Urinary Organophosphate Metabolites and Metabolic Biomarkers of Conventional and Organic Farmers in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Data Collection
2.2. Analysis of Organophosphate Metabolites in Urine
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Conventional and Organic Farmers
3.2. Comparison of Metabolic Biomarkers between Conventional and Organic Farmers
3.3. Comparison between Urinary OP Metabolites between Conventional and Organic Farmers
3.4. Comparison of Urinary OP Metabolites of This Study with Other Studies
3.5. Model for Change in Metabolic Biomarkers per Unit of OP Metabolite
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bureau of Plant and Agricultural Materials Control, Department of Agriculture, Ministry of Agriculture and Cooperatives. Report of Pesticides Imports. Available online: https://www.doa.go.th/ard/?page_id=386 (accessed on 11 October 2021). (In Thai)
- Schreinemachers, P.; Chen, H.-P.; Nguyen, T.T.L.; Buntong, B.; Bouapao, L.; Gautam, S.; Le, N.T.; Pinn, T.; Vilaysone, P.; Srinivasan, R. Too much to handle? Pesticide dependence of smallholder vegetable farmers in Southeast Asia. Sci. Total Environ. 2017, 593–594, 470–477. [Google Scholar] [CrossRef]
- Kaewboonchoo, O.; Kongtip, P.; Woskie, S. Occupational health and safety for agricultural workers in Thailand: Gaps and recommendations, with a focus on pesticide use. New Solut. 2015, 25, 102–120. [Google Scholar] [CrossRef] [Green Version]
- Harnpicharnchai, K.; Chaiear, N.; Charerntanyarak, L. Residues of organophosphate pesticides used in vegetable cultivation in ambient air, surface water and soil in Bueng Niam Subdistrict, Khon Kaen, Thailand. Southeast Asian J. Trop Med. Public Health 2013, 44, 1088–1097. [Google Scholar] [PubMed]
- Kongtip, P.; Nankongnab, N.; Pundee, R.; Kallayanatham, N.; Pengpumkiat, S.; Chungcharoen, J.; Phommalachai, C.; Konthonbut, P.; Choochouy, N.; Sowanthip, P.; et al. Acute Changes in Thyroid Hormone Levels among Thai Pesticide SprayerS. Toxics 2021, 9, 16. [Google Scholar] [CrossRef]
- HFocus. Effect of Chemical Pesticides. Available online: https://www.hfocus.org/content/2019/08/17468 (accessed on 11 October 2021). (In Thai).
- Stuart, A.; Werayutwattana, T. Understanding the Complexities of Organic Farming in Thailand. Available online: https://www.chiangmaicitylife.com/clg/business/agriculture/understanding-the-complexities-of-organic-farming-in-thailand/ (accessed on 11 October 2021). (In Thai).
- Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, N.; Bunngamchairat, A.; Yimsabai, J.; Pataitiemthong, A.; Woskie, S. A cross-sectional investigation of cardiovascular and metabolic biomarkers among conventional and organic farmers in Thailand. Int. J. Environ. Res. Public Health 2018, 15, 2590. [Google Scholar] [CrossRef] [Green Version]
- Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Pundee, R.; Yimsabai, J.; Woskie, S. Longitudinal Study of Metabolic Biomarkers among Conventional and Organic Farmers in Thailand. Int. J. Environ. Res. Public Health 2020, 17, 4178. [Google Scholar] [CrossRef]
- Department of Mental Health. Stress Evaluation. Available online: https://www.dmh.go.th/test/download/view.asp?id=18 (accessed on 11 October 2021). (In Thai)
- Prapamontol, T.; Sutan, K.; Laoyang, S.; Hongsibsong, S.; Lee, G.; Yano, Y.; Hunter, R.E.; Ryan, P.B.; Barr, D.B.; Panuwet, P. Cross validation of gas chromatography-flame photometric detection and gas chromatography-mass spectrometry methods for measuring dialkylphosphate metabolites of organophosphate pesticides in human urine. Int. J. Hyg. Environ. Health 2014, 217, 554–566. [Google Scholar] [CrossRef]
- Hornung, R.W.; Reed, L.D. Estimation of average concentration in the presence of nondetectable values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Beckmann Coulter, Instruction for Use. Creatinine. Available online: https://www.beckmancoulter.com/wsrportal/techdocs?docname=/cis/A69463/%%/EN (accessed on 11 October 2021).
- Choi, J.; Moon, S.; Roh, S. The Relationship between Frequency Score of Wearing Personal Protective Equipment and Concentration of Urinary Organophosphorus Pesticide Metabolites in FarmerS. J. Environ. Health Sci. 2019, 45, 583–589. [Google Scholar]
- Panuwet, P.; Prapamontol, T.; Chantara, S.; Thavornyuthikarn, P.; Montesano, M.A.; Whitehead, R.D., Jr.; Barr, D.B. Concentrations of urinary pesticide metabolites in small scale farmers in Chiang Mai Province, Thailand. Sci. Total Environ. 2008, 407, 655–668. [Google Scholar] [CrossRef] [PubMed]
- Sapbamrer, R.; Hongsibsong, S.; Kerdnoi, T. Urinary dialkylphosphate metabolites and health symptoms among farmers in Thailand. Arch. Environ. Occup. Health 2017, 72, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Motsoeneng, P.M.; Dalvie, M.A. Relationship between Urinary Pesticide Residue Levels and Neurotoxic Symptoms among Women on Farms in the Western Cape, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 6281–6299. [Google Scholar] [CrossRef] [Green Version]
- Chouichom, S.; Yamao, M. Comparing opinions and attitudes of organic and non-organic farmers towards organic rice farming system in north-eastern Thailand. J. Org. Syst. 2010, 5, 25–35. [Google Scholar]
- Galt, R.E. Toward an integrated understanding of pesticide use intensity in Costa Rican vegetable farming. Hum. Ecol. 2008, 36, 655–677. [Google Scholar] [CrossRef] [Green Version]
- Schelhas, J. Building sustainable land uses on existing practices: Smallholder land use mosaics in tropical lowland Costa Rica. Soc. Nat. Resour. 1994, 7, 67–84. [Google Scholar] [CrossRef]
- Staudacher, P.; Fuhrimann, S.; Farnham, A.; Mora, A.M.; Atuhaire, A.; Niwagaba, C.; Stamm, C.; Eggen, R.I.; Winkler, M.S. Comparative Analysis of Pesticide Use Determinants Among Smallholder Farmers From Costa Rica and Uganda. Environ. Health Insights 2020, 14, 1178630220972417. [Google Scholar] [CrossRef] [PubMed]
- Nankongnab, N.; Kongtip, P.; Tipayamongkholgul, M.; Bunngamchairat, A.; Sitthisak, S.; Susan Woskie, S. Difference in accidents, health symptoms and ergonomic problems between chemical use and organic farmers. J. Agromed. 2020, 25, 158–165. [Google Scholar] [CrossRef]
- Aungkulanon, S.; Pitayarangsarit, S.; Bundhamcharoen, K.; Akaleephan, C.; Chongsuvivatwong, V.; Phoncharoen, R.; Tangcharoensathien, V. Smoking prevalence and attributable deaths in Thailand: Predicting outcomes of different tobacco control interventions. BMC Public Health 2019, 19, 984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, M.; McKetin, R.; Banwell, C.; Yiengprugsawan, V.; Kelly, M.; Seubsman, S.-A.; Iso, H.; Sleigh, A.; Thai Cohort Study Team. Alcohol consumption patterns in Thailand and their relationship with non-communicable disease. BMC Public Health 2015, 15, 1297. [Google Scholar] [CrossRef] [Green Version]
- Thammisetty, A.K.; Pothu, U.K.; Nelakuditi, L.K. Evaluation of cholinesterase and lipid profile levels in chronic pesticide exposed persons. J. Fam. Med. Prim. Care 2019, 8, 2073–2078. [Google Scholar] [CrossRef]
- Bravo, R.; Caltabiano, L.M.; Weerasekera, G.; Whitehead, R.D.; Fernandez, C.; Needham, L.L.; Bradman, A.; Barr, D.B. Measurement of dialkyl phosphate metabolites of organophosphorus pesticides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 249–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llop, S.; Murcia, M.; Iñiguez, C.; Roca, M.; González, L.; Yusà, V.; Rebagliato, M.; Ballester, F. Distributions and determinants of urinary biomarkers of organophosphate pesticide exposure in a prospective Spanish birth cohort study. Environ. Health 2017, 16, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javeres, M.L.; Habib, R.; Laure, N.J.; Shah, S.A.; Valis, M.; Kuca, K.; Nurulain, S.M. Chronic Exposure to Organophosphates Pesticides and Risk of Metabolic Disorder in Cohort from Pakistan and Cameroon. Int. J. Environ. Res. Public Health 2021, 18, 2310. [Google Scholar] [CrossRef] [PubMed]
- Abdou, H.M.; ElMazoudy, R.H. Oxidative damage, hyperlipidemia and histological alterations of cardiac and skeletal muscles induced by different doses of diazinon in female rats. J. Hazard. Mater. 2010, 182, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Ryhanen, R.; Herranen, J.; Korhonen, K.; Penttila, I.; Polvilampi, M.; Puhakainen, E. Relationship between serum lipids, lipoproteins and pseudocholinesterase during organophosphate poisoning in rabbitS. Int. J. Biochem. 1984, 16, 687–690. [Google Scholar] [CrossRef]
- Elsharkawy, E.E.; Yahia, D.; El-Nisr, N.A. Sub-chronic exposure to chlorpyrifos induces hematological, metabolic disorders and oxidative stress in rat: Attenuation by glutathione. Environ. Toxicol. Pharmacol. 2013, 35, 218–227. [Google Scholar] [CrossRef]
- Kalender, S.; Ogutcu, A.; Uzunhisarcikli, M.; Açikgoz, F.; Durak, D.; Ulusoy, Y.; Kalender, Y. Diazinon-induced hepatotoxicity and protective effect of vitamin E on some biochemical indices and ultrastructural changes. Toxicology 2005, 211, 197–206. [Google Scholar] [CrossRef]
- Ogutcu, A.; Suludere, Z.; Kalender, Y. Dichlorvos-induced hepatotoxicity in rats and the protective effects of vitamins C and E. Environ. Toxicol. Pharmacol. 2008, 26, 355–361. [Google Scholar] [CrossRef]
- Aramjoo, H.; Farkhondeh, T.; Aschner, M.; Naseri, K.; Mehrpour, O.; Sadighara, P.; Roshanravan, B.; Samarghandian, S. The association between diazinon exposure and dyslipidemia occurrence: A systematic and meta-analysis study. Environ. Sci. Pollut. Res. 2021, 28, 3994–4006. [Google Scholar] [CrossRef] [PubMed]
- Ranjbar, M.; Rotondi, M.A.; Ardern, C.I.; Kuk, J.L. The Influence of Urinary Concentrations of Organophosphate Metabolites on the Relationship between BMI and Cardiometabolic Health Risk. J. Obes. 2015, 2015, 687914. [Google Scholar] [CrossRef] [Green Version]
Variables | Conventional Farmers n (%) | Organic Farmers n (%) | p-Value |
---|---|---|---|
Age | |||
Min–max | 18–69 | 28–79 | |
Mean (SD) | 50.22 (11.1) | 53.20 (10.3) | 0.005 § |
Gender | |||
Male | 158 (74.2) | 115 (51.1) | <0.001 † |
Female | 55 (25.8) | 110 (48.9) | |
Educational level | |||
Below elementary | 14 (6.6) | 4 (1.8) | 0.035 † |
Elementary | 122 (57.3) | 125 (55.6) | |
High school | 72 (33.8) | 85 (37.8) | |
Bachelor or higher | 5 (2.3) | 11 (4.9) | |
Marital status | |||
Single | 21 (10.1) | 13 (6) | 0.032 † |
Married | 179 (86.1) | 185 (84.9) | |
Widowed/divorced | 8 (3.8) | 20 (9.2) | |
Agricultural work time (h/week) | |||
Mean (SD) | 26.9 (13.8) | 28.8 (17.2) | 0.011 § |
Have second Job | |||
Yes | 49 (23) | 128 (56.9) | <0.001 † |
No | 164 (77) | 97 (43.1) | |
Second job work time (h/week) | |||
Mean (SD) | 24.9 (13.6) | 26.6 (17.8) | 0.048 § |
Alcohol intake | |||
Current drinker | 136 (63.8) | 91 (41) | <0.001 † |
Nondrinker | 77 (36.2) | 131 (59) | |
Smoking | |||
Current smoker | 59 (26.9) | 36 (16.1) | 0.006 † |
Nonsmoker | 155 (73.1) | 188 (83.9) | |
Living near farms (within 1 km) | |||
Yes | 180 (84.5) | 104 (46.64) | <0.001 † |
No | 33 (15.4) | 119 (53.36) | |
Insecticide use at home | |||
Yes | 191 (89.7) | 33 (14.7) | <0.001 † |
No | 22 (10.3) | 191 (85.3) | |
Year of pesticide use (year) | |||
Min–Max | 4–51 | 0–45 | |
Mean (SD) | 26.71 (12.75) | 16.25 (11.64) | <0.001 § |
Health Outcomes | Conventional Farmers Mean (SD) | Organic Farmers Mean (SD) | *p-Value |
---|---|---|---|
BMI (kg/m2) | 24.51 (4.73) | 23.15 (3.58) | 0.001 |
Waist circumference (cm) | 83.00 (10.17) | 79.72 (10.22) | 0.001 |
% Body Fat (%) | 27.04 (8.67) | 26.78 (9.25) | 0.763 |
Triglyceride (mg/dL) | 170.59 (137.52) | 144.07 (104.24) | 0.024 |
Total cholesterol (mg/dL) | 231.69 (42.29) | 192.77 (56.21) | <0.001 |
HDL (mg/dL) | 52.89 (11.39) | 39.85 (12.93) | <0.001 |
LDL (mg/dL) | 148.54 (38.99) | 124.21 (42.18) | <0.001 |
Blood glucose (mg/dL) | 109.36 (26.09) | 102.56 (23.41) | 0.004 |
Systolic BP (mmHg) | 134.58 (17.35) | 133.46 (17.09) | 0.500 |
Diastolic BP (mmHg) | 82.14 (11.72) | 79.14 (9.31) | 0.003 |
OP Metabolites | Conventional Farmers | Organic Farmers | p-Value | ||
---|---|---|---|---|---|
% Detectible | GM (Range) (nmole/g Creatinine) | % Detectible | GM (Range) (nmole/g Creatinine) | ||
DMP | 51.17 | 37.72 (0.73–6809.75) | 8.40 | 3.87 (0.89–355.32) | <0.001 |
DMTP | 49.30 | 41.06 (1.3–4674.27) | 12.44 | 6.81 (0.94–278.27) | <0.001 |
DMDTP | 2.82 | 4.68 (3.24–808.5) | 0.0 | 4.45 (1.33–20.56) | 0.518 |
DEP | 60.10 | 29.63 (0.35–5800.85) | 12.89 | 3.17 (0.3–178.11) | <0.001 |
DETP | 64.79 | 50.83 (0.84–9343.99) | 61.30 | 7.47 (0.17–86.26) | <0.001 |
DEDTP | 62.91 | 22.17 (1.75–805.00) | 10.22 | 2.92 (0.05–24.94) | <0.001 |
ΣDMP | – | 183.20 (3.15–6819.10) | – | 17.01 (3.87–637.05) | <0.001 |
ΣDEP | – | 188.78 (4.00–12,829.68) | – | 17.50 (2.71–268.35) | <0.001 |
DAP | – | 581.67 (13.03–13,278.29) | – | 37.83 (8.04–905.39) | <0.001 |
Reference | Country | Type of Farmers | n | DAP (μg/g Creatinine) | |
---|---|---|---|---|---|
GM/Median | Max | ||||
This study | Thailand | Conventional farmers | 213 | 87.64 | 2186.38 |
This study | Thailand | Organic farmers | 225 | 5.92 | 127.7 |
Choi et al. [14] | Korea | Farmers | 308 | 287.10 | 5198.60 |
Sapbamrer et al. [16] | Thailand | Farmers | 84 | 6.43 | 163.90 |
Panuwet et al. [15] | Thailand | Farmers | 136 | 34.8 | 6476 |
Motsoeneng et al. [17] | South Africa | Women on farm | 101 | Median 141.42 | – |
Health Outcome | All Farmers | *p-Value | All Farmers | *p-Value |
---|---|---|---|---|
Crude RR (95%CI) | Adjusted RR (95%CI) | |||
BMI (kg/m2) | 1.09 (088–1.34) | 0.448 | 1.01 (0.78–1.31) | 0.931 |
Waist circumference (cm) | 1.14 (0.68–1.92) | 0.610 | 0.92 (0.52–1.66) | 0.792 |
% Body Fat (%) | 0.95 (0.61–1.47) | 0.803 | 1.07 (0.74–1.57) | 0.716 |
Triglyceride (mg/dL) | 0.18 (0.0–69.96) | 0.576 | 0.01 (1.04 × 10−5–6.26) | 0.156 |
Total cholesterol (mg/dL) | 1102.61 (95.06–12,789.53) | <0.001* | 827.98 (59.22–11,577.17) | <0.001 * |
HDL (mg/dL) | 8.84 (4.73–16.51) | <0.001* | 6.70 (3.44–13.04) | <0.001 * |
LDL (mg/dL) | 197.94 (25.64–1527.75) | <0.001* | 242.70 (27.27–2160.28) | <0.001 * |
Blood glucose (mg/dL) | 1.14 (0.42–3.09) | 0.799 | 1.14 (0.42–3.09) | 0.798 |
Systolic BP (mmHg) | 0.81 (0.35–1.90) | 0.629 | 0.81 (0.35–1.90) | 0.628 |
Diastolic BP (mmHg) | 0.85 (0.47–1.52) | 0.583 | 0.85 (0.47–1.52) | 0.581 |
Health Outcome | All Farmers | * p-Value | All Farmers | * p-Value |
---|---|---|---|---|
Crude RR (95%CI) | Adjusted RR (95%CI) | |||
BMI (kg/m2) | 1.26 (1.01–1.56) | 0.038 * | 1.20 (0.94–1.53) | 0.153 |
Waist circumference (cm) | 1.71 (1.01–2.91) | 0.047 * | 1.38 (0.74–2.59) | 0.311 |
% Body Fat (%) | 1.02 (0.63–1.64) | 0.946 | 1.26 (0.86–1.84) | 0.236 |
Triglyceride (mg/dL) | 1.27 (0.00–405.20) | 0.935 | 0.01 (5.2 × 10−6–33.74) | 0.280 |
Total cholesterol (mg/dL) | 221.30 (16.70–2933.28) | <0.001 * | 57.00 (2.74–1185.93) | 0.009 * |
HDL (mg/dL) | 8.19 (4.19–15.98) | <0.001 * | 4.60 (2.13–9.96) | <0.001 * |
LDL (mg/dL) | 25.07 (2.77–226.80) | 0.004 * | 14.59 (1.22–174.51) | 0.034 * |
Blood glucose (mg/dL) | 0.932 (0.28–3.08) | 0.909 | 1.02 (0.37–2.85) | 0.968 |
Systolic BP (mmHg) | 0.92 (0.36–2.35) | 0.861 | 1.02 (0.38–2.73) | 0.969 |
Diastolic BP (mmHg) | 1.27 (0.69–2.34) | 0.447 | 1.31 (0.66–2.58) | 0.441 |
Health Outcome | All Farmers | * p-Value | All Farmers | * p-Value |
---|---|---|---|---|
Crude RR (95%CI) | Adjusted RR (95%CI) | |||
BMI (kg/m2) | 1.23 (1.00–1.51) | 0.054 | 1.15 (0.89–1.48) | 0.287 |
Waist circumference (cm) | 1.58 (0.93–2.68) | 0.093 | 1.21 (0.64–2.30) | 0.552 |
% Body Fat (%) | 1.01 (0.63–1.61) | 0.977 | 1.26 (0.85–1.85) | 0.250 |
Triglyceride (mg/dL) | 1.07 (0.00–482.56) | 0.983 | 0.01 (1.6 × 10−6–13.06) | 0.184 |
Total cholesterol (mg/dL) | 2217.93 (171.11–28,748.74) | <0.001 * | 1134.08 (58.58–21,955.72) | <0.001 * |
HDL (mg/dL) | 12.88 (6.69–24.83) | <0.001 * | 8.30 (3.88–17.77) | <0.001 * |
LDL (mg/dL) | 193.44 (24.49–1593.26) | <0.001 * | 229.79 (21.72–2430.59) | <0.001 * |
Blood glucose (mg/dL) | 1.38 (0.50–3.80) | 0.534 | 1.02 (0.36–2.92) | 0.973 |
Systolic BP (mmHg) | 0.94 (0.38–2.32) | 0.892 | 0.99 (0.38–2.53) | 0.976 |
Diastolic BP (mmHg) | 1.16 (0.65–2.08) | 0.619 | 1.13 (0.58–2.18) | 0.724 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongtip, P.; Nankongnab, N.; Kallayanatham, N.; Chungcharoen, J.; Bumrungchai, C.; Pengpumkiat, S.; Woskie, S. Urinary Organophosphate Metabolites and Metabolic Biomarkers of Conventional and Organic Farmers in Thailand. Toxics 2021, 9, 335. https://doi.org/10.3390/toxics9120335
Kongtip P, Nankongnab N, Kallayanatham N, Chungcharoen J, Bumrungchai C, Pengpumkiat S, Woskie S. Urinary Organophosphate Metabolites and Metabolic Biomarkers of Conventional and Organic Farmers in Thailand. Toxics. 2021; 9(12):335. https://doi.org/10.3390/toxics9120335
Chicago/Turabian StyleKongtip, Pornpimol, Noppanun Nankongnab, Nichcha Kallayanatham, Jutamanee Chungcharoen, Chanapa Bumrungchai, Sumate Pengpumkiat, and Susan Woskie. 2021. "Urinary Organophosphate Metabolites and Metabolic Biomarkers of Conventional and Organic Farmers in Thailand" Toxics 9, no. 12: 335. https://doi.org/10.3390/toxics9120335
APA StyleKongtip, P., Nankongnab, N., Kallayanatham, N., Chungcharoen, J., Bumrungchai, C., Pengpumkiat, S., & Woskie, S. (2021). Urinary Organophosphate Metabolites and Metabolic Biomarkers of Conventional and Organic Farmers in Thailand. Toxics, 9(12), 335. https://doi.org/10.3390/toxics9120335