Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Areas, Sampling, and Processing
2.2. Determination of the Soil Physical and Chemical Properties
2.3. Metals Quantification
2.4. Contamination Factor (CF)
2.5. The Pollution Load Index (PLI)
2.6. Geo-Accumulation Index () and Enrichment Factor (EF)
2.7. Ecological Risk Analysis
2.8. Health Risk Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. The Soil Properties
3.2. Metals Concentrations, Descriptive Statistics, and Correlation Analysis
3.3. Metals Contamination Level and Potential Ecological Risks Assessment
3.3.1. Enrichment Factor (EF)
3.3.2. Geo-Accumulation Index (Igeo)
3.3.3. Contamination Factor (CF) and Pollution Load Index (PLI)
3.3.4. Ecological Risk Factor (Er) and Potential Ecological Risk Index (PERI)
3.4. Potential Human Health Risks Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abusin, S.A.; Mandikiana, B.W. Towards sustainable food production systems in Qatar: Assessment of the viability of aquaponics. Glob. Food Secur. 2020, 25, 100349. [Google Scholar] [CrossRef]
- Kishor, P.; Ghosh, A.; Kumar, D. Use of fly ash in agriculture: A way to improve soil fertility and its productivity. Asian J. Agric. Res. 2010, 4, 1–14. [Google Scholar]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, R.; Yadav, S. Distribution, pollution levels, toxicity, and health risk assessment of metals in surface dust from Bhiwadi industrial area in North India. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 2091–2111. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, T.; Wang, H.; Liu, Y.; Pan, Y.; Xie, Y.; Huang, H.; Fan, Z. Bioaccumulation and health risk assessment of heavy metals to bivalve species in Daya Bay (South China Sea): Consumption advisory. Mar. Pollut. Bull. 2020, 150, 110717. [Google Scholar] [CrossRef]
- Cheng, W.H.; Yap, C.K. Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia. Chemosphere 2015, 135, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Usman, K.; Abu-Dieyeh, M.H.; Zouari, N.; Al-Ghouti, M.A. Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Ihedioha, J.; Ukoha, P.; Ekere, N. Ecological and human health risk assessment of heavy metal contamination in soil of a municipal solid waste dump in Uyo, Nigeria. Environ. Geochem. Health 2017, 39, 497–515. [Google Scholar] [CrossRef] [PubMed]
- Adimalla, N.; Chen, J.; Qian, H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. Ecotoxicol. Environ. Saf. 2020, 194, 110406. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef] [Green Version]
- Usman, K.; Al Jabri, H.; Abu-Dieyeh, M.H.; Alsafran, M.H.S.A. Comparative Assessment of Toxic Metals Bioaccumulation and the Mechanisms of Chromium (Cr) Tolerance and Uptake in Calotropis procera. Front. Plant Sci. 2020, 11, 883. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Kheir, R.B.; Adhikari, K.; Malinowski, R.; Greve, M.B.; Knadel, M.; Greve, M.H. Digital mapping of toxic metals in Qatari soils using remote sensing and ancillary data. Remote Sens. 2016, 8, 1003. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shan, Q.; Liang, X.; Guan, F.; Zhang, Z.; Huang, H.; Fang, H. Levels and human health risk assessments of heavy metals in fish tissue obtained from the agricultural heritage rice-fish-farming system in China. J. Hazard. Mater. 2020, 386, 121627. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Peng, S.; Zhang, X.; Wu, D.; Luo, W.; Zhang, T.; Zhou, S.; Yang, G.; Wan, H.; Wu, L. Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. J. Geochem. Explor. 2015, 148, 71–78. [Google Scholar] [CrossRef]
- Souri, A.; Niyogi, S.; Naji, A. Distribution, source apportionment, bioavailability and ecological risks of metals in reef sediments and corals of the Persian Gulf (Iran): Khark Island, Chirouyeh, and Hendorabi Island. Mar. Pollut. Bull. 2019, 149, 110654. [Google Scholar] [CrossRef]
- Al-Thani, R.; Yasseen, B. Phytoremediation of polluted soils and waters by native Qatari plants: Future perspectives. Environ. Pollut. 2020, 259, 113694. [Google Scholar] [CrossRef] [PubMed]
- Mehr, M.R.; Keshavarzi, B.; Moore, F.; Sharifi, R.; Lahijanzadeh, A.; Kermani, M. Distribution, source identification and health risk assessment of soil heavy metals in urban areas of Isfahan province, Iran. J. Afr. Earth Sci. 2017, 132, 16–26. [Google Scholar] [CrossRef]
- Tomlinson, D.; Wilson, J.; Harris, C.; Jeffrey, D. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Madrid, L.; Díaz-Barrientos, E.; Madrid, F. Distribution of heavy metal contents of urban soils in parks of Seville. Chemosphere 2002, 49, 1301–1308. [Google Scholar] [CrossRef]
- Cabrera, F.; Clemente, L.; Barrientos, E.D.; López, R.; Murillo, J. Heavy metal pollution of soils affected by the Guadiamar toxic flood. Sci. Total Environ. 1999, 242, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. 2018, 25, 1055–1069. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Salati, S.; Moore, F. Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environ. Monit. Assess. 2010, 164, 677–689. [Google Scholar] [CrossRef]
- Amin, B.; Ismail, A.; Arshad, A.; Yap, C.K.; Kamarudin, M.S. Anthropogenic impacts on heavy metal concentrations in the coastal sediments of Dumai, Indonesia. Environ. Monit. Assess. 2009, 148, 291–305. [Google Scholar] [CrossRef] [PubMed]
- Loska, K.; Wiechula, D.; Barska, B.; Cebula, E.; Chojnecka, A. Assessment of arsenic enrichment of cultivated soils in Southern Poland. Pol. J. Environ. Stud. 2003, 12, 187–192. [Google Scholar]
- Ahamad, M.I.; Song, J.; Sun, H.; Wang, X.; Mehmood, M.S.; Sajid, M.; Su, P.; Khan, A.J. Contamination level, ecological risk, and source identification of heavy metals in the hyporheic zone of the Weihe River, China. Int. J. Environ. Res. Public Health 2020, 17, 1070. [Google Scholar] [CrossRef] [Green Version]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Khodami, S.; Surif, M.; WO, W.M.; Daryanabard, R. Assessment of heavy metal pollution in surface sediments of the Bayan Lepas area, Penang, Malaysia. Mar. Pollut. Bull. 2017, 114, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-J.; Ni, Z.-X.; Diao, Z.-H.; Hu, Y.-X.; Xu, X.-R. Contamination level, chemical fraction and ecological risk of heavy metals in sediments from Daya Bay, South China Sea. Mar. Pollut. Bull. 2018, 128, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Chabukdhara, M.; Nema, A.K. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: Probabilistic health risk approach. Ecotoxicol. Environ. Saf. 2013, 87, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Office of Emergency and Remedial Response, US Environmental Protection Agency. Risk Assessment Guidance for Superfund; Office of Emergency and Remedial Response, US Environmental Protection Agency: Washington, DC, USA, 1989; Volume 1. [Google Scholar]
- Xiao, R.; Awasthi, M.K.; Li, R.; Park, J.; Pensky, S.M.; Wang, Q.; Wang, J.J.; Zhang, Z. Recent developments in biochar utilization as an additive in organic solid waste composting: A review. Bioresour. Technol. 2017, 246, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Baltas, H.; Sirin, M.; Gökbayrak, E.; Ozcelik, A.E. A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere 2020, 241, 125015. [Google Scholar] [CrossRef]
- Jiang, F.; Ren, B.; Hursthouse, A.; Deng, R.; Wang, Z. Distribution, source identification, and ecological-health risks of potentially toxic elements (PTEs) in soil of thallium mine area (southwestern Guizhou, China). Environ. Sci. Pollut. Res. 2019, 26, 16556–16567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Xia, X.; Lin, C.; Chen, X.; Zhou, C. Levels of arsenic and heavy metals in the rural soils of Beijing and their changes over the last two decades (1985–2008). J. Hazard. Mater. 2010, 179, 860–868. [Google Scholar] [CrossRef]
- Kwon, J.C.; Nejad, Z.D.; Jung, M.C. Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena 2017, 148, 92–100. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, J.S.; Singh, R.P.; Singh, N.; Yunus, M. Arsenic hazards in coal fly ash and its fate in Indian scenario. Resour. Conserv. Recycl. 2011, 55, 819–835. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, L.; Xu, L.; Hao, X.; Zhang, S.; Xu, M.; Zhu, P.; Fu, S.; Liang, Y.; Yin, H. Spatial distribution and risk assessment of heavy metals in contaminated paddy fields—A case study in Xiangtan City, southern China. Ecotoxicol. Environ. Saf. 2019, 171, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Ogundele, L.T.; Adejoro, I.A.; Ayeku, P.O. Health risk assessment of heavy metals in soil samples from an abandoned industrial waste dumpsite in Ibadan, Nigeria. Environ. Monit. Assess. 2019, 191, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.-H.; Cai, L.-M.; Wen, H.-H.; Hu, G.-C.; Chen, L.-G.; Luo, J. An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Sci. Total Environ. 2020, 701, 134466. [Google Scholar] [CrossRef] [PubMed]
- Mensah, A.K.; Marschner, B.; Shaheen, S.M.; Wang, J.; Wang, S.-L.; Rinklebe, J. Arsenic contamination in abandoned and active gold mine spoils in Ghana: Geochemical fractionation, speciation, and assessment of the potential human health risk. Environ. Pollut. 2020, 261, 114116. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.T.; Hassi, U.; Huq, S.I. Assessment of concentration and toxicological (Cancer) risk of lead, cadmium and chromium in tobacco products commonly available in Bangladesh. Toxicol. Rep. 2018, 5, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Kusin, F.M.; Azani, N.N.M.; Hasan, S.N.M.S.; Sulong, N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena 2018, 165, 454–464. [Google Scholar] [CrossRef]
- Barbieri, E.; Fontúrbel, F.E.; Herbas, C.; Barbieri, F.L.; Gardon, J. Indoor metallic pollution and children exposure in a mining city. Sci. Total Environ. 2014, 487, 13–19. [Google Scholar] [CrossRef]
- Wcisło, E. Polish soil quality standards versus risk-based soil screening levels for metals and arsenic. Hum. Ecol. Risk Assess. Int. J. 2012, 18, 569–587. [Google Scholar] [CrossRef]
- Adimalla, N. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ. Geochem. Health 2020, 42, 59–75. [Google Scholar] [CrossRef]
- Karimyan, K.; Alimohammadi, M.; Maleki, A.; Yunesian, M.; Nodehi, R.N.; Foroushani, A.R. The mobility of arsenic from highly polluted farmlands to wheat: Soil–Plant transfer model and health risk assessment. Land Degrad. Dev. 2020. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, R.; Li, Y.C.; Peng, Y.; Wen, X.; Ni, X. Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. Ecotoxicol. Environ. Saf. 2020, 195, 110475. [Google Scholar] [CrossRef]
Sampling Locations | Location Coordinates |
---|---|
1 | 25°49′28.1″ N 51°19′11.9″ E |
2 | 25°39′09.7″ N 51°22′19.3″ E |
3 | 25°42′37.9″ N 51°21′04.2″ E |
4 | 25°41′13.6″ N 51°25′35.1″ E |
5 | 25°52′17.7″ N 51°22′07.1″ E |
6 | 25°20′00.6″ N 51°08′51.8″ E |
7 | 25°33′47.6″ N 51°09′32.3″ E |
8 | 25°21′17.1″ N 51°13′40.0″ E |
9 | 25°25′00.3″ N 51°22′29.7″ E |
10 | 25°27′22.1″ N 51°22′42.9″ E |
V | Cr | Ni | Zn | Cu | As | Cd | Pb | |||
---|---|---|---|---|---|---|---|---|---|---|
HQingestion | Adults | Mean | 1.82 × 10−2 | 4.82 × 10−2 | 5.23 × 10−3 | 5.20 × 10−4 | 1.08 × 10−3 | 1.56 × 10−1 | 1.03 × 10−3 | 2.19 × 10−2 |
Min | 1.13 × 10−2 | 2.22 × 10−2 | 2.03 × 10−3 | 2.02 × 10−4 | 4.89 × 10−4 | 8.04 × 10−2 | 3.04 × 10−4 | 7.14 × 10−3 | ||
Max | 2.91 × 10−2 | 8.33 × 10−2 | 1.11 × 10−2 | 9.50 × 10−4 | 1.90 × 10−3 | 2.94 × 10−1 | 1.60 × 10−2 | 4.13 × 10−2 | ||
Children | Mean | 1.30 × 10−1 | 3.45 × 10−1 | 3.74 × 10−2 | 3.71 × 10−3 | 7.72 × 10−3 | 1.11 | 7.37 × 10−3 | 1.57 × 10−1 | |
Min | 8.05 × 10−2 | 1.59 × 10−1 | 1.45 × 10−2 | 1.44 × 10−3 | 3.49 × 10−3 | 5.74 × 10−1 | 2.17 × 10−3 | 5.10 × 10−2 | ||
Max | 2.08 × 10−1 | 5.95 × 10−1 | 7.91 × 10−2 | 6.79 × 10−3 | 1.36 × 10−2 | 2.10 | 1.14 × 10−1 | 2.95 × 10−1 | ||
HQdermal | Adults | Mean | 7.25 × 10−3 | 1.92 × 10−4 | 7.73 × 10−5 | 1.04 × 10−5 | 1.44 × 10−5 | 4.54 × 10−2 | 4.12 × 10−6 | 2.34 × 10−4 |
Min | 4.49 × 10−3 | 8.87 × 10−5 | 3.00 × 10−5 | 4.02 × 10−6 | 6.50 × 10−6 | 2.35 × 10−2 | 1.21 × 10−6 | 7.61 × 10−5 | ||
Max | 1.16 × 10−2 | 3.33 × 10−4 | 1.64 × 10−4 | 1.89 × 10−5 | 2.52 × 10−5 | 8.60 × 10−2 | 6.37 × 10−5 | 4.41 × 10−4 | ||
Children | Mean | 3.64 × 10−2 | 9.65 × 10−4 | 3.88 × 10−4 | 5.20 × 10−5 | 7.21 × 10−5 | 2.28 × 10−1 | 2.06 × 10−5 | 1.17 × 10−3 | |
Min | 2.25 × 10−2 | 4.45 × 10−4 | 1.50 × 10−4 | 2.02 × 10−5 | 3.26 × 10−5 | 1.18 × 10−1 | 6.08 × 10−6 | 3.82 × 10−4 | ||
Max | 5.82 × 10−2 | 1.67 × 10−3 | 8.21 × 10−4 | 9.50 × 10−5 | 1.26 × 10−4 | 4.31 × 10−1 | 3.20 × 10−4 | 2.21 × 10−3 | ||
HQinhalation | Adults | Mean | 2.67 × 10−6 | 7.44 × 10−4 | 7.47 × 10−7 | 7.65 × 10−8 | 1.59 × 10−7 | 5.58 × 10−5 | 1.33 × 10−6 | 1.28 × 10−6 |
Min | 1.66 × 10−6 | 3.43 × 10−4 | 2.90 × 10−7 | 2.97 × 10−8 | 7.19 × 10−8 | 2.88 × 10−5 | 3.92 × 10−7 | 4.18 × 10−7 | ||
Max | 4.28 × 10−6 | 1.29 × 10−3 | 1.58 × 10−6 | 1.40 × 10−7 | 2.79 × 10−7 | 1.06 × 10−4 | 2.06 × 10−5 | 2.42 × 10−6 | ||
Children | Mean | 3.63 × 10−6 | 1.01 × 10−3 | 1.01 × 10−6 | 1.04 × 10−7 | 2.16 × 10−7 | 7.57 × 10−5 | 1.81 × 10−6 | 1.74 × 10−6 | |
Min | 2.25 × 10−6 | 4.65 × 10−4 | 3.94 × 10−7 | 4.03 × 10−8 | 9.76 × 10−8 | 3.91 × 10−5 | 5.32 × 10−7 | 5.67 × 10−7 | ||
Max | 5.81 × 10−6 | 1.75 × 10−3 | 2.15 × 10−6 | 1.90 × 10−7 | 3.79 × 10−7 | 1.43 × 10−4 | 2.80 × 10−5 | 3.28 × 10−6 |
Adults | Children | ||||||
---|---|---|---|---|---|---|---|
Cr | Ni | As | Cr | Ni | As | ||
CRingestion | Mean | 2.48 × 10−5 | 6.10 × 10−5 | 2.40 × 10−5 | 4.43 × 10−5 | 1.09 × 10−4 | 4.29 × 10−5 |
Min | 1.14 × 10−5 | 2.37 × 10−5 | 1.24 × 10−5 | 2.04 × 10−5 | 4.23 × 10−5 | 2.22 × 10−5 | |
Max | 4.29 × 10−5 | 1.29 × 10−4 | 4.54 × 10−5 | 7.66 × 10−5 | 2.31 × 10−4 | 8.12 × 10−5 | |
CRdermal | Mean | 3.96 × 10−7 | 6.08 × 10−7 | 7.01 × 10−6 | 4.96 × 10−7 | 7.62 × 10−7 | 8.78 × 10−6 |
Min | 1.82 × 10−7 | 2.36 × 10−7 | 3.62 × 10−6 | 2.29 × 10−7 | 2.96 × 10−7 | 4.54 × 10−6 | |
Max | 6.84 × 10−7 | 1.29 × 10−6 | 1.33 × 10−5 | 8.57 × 10−7 | 1.61 × 10−6 | 1.66 × 10−5 | |
CRinhalation | Mean | 3.06 × 10−8 | 4.75 × 10−9 | 3.55 × 10−9 | 1.04 × 10−8 | 1.61 × 10−9 | 1.21 × 10−9 |
Min | 1.41 × 10−8 | 1.84 × 10−9 | 1.84 × 10−9 | 4.79 × 10−9 | 6.26 × 10−10 | 6.23 × 10−10 | |
Max | 5.29 × 10−8 | 1.01 × 10−8 | 6.73 × 10−9 | 1.80 × 10−8 | 3.41 × 10−9 | 2.28 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsafran, M.; Usman, K.; Al Jabri, H.; Rizwan, M. Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar. Toxics 2021, 9, 35. https://doi.org/10.3390/toxics9020035
Alsafran M, Usman K, Al Jabri H, Rizwan M. Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar. Toxics. 2021; 9(2):35. https://doi.org/10.3390/toxics9020035
Chicago/Turabian StyleAlsafran, Mohammed, Kamal Usman, Hareb Al Jabri, and Muhammad Rizwan. 2021. "Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar" Toxics 9, no. 2: 35. https://doi.org/10.3390/toxics9020035
APA StyleAlsafran, M., Usman, K., Al Jabri, H., & Rizwan, M. (2021). Ecological and Health Risks Assessment of Potentially Toxic Metals and Metalloids Contaminants: A Case Study of Agricultural Soils in Qatar. Toxics, 9(2), 35. https://doi.org/10.3390/toxics9020035