, A.; Faraji, M.; Mir, M. Probabilistic risk assessment of soil contamination related to agricultural and industrial activities. Environ. Res. 2022, 203, 111837. [Google Scholar] [CrossRef]
- Parus, A.; Framski, G. Impact of O-alkyl-pyridineamidoximes on the soil environment. Sci. Total Environ. 2018, 643, 1278–1284. [Google Scholar] [CrossRef] [PubMed]
- Parus, A.; Idziak, M.; Jacewicz, P.; Panasiewicz, K.; Zembrzuska, J. Assessment of environmental risk caused by the presence of antibiotics. Environ. Nanotech. Monit. Manag. 2021, 16, 100533. [Google Scholar]
- Xu, J.; Hu, C.; Wang, M.; Zhao, Z.; Zhao, X.; Cao, L.; Lu, Y.; Cai, X. Changeable effects of coexisting heavy metals on transfer of cadmium from soils to wheat grains. J. Hazard. Mater. 2022, 423, 127182. [Google Scholar] [CrossRef] [PubMed]
- Golui, D.; Datta, S.P.; Dwivedi, B.S.; Meena, M.C.; Ray, P.; Trivedi, V.K. A new approach to establish safe levels of available metals in soil with respect to potential health hazard of human. Environ. Earth Sci. 2021, 80, 667. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, D.; Uwiringiyimana, E.; Proshad, R.; Ugurlu, A. Evaluation of trace element contamination and health risks of medicinal herbs collected from unpolluted and polluted areas in Sichuan Province, China. Biol. Trace Element Res. 2021, 199, 4342–4352. [Google Scholar] [CrossRef]
- Kong, F.; Chen, Y.; Huang, L.; Yang, Z.; Zhu, K. Human health risk visualization of potentially toxic elements in farmland soil: A combined method of source and probability. Ecotoxicol. Environ. Saf. 2021, 211, 111922. [Google Scholar] [CrossRef]
- Bakırdere, S.; Bölücek, C.; Yaman, M. Determination of contamination levels of Pb, Cd, Cu, Ni, and Mn caused by former lead mining gallery. Environ. Monit. Assess. 2016, 188, 132. [Google Scholar] [CrossRef]
- MalAmiri, N.; Rashki, A.; Hosseinzadeh, S.R.; Kaskaoutis, D.G. Mineralogical, geochemical, and textural characteristics of soil and airborne samples during dust storms in Khuzestan, southwest Iran. Chemosphere 2022, 286, 131879. [Google Scholar] [CrossRef] [PubMed]
- Kapsiotis, A.; Economou-Eliopoulos, M.; Zheng, H.; Su, B.; Lenaz, D.; Jing, J.; Antonelou, A.; Velicogna, M.; Xia, B. Refractory chromitites recovered from the Eretria mine, East Othris massif (Greece): Implications for metallogeny and deformation of chromitites within the lithospheric mantle portion of a forearc-type ophiolite. Chem. Erde 2019, 79, 130–152. [Google Scholar] [CrossRef]
- Tsirambides, A.; Filippidis, A. Metallic mineral resources of Greece. Cent. Eur. J. Geosci. 2012, 4, 641–650. [Google Scholar] [CrossRef]
- Mosier, D.L.; Singer, D.A.; Moring, B.C.; Galloway, J.P. Podiform chromite deposits—database and grade and tonnage models. U.S. Geol. Surv. Sci. Inv. Rep. 2012, 5157, 3–5. [Google Scholar]
- Brathwaite, R.L.; Christie, A.B.; Jongens, R. Chromite, platinum group elements and nickel mineralisation in relation to the tectonic evolution of the Dun Mountain Ophiolite Belt, east Nelson, New Zealand. N. Z. J. Geol. Geoph. 2017, 60, 255–269. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Laskou, M.; Eliopoulos, D.G.; Megremi, I.; Kalatha, S.; Eliopoulos, G.D. Origin of critical metals in Fe–Ni laterites from the Balkan Peninsula: Opportunities and environmental risk. Minerals 2021, 11, 1009. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P.C. Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals 2012, 2, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Coetzee, J.J.; Bansal, N.; Chirwa, E.M.N. Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expos. Health 2020, 12, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 77–85. [Google Scholar] [CrossRef]
- Dietrich, M.; Huling, J.; Krekeler, M.P.S. Metal pollution investigation of Goldman Park, Middletown Ohio: Evidence for steel and coal pollution in a high child use setting. Sci. Total Environ. 2018, 618, 1350–1362. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Argyraki, A.; Chrastný, V.; Botsou, F.; Skordas, K.; Komárek, M.; Fouskas, A. Metal(loid) and isotopic tracing of Pb in soils, road and house dusts from the industrial area of Volos (central Greece). Sci. Total Environ. 2020, 725, 138300. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Golia, E.; Liu, Y.; Shaheen, M.S.; Rinklebe, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Madanan, M.T.; Varghese, G.K.; Shah, I.K. Heavy metal phytoremediation potential of the roadside forage Chloris barbata Sw. (swollen windmill grass) and the risk assessment of the forage-cattle-human food system. Environ. Sci. Pollut. Res. 2021, 28, 45096–45108. [Google Scholar] [CrossRef]
- Hołtra, A.; Zamorska-Wojdyła, D. The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environ. Sci. Pollut. Res. 2020, 27, 16086–16099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Naushad, M.; Lima, C.E.; Zhang, S.; Shaheen, M.S.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Uddin, M.M.; Xie, B.; Peng, G.; Huang, L. Heavy metal pollution status, spatial distribution and associated ecological risks within sediments of Yundang Lagoon catchment in Xiamen, China, after 30 years continuous ecological rehabilitation and management. Hum. Ecol. Risk Assess. 2021, 27, 465–482. [Google Scholar] [CrossRef]
- Kabata-Pendias, E. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- USDA Foreign Agricultural Service 2010. Greece Grain Outlook. Global Agricultural Information Network. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?Filename=Greece%20Grain%20Outlook_Athens_Greece_2-25-2010.pdf (accessed on 5 August 2021).
- Tibbett, M.; Green, I.; Rate, A.; Oliveira, V.H.; Whitaker, J. The transfer of trace metals in the soil-plant-arthropod system. Sci. Total Environ. 2021, 779, 146260. [Google Scholar] [CrossRef] [PubMed]
- Allafta, H.; Opp, C. Spatio-temporal variability and pollution sources identification of the surface sediments of Shatt Al-Arab River, Southern Iraq. Sci. Rep. 2020, 10, 6979. [Google Scholar] [CrossRef]
- Elhadi, R.E.; Abdullah, A.M.; Abdullah, A.H.; Hanan Ash’aari, Z.; Kura, N.U.D.Y.G.; Adamu, A. Source identification of heavy metals in particulate patter (PM10) in a Malaysian traffic area using multivariate techniques. Pol. J. Environ. Stud. 2017, 26, 2523–2532. [Google Scholar] [CrossRef]
- Chromium. Available online: https://www.mindat.org/min-52438.html (accessed on 30 October 2021).
- Fry, L.M.; Gillings, M.M.; Isley, F.C.; Gunkel-Grillon, P.; Taylor, M.P. Trace element contamination of soil and dust by a New Caledonian ferronickel smelter: Dispersal, enrichment, and human health risk. Environ. Pollut. 2021, 288, 117593. [Google Scholar] [CrossRef]
- Pentari, D.; Typou, J.; Goodarzi, F.; Foscolos, E.A. Comparison of elements of environmental concern in regular and reclaimed soils, near abandoned coal mines Ptolemais–Amynteon, northern Greece: Impact on wheat crops. Int. J. Coal Geol. 2006, 65, 51–58. [Google Scholar] [CrossRef]
- Demková, L.; Jezný, T.; Bobuľská, L. Assessment of soil heavy metal pollution in a former mining area—Before and after the end of mining activities. Soil Water Res. 2017, 12, 229–236. [Google Scholar] [CrossRef] [Green Version]
- Abliz, A.; Abliz, A.; Shi, Q. Ecological risk assessment of toxic metal pollution in the industrial zone on the northern slope of the East Tianshan mountains in Xinjiang, NW China. Open Geosci. 2021, 13, 582–593. [Google Scholar] [CrossRef]
- Krami, L.M.; Amiri, F.; Sefianian, A.; Shariff, A.R.M.; Tabatabaie, T.; Pradhan, B. Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments. Environ. Monit. Assess. 2013, 185, 9871–9888. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Chen, Y.; Weng, L.; Peng, H.; Liao, Z.; Li, Y. Source identification of heavy metals in surface paddy soils using accumulated elemental ratios coupled with MLR. Int. J. Environ. Res. Public Health 2021, 18, 2295. [Google Scholar] [CrossRef]
- Panagos, P.; Ballabio, C.; Lugato, E.; Jones, A.; Borrelli, P.; Scarpa, S.; Orgiazzi, A.; Montanarella, L. Potential sources of anthropogenic copper inputs to European agricultural soils. Sustainability 2018, 10, 2380. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Wang, H.; Dong, L.; Huang, B.; Borggaard, O.K.; Bruun Hansen, H.C.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.; Margenot, A.J.; Zhang, H.; Lal, R.; Wu, J.; Wu, P.; Chen, F.; Gao, C. Distribution and source identification of potentially toxic elements in agricultural soils through high-resolution sampling. Environ. Pollut. 2020, 263, 114527. [Google Scholar] [CrossRef]
- Mishra, B.; Hazarika, P. Rare greenockite (CdS) within the chromite–PGE association in the Bangur Gabbro, Baula-Nuasahi Complex, Eastern India. Ore Geol. Rev. 2016, 72, 1327–1334. [Google Scholar] [CrossRef]
- Huang, Y.; Li, T.; Wu, C.; He, Z.; Japenga, J.; Deng, M.; Yang, X. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. J. Hazard. Mater. 2015, 299, 540–549. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Ippolito, J.A.; Xing, W.; Tu, C. 2021. Lead smelter alters wheat flour heavy metal concentrations and health risks. J. Environ. Qual. 2021, 50, 454–464. [Google Scholar] [CrossRef]
- Crispo, M.; Dobson, C.M.; Blevins, S.R.; Meredith, W.; Lake, A.J.; Edmondson, L.J. Heavy metals and metalloids concentrations across UK urban horticultural soils and the factors influencing their bioavailability to food crops. Environ. Pollut. 2021, 288, 117960. [Google Scholar] [CrossRef] [PubMed]
- Tanzeem-ul-Haq, H.S.; Rasool, B.; Ehtisham-ul-Haque, S.; Saif, S.; Zafar, S.; Younis, T.; Akhtar, I.; Jafri, L.; Iqbal, N.; Masood, N.; et al. Chitosan with bentonite and biochar in Ni-affected soil reduces grain Ni concentrations, improves soil enzymes and grain quality in lentil. Minerals 2021, 11, 11. [Google Scholar] [CrossRef]
- Hasnaoui, S.E.; Fahr, M.; Keller, C.; Levard, C.; Angeletti, B.; Chaurand, P.; Triqui, Z.E.A.; Guedira, A.; Rhazi, L.; Colin, F.; et al. Screening of native plants growing on a Pb/Zn mining area in Eastern Morocco: Perspectives for phytoremediation. Plants 2020, 9, 1458. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Total Environ. 2021, 806, 150646. [Google Scholar] [CrossRef] [PubMed]
- Rinklebe, J.; Antoniadis, V.; Shaheen, M.S.; Rosche, O.; Altermann, M. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environ. Int. 2019, 126, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Shaheen, M.S.; Boersch, J.; Frohne, T.; Du Laing, J.; Rinklebe, J. Bioavailability and risk assessment of potentially toxic elements in garden edible vegetables and soils around a highly contaminated former mining area in Germany. J. Environ. Manag. 2017, 186, 192–200. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Cabral-Pinto, M.M.S.; Alam, M.; Kumar, S.; Prasad, S. Appraisal of contamination of heavy metals and health risk in agricultural soil of Jhansi city, India. Environ. Toxicol. Pharmacol. 2021, 88, 103740. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Song, J.; Tan, M.L.; Kung, H.-T.; Johnson, V.C. Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang, China. Environ. Res. 2021, 202, 111702. [Google Scholar] [CrossRef]
- Jimenez-Oyola, S.; Chavez, E.; García-Martínez, M.-J.; Ortega, M.F.; Bolonio, D.; Guzman-Martínez, F.; García-Garizabal, I.; Romero, P. Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxol. Environ. Saf. 2021, 224, 112629. [Google Scholar] [CrossRef]
- Dat, N.D.; Nguyen, V.-T.; Vo, T.-D.-H.; Bui, X.T.; Bui, M.-H.; Nguyen, L.S.P.; Nguyen, X.-C.; Tran, A.T.-K.; Nguyen, T.-T.-A.; Ju, Y.-R.; et al. Contamination, source attribution, and potential health risks of heavy metals in street dust of a metropolitan area in Southern Vietnam. Environ. Sci. Pollut. Res. 2021, 28, 50405–50419. [Google Scholar] [CrossRef]
- Rahman, M.S.; Jolly, Y.N.; Akter, S.; Kamal, N.A.; Rahman, R.; Choudhury, T.R.; Begum, B.A. Sources of toxic elements in indoor dust sample at export processing zone (EPZ) area: Dhaka, Bangladesh; and their impact on human health. Environ. Sci. Pollut. Res. 2021, 28, 39540–39557. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Hadei, M.; Sharafi, K. 2021. Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran—Uncertainty and sensitivity analysis. J. Food Compos. Anal. 2021, 96, 103697. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, R.; Huang, F.; Yang, X.; Dai, W.; Xu, M. Physiological responses and health risks of edible amaranth under simultaneous stresses of lead from soils and atmosphere. Ecotoxol. Environ. Saf. 2021, 223, 112543. [Google Scholar] [CrossRef] [PubMed]
- Baah, D.S.; Gikunoo, E.; Foli, G.; Arthur, E.K.; Entsie, P. Health risk assessment of trace metals in selected food crops at Abuakwa South Municipal, Ghana. Environ. Monit. Assess. 2021, 193, 609. [Google Scholar] [CrossRef]
- Lü, Q.; Xiao, Q.; Wang, Y.; Wen, H.; Han, B.; Zheng, X.; Lin, R. Risk assessment and hotspots identification of heavy metals in rice: A case study in Longyan of Fujian province, China. Chemosphere 2021, 270, 128626. [Google Scholar] [CrossRef]
- Nawaz, H.; Anwar-ul-Haq, M.; Akhtar, M.; Arfan, M. Cadmium, chromium, nickel and nitrate accumulation in wheat (Triticum aestivum L.) using wastewater irrigation and health risks assessment. Ecotoxicol. Environ. Saf. 2021, 208, 111685. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, C.; Calagna, A.; Cammilleri, G.; Schembri, P.; Lo Monaco, D.; Ciprì, V.; Battaglia, L.; Barbera, G.; Ferrantelli, V.; Sadok, S.; et al. Risk assessment of cadmium, lead, and mercury on human health in relation to the consumption of farmed sea bass in Italy: A meta-analytical approach. Front. Mar. Sci. 2021, 8, 616488. [Google Scholar] [CrossRef]
- Fernandez-Landero, S.; Giraldez, I.; Fernandez-Caliani, J.C. Predicting the relative oral bioavailability of naturally occurring As, Cd and Pb from in vitro bioaccessibility measurement: Implications for human soil ingestion exposure assessment. Environ. Geochem. Health 2021, 43, 4251–4264. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pinto, M.M.S.; Inácio, M.; Neves, O.; Almeida, A.A.; Pinto, E.; Oliveiros, B.; da Silva, E.A.F. Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. Expos. Health 2020, 12, 629–640. [Google Scholar] [CrossRef]
- Austruy, A.; Roulier, M.; Angeletti, B.; Dron, J.; Dauphin, C.-E.; Ambrosi, J.-P.; Keller, C.; Chamaret, P. Concentrations and transportation of metal and organochlorine pollutants in vegetables and risk assessment of human exposure in rural, urban and industrial environments (Bouches-du-Rhône, France). Environ. Sci. Pollut. Res. 2021. (in Press). [Google Scholar] [CrossRef]
- Osman, H.E.M.; Abdel-Hamed, E.M.W.; Al-Juhani, W.S.M.; Al-Maroai, Y.A.O.; El-Morsy, M.H.E.-M. Bioaccumulation and human health risk assessment of heavy metals in food crops irrigated with freshwater and treated wastewater: A case study in Southern Cairo, Egypt. Environ. Sci. Pollut. Res. 2021, 28, 50217–50229. [Google Scholar] [CrossRef] [PubMed]
- Varol, M.; Gündüz, K.; Sünbül, M.R. Pollution status, potential sources and health risk assessment of arsenic and trace metals in agricultural soils: A case study in Malatya province, Turkey. Environ. Res. 2021, 202, 111806. [Google Scholar] [CrossRef] [PubMed]
Eretria | pH | CaCO3 | OC | Sand | Silt | Clay | Oxides |
---|---|---|---|---|---|---|---|
% | % | % | % | % | mmol kg−1 | ||
10th-perc | 6.77 | 0.12 | 0.89 | 33.48 | 19.04 | 6.00 | 26.97 |
50th-perc | 7.08 | 0.27 | 1.70 | 50.80 | 30.40 | 20.00 | 54.00 |
Average | 7.19 | 1.59 | 1.90 | 50.80 | 29.91 | 19.29 | 57.11 |
90th-perc | 7.77 | 6.10 | 3.22 | 68.80 | 37.16 | 32.17 | 84.87 |
Domokos | |||||||
10th-perc | 6.99 | 0.06 | 1.48 | 4.37 | 21.36 | 9.52 | 54.42 |
50th-perc | 7.25 | 0.13 | 2.03 | 8.60 | 49.15 | 30.20 | 76.56 |
Average | 7.34 | 0.34 | 2.51 | 26.24 | 43.75 | 30.01 | 78.36 |
90th-perc | 7.77 | 1.12 | 3.50 | 67.80 | 64.28 | 45.60 | 106.36 |
Steel factory | |||||||
10th-perc | 7.50 | 1.83 | 0.32 | 7.96 | 18.00 | 21.20 | 48.47 |
50th-perc | 7.95 | 2.37 | 0.38 | 23.89 | 21.94 | 31.19 | 61.90 |
Average | 8.14 | 4.10 | 1.25 | 34.83 | 28.39 | 35.60 | 74.19 |
90th-perc | 8.10 | 5.15 | 1.25 | 34.43 | 28.71 | 36.87 | 76.19 |
Eretria | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
Min | 0.27 | 20.24 | 199.6 | 3.32 | 29,865 | 616 | 76.9 | 11.5 | 35.6 |
10th-perc | 0.27 | 25.54 | 244.7 | 5.49 | 32,741 | 740 | 243.7 | 11.5 | 38.0 |
50th-perc | 0.41 | 74.94 | 687.2 | 9.71 | 42,633 | 969 | 1428.1 | 15.0 | 52.6 |
Average | 0.51 | 68.38 | 705.2 | 11.56 | 42,690 | 1004 | 1227.5 | 15.1 | 53.8 |
90th-perc | 0.72 | 115.14 | 1118.0 | 18.95 | 49,929 | 1387 | 2090.3 | 19.1 | 69.3 |
Max | 0.82 | 123.62 | 1272.2 | 29.30 | 52,178 | 1676 | 2236.6 | 23.1 | 109.3 |
Skewness | 0.40 | 0.00 | 0.00 | 1.29 | −0.47 | 1.12 | −0.25 | 0.64 | 1.93 |
Domokos | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
Min | 0.41 | 36.65 | 362.1 | 4.13 | 30,169 | 609 | 330.5 | 11.5 | 21.8 |
10th-perc | 0.41 | 52.35 | 590.6 | 6.54 | 32,199 | 874 | 900.5 | 11.8 | 33.6 |
50th-perc | 0.41 | 82.87 | 712.7 | 8.19 | 42,845 | 1100 | 1339.6 | 13.8 | 42.5 |
Average | 0.45 | 84.05 | 777.5 | 8.57 | 41,325 | 1215 | 1315.1 | 14.4 | 44.6 |
90th-perc | 0.56 | 109.40 | 925.3 | 11.27 | 45,873 | 1664 | 1788.1 | 16.4 | 52.3 |
Max | 0.68 | 137.30 | 1560.0 | 13.47 | 47,193 | 1957 | 1811.7 | 20.7 | 90.7 |
Skewness | 2.08 | 0.05 | 1.53 | 0.39 | −1.39 | 0.62 | −1.06 | 0.71 | 1.90 |
Steel Factory | Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn |
Min | 0.00 | 12.03 | 67.8 | 12.08 | 17,992 | 431 | 53.4 | 0.0 | 48.0 |
10th-perc | 0.00 | 15.40 | 141.7 | 14.51 | 23,529 | 504 | 80.6 | 0.0 | 50.2 |
50th-perc | 0.17 | 25.54 | 350.3 | 19.75 | 34,112 | 632 | 258.2 | 0.0 | 82.6 |
Average | 0.18 | 26.40 | 359.4 | 21.43 | 32,377 | 648 | 257.6 | 3.4 | 86.1 |
90th-perc | 0.32 | 38.49 | 658.7 | 30.05 | 40,522 | 804 | 467.5 | 10.2 | 116.8 |
Max | 0.52 | 47.71 | 712.8 | 35.22 | 44,307 | 829 | 548.4 | 25.1 | 215.2 |
Skewness | 0.71 | 0.45 | 0.35 | 0.54 | −0.22 | 0.05 | 0.43 | 2.21 | 1.84 |
BG | 0.41 | 11.3 | 59.5 | 38.9 | --- | 480 | 29 | 27 | 70 |
TAV | 20 | 100 | 450 | 500 | --- | --- | 150 | 300 | 1500 |
MAC | 5 | 50 | 200 | 150 | --- | --- | 60 | 300 | 300 |
Shoots | Grains | Significance | p-Value | ||
---|---|---|---|---|---|
Eretria | Cd | nd | nd | --- | --- |
Co | nd | nd | --- | --- | |
Cr | nd | nd | --- | --- | |
Cu | nd | nd | --- | --- | |
Fe | 0.84 | nd | --- | --- | |
Mn | 9.96 | 4.32 | ns | 0.115 | |
Ni | nd | nd | --- | --- | |
Pb | nd | nd | --- | --- | |
Zn | 290.90 | 233.84 | ns | 0.721 | |
Domokos | Cd | nd | nd | --- | --- |
Co | nd | nd | --- | --- | |
Cr | nd | nd | --- | --- | |
Cu | nd | nd | --- | --- | |
Fe | 0.59 | nd | --- | --- | |
Mn | 8.35 | 11.20 | *** | <0.001 | |
Ni | nd | nd | --- | --- | |
Pb | nd | nd | --- | --- | |
Zn | 415.60 | 570.15 | *** | <0.001 | |
Steel factory | Cd | nd | nd | -- | -- |
Co | nd | nd | -- | -- | |
Cr | 52.93 | 39.94 | ** | <0.01 | |
Cu | 407.96 | 442.21 | ns | 0.517 | |
Fe | nd | nd | -- | -- | |
Mn | 52.10 | 47.50 | ns | 0.677 | |
Ni | nd | nd | -- | -- | |
Pb | nd | nd | -- | -- | |
Zn | 516.89 | 556.33 | ns | 0.208 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thalassinos, G.; Antoniadis, V. Monitoring Potentially Toxic Element Pollution in Three Wheat-Grown Areas with a Long History of Industrial Activity and Assessment of Their Effect on Human Health in Central Greece. Toxics 2021, 9, 293. https://doi.org/10.3390/toxics9110293
Thalassinos G, Antoniadis V. Monitoring Potentially Toxic Element Pollution in Three Wheat-Grown Areas with a Long History of Industrial Activity and Assessment of Their Effect on Human Health in Central Greece. Toxics. 2021; 9(11):293. https://doi.org/10.3390/toxics9110293
Chicago/Turabian StyleThalassinos, Georgios, and Vasileios Antoniadis. 2021. "Monitoring Potentially Toxic Element Pollution in Three Wheat-Grown Areas with a Long History of Industrial Activity and Assessment of Their Effect on Human Health in Central Greece" Toxics 9, no. 11: 293. https://doi.org/10.3390/toxics9110293
APA StyleThalassinos, G., & Antoniadis, V. (2021). Monitoring Potentially Toxic Element Pollution in Three Wheat-Grown Areas with a Long History of Industrial Activity and Assessment of Their Effect on Human Health in Central Greece. Toxics, 9(11), 293. https://doi.org/10.3390/toxics9110293