Sequential SEM-EDS, PLM, and MRS Microanalysis of Individual Atmospheric Particles: A Useful Tool for Assigning Emission Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Stations and Total Suspended Particulates (TSP) Sampling
2.2. Elemental Mapping of TSP Samples Subject to SEM-EDS and PLM
2.3. SEM-EDS/PLM/MRS Characterization of Individual Microparticles
3. Results and Discussion
3.1. Elemental Mapping of TSP Samples Subject to SEM-EDS and PLM
3.2. SEM-EDS/PLM/MRS Characterization of Individual Microparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- Grahame, T.J.; Klemm, R.; Schlesinger, R.B. Public health and components of particulate matter: The changing assessment of black carbon. J. Air Waste Manag. Assoc. 2014, 64, 620–660. [Google Scholar] [CrossRef] [PubMed]
- Betha, R.; Behera, S.N.; Balasubramanian, R. 2013 Southeast Asian Smoke Haze: Fractionation of Particulate-Bound Elements and Associated Health Risk. Environ. Sci. Technol. 2014, 48, 4327–4335. [Google Scholar] [CrossRef]
- Ostro, B.; Broadwin, R.; Green, S.; Feng, W.-Y.; Lipsett, M. Fine Particulate Air Pollution and Mortality in Nine California Counties: Results from CALFINE. Environ. Health Perspect. 2006, 114, 29–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samoli, E.; Analitis, A.; Touloumi, G.; Schwartz, J.; Anderson, H.R.; Sunyer, J.; Bisanti, L.; Zmirou, D.; Vonk, J.M.; Pek-kanen, J.; et al. Estimating the exposure-response relationships between particulate matter and mortality within the AP-HEA multicity project. Environ. Health Perspect. 2005, 113, 88–95. [Google Scholar] [CrossRef]
- López-Feldman, A.; Heres, D.; Marquez-Padilla, F. Air pollution exposure and COVID-19: A look at mortality in Mexico City using individual-level data. Sci. Total Environ. 2021, 756, 143929. [Google Scholar] [CrossRef]
- Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. Environ. Pollut. 2021, 268, 115859. [Google Scholar] [CrossRef] [PubMed]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Hopke, P.K.; Dai, Q.; Li, L.; Feng, Y. Global review of recent source apportionments for airborne particulate matter. Sci. Total Environ. 2020, 740, 140091. [Google Scholar] [CrossRef]
- Boldo, E.; Linares, C.; Lumbreras, J.; Borge, R.; Narros, A.; García-Pérez, J.; Fernández-Navarro, P.; Pérez-Gómez, B.; Aragonés, N.; Ramis, R. Health impact assessment of a reduction in ambient PM2.5 levels in Spain. Environ. Int. 2011, 37, 342–348. [Google Scholar] [CrossRef]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef]
- Coulter, C.T. Users Manual. Office of Air Quality Planning & Standards; EPA-452/R-04-011; U.S. Environmental Protection Agency, USEPA: Raleigh, NC, USA, 2004. [Google Scholar]
- Paatero, P. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 1997, 37, 23–35. [Google Scholar] [CrossRef]
- Shi, G.-L.; Feng, Y.-C.; Zeng, F.; Li, X.; Zhang, Y.-F.; Wang, Y.-Q.; Zhu, T. Use of a Nonnegative Constrained Principal Component Regression Chemical Mass Balance Model to Study the Contributions of Nearly Collinear Sources. Environ. Sci. Technol. 2009, 43, 8867–8873. [Google Scholar] [CrossRef] [PubMed]
- Reff, A.; Eberly, S.I.; Bhave, P.V. Receptor modeling of ambient particulate matter data using positive matrix factoriza-tion: Review of existing methods. J. Air Waste Manag. Assoc. 2007, 57, 146–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Utsunomiya, S.; Jensen, K.A.; Keeler, G.J.; Ewing, R.C. Direct Identification of Trace Metals in Fine and Ultrafine Particles in the Detroit Urban Atmosphere. Environ. Sci. Technol. 2004, 38, 2289–2297. [Google Scholar] [CrossRef]
- Geng, H.; Cheng, F.; Ro, C.U. Single-Particle Characterization of Atmospheric Aerosols Collected at Gosan, Korea, dur-ing the Asian Pacific Regional Aerosol Characterization Experiment Field Campaign Using Low-Z (Atomic Number) Particle Electron Probe X-ray Microanalysis. J. Air Waste Manag. Assoc. 2011, 61, 1183–1191. [Google Scholar] [CrossRef] [Green Version]
- Zeb, B.B.; Alam, K.K.; Sorooshian, A.A.; Blaschke, T.; Ahmad, I.; Shahid, I. On the Morphology and Composition of Particulate Matter in an Urban Environment. Aerosol Air Qual. Res. 2018, 18, 1431–1447. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.; Dai, R.; Zhang, Z. Characterization of fine particulate matter in ambient air by combining TEM and multiple spectroscopic techniques – NMR, FTIR and Raman spectroscopy. Environ. Sci. Process. Impacts 2014, 17, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Salma, I.; Maenhaut, W.; Zemplén-Papp, É.; Záray, G. Comprehensive characterisation of atmospheric aerosols in Buda-pest, Hungary: Physicochemical properties of inorganic species. Atmos. Environ. 2001, 35, 4367–4378. [Google Scholar] [CrossRef]
- Casuccio, G.S.; Schlaegle, S.F.; Lersch, T.L.; Huffman, G.P.; Chen, Y.; Shah, N. Measurement of fine particulate matter using electron microscopy techniques. Fuel Process. Technol. 2004, 85, 763–779. [Google Scholar] [CrossRef]
- Gokhale, S.; Patil, R. Uncertainty in modelling PM10 and PM2.5 at a non-signalized traffic roundabout. Atmos. Pollut. Res. 2010, 1, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Adachi, K.; Chung, S.H.; Buseck, P.R. Shapes of soot aerosol particles and implications for their effects on climate. J. Geophys. Res. Space Phys. 2010, 115, 1–9. [Google Scholar] [CrossRef]
- Ghio, A.J.; Devlin, R.B. Inflammatory Lung Injury after Bronchial Instillation of Air Pollution Particles. Am. J. Respir. Crit. Care Med. 2001, 164, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Craig, R.L.; Bondy, A.L.; Ault, A.P.; Craig, R.L.; Bondy, A.L.; Computer-, A.P.A. Computer-controlled Raman microspec-troscopy (CC-Raman): A method for the rapid characterization of individual atmospheric aerosol particles. Aerosol Sci. Technol. 2017, 51, 1099–1112. [Google Scholar] [CrossRef]
- Doughty, D.C.; Hill, S.C. Raman spectra of atmospheric particles measured in Maryland, USA over 22.5 h using an automated aerosol Raman spectrometer. J. Quant. Spectrosc. Radiat. Transf. 2020, 244, 106839. [Google Scholar] [CrossRef]
- Jentzsch, P.V.; Kampe, B.; Ciobotă, V.; Rösch, P.; Popp, J. Inorganic salts in atmospheric particulate matter: Raman spectroscopy as an analytical tool. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013, 115, 697–708. [Google Scholar] [CrossRef]
- Ghosal, S.; Macher, J.M.; Ahmed, K. Raman Microspectroscopy-Based Identification of Individual Fungal Spores as Poten-tial Indicators of Indoor Contamination and Moisture-Related Building Damage. Environ. Sci. Technol. 2012, 46, 6088–6095. [Google Scholar] [CrossRef]
- Bondy, A.L.; Craig, R.L.; Zhang, Z.; Gold, A.; Surratt, J.D.; Ault, A.P. Isoprene-Derived Organosulfates: Vibrational Mode Analysis by Raman Spectroscopy, Acidity-Dependent Spectral Modes, and Observation in Individual Atmospheric Particles. J. Phys. Chem. A 2017, 122, 303–315. [Google Scholar] [CrossRef]
- Sobanska, S.; Hwang, H.; Choël, M.; Jung, H.-J.; Eom, H.-J.; Kim, H.; Barbillat, J.; Ro, C.-U. Investigation of the Chemical Mixing State of Individual Asian Dust Particles by the Combined Use of Electron Probe X-ray Microanalysis and Raman Microspectrometry. Anal. Chem. 2012, 84, 3145–3154. [Google Scholar] [CrossRef]
- Tóth, Á.; Hoffer, A.; Pósfai, M.; Ajtai, T.; Kónya, Z.; Blazsó, M.; Czégény, Z.; Kiss, G.; Bozóki, Z.; Gelencsér, A. Chemical characterization of laboratory-generated tar ball particles. Atmos. Chem. Phys. 2018, 18, 10407–10418. [Google Scholar] [CrossRef] [Green Version]
- Petean, I.; Mocanu, A.; Păltinean, G.A.; Ţărcan, R.; Muntean, D.F.; Mureşan, L.; Arghir, G.; Tomoaia-Cotişel, M. Physi-co-chemical study concerning atmospheric particulate matter hazard. Stud. Univ. Babes-Bolyai Chem. 2017, 62, 33–46. [Google Scholar]
- Hindy, K.T.; Baghdady, A.R.; Howari, F.M.; Abdelmaksoud, A.S. A Qualitative Study of Airborne Minerals and Associated Organic Compounds in Southeast of Cairo, Egypt. Int. J. Environ. Res. Public Health 2018, 15, 568. [Google Scholar] [CrossRef] [Green Version]
- Comite, V.; Pozo-Antonio, J.S.; Cardell, C.; Randazzo, L.; La Russa, M.F.; Fermo, P. A multi-analytical approach for the characterization of black crusts on the facade of an historical cathedral. Microchem. J. 2020, 158, 105121. [Google Scholar] [CrossRef]
- Morillas, H.; Marcaida, I.; García-Florentino, C.; Maguregui, M.; Arana, G.; Madariaga, J.M. Micro-Raman and SEM-EDS analyses to evaluate the nature of salt clusters present in secondary marine aerosol. Sci. Total Environ. 2018, 615, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Fermo, P.; Mearini, A.; Bonomi, R.; Arrighetti, E.; Comite, V. An integrated analytical approach for the characterization of repainted wooden statues dated to the fifteenth century. Microchem. J. 2020, 157, 105072. [Google Scholar] [CrossRef]
- Fermo, P.; Comite, V.; Ciantelli, C.; Sardella, A.; Bonazza, A. A multi-analytical approach to study the chemical composi-tion of total suspended particulate matter (TSP) to assess the impact on urban monumental heritage in Florence. Sci. Total Environ. 2020, 740, 140055. [Google Scholar] [CrossRef]
- INEGI/Instituto Nacional de Estadística y Geografía Anuario estadístico y geográfico de Nuevo León 2017. Gob. Del Estado Nuevo León 2017, 1, 9–53.
- Green, J.; Sánchez, S. Air Quality in Latin America: An Overview—2012 Edition. Clean Air Institute. Updated version May 2013. Available online: https://www.yumpu.com/en/document/view/41258091/air-quality-in-latin-america-an-overview-clean-air-institute (accessed on 23 January 2021).
- Centro Mario Molina Análisis de la Contaminación por PM2.5 en la Ciudad de Monterrey, Nuevo León, Enfocado a la Identificación de Medidas Estratégicas de Control. 2019, p. 8. Available online: https://centromariomolina.org/wp-content/uploads/2019/05/3.-ResumenEjecutivo_CalidadAire_2018.pdf (accessed on 17 February 2021).
- Informe nacional de la calidad de aire México. Inst. Nac. Ecol. Cambio Climático 2018, 53, 1689–1699.
- Mancilla, Y.; Paniagua, I.Y.H.; Mendoza, A. Spatial differences in ambient coarse and fine particles in the Monterrey metropolitan area, Mexico: Implications for source contribution. J. Air Waste Manag. Assoc. 2019, 69, 548–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Monterrey, S.D.S. Programa de Gestión para Mejorar la Calidad del Aire del Estado de Nuevo León ProAire 2016–2025. p. 634. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjn9aOv9fLuAhXG7WEKHU8iDLgQFjABegQIAhAD&url=https%3A%2F%2Fwww.gob.mx%2Fsemarnat%2Facciones-y-programas%2Fprogramas-de-gestion-para-mejorar-la-calidad-del-aire&usg=AOvVaw1o4d1gjUfhPtqngbG8FYHh (accessed on 17 February 2021).
- INAFED, Plan Municipal de Desarrollo de Cadereyta 2018–2021. Periódico Of. del Estado. 2018. Available online: http://cadereyta.gob.mx/wp-content/uploads/2019/05/PLAN-MUNICIPAL-DE-DESARROLLO-2018-2021.pdf (accessed on 17 February 2021).
- U.S. EPA. Environmental Protection Agency Methods Compendium Method IO-2.1; US Environmental Protection Agency: Cincinnati, OH, USA, 1999; 30p. [Google Scholar]
- Li, W.; Shao, L. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J. Geophys. Res. Space Phys. 2009, 114, 1–10. [Google Scholar] [CrossRef]
- Aragon-Piña, A. ¿Cómo son las Partículas Atmosféricas Antropogénicas y Cuál es su Relación con los Diversos Tipos de Fuentes Contam-Inantes? Palibrio: Bloomington, IN, USA, 2011; ISBN 978-1-4633-0202-3. [Google Scholar]
- González, L.T.; Rodríguez, F.; Sánchez-Domínguez, M.; Leyva-Porras, C.; Silva-Vidaurri, L.; Acuna-Askar, K.; Kharisov, B.; Chiu, J.V.; Barbosa, J.A. Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico. Atmos. Environ. 2016, 143, 249–260. [Google Scholar] [CrossRef]
- Cabadas-Báez, H.V.; Sedov, S.; Jiménez-Álvarez, S.D.P.; Léonard, D.; Ancona-Aragón, I.I.; Hernández-Velázquez, M.L. Soils as a source of raw materials for ancient ceramic production in the Maya region of Mexico: Micromorphological insight. Boletín Soc. Geológica Mex. 2018, 70, 21–48. [Google Scholar] [CrossRef]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. (Eds.) Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA; Available online: http://www.handbookofmineralogy.org/ (accessed on 17 February 2021).
- Delly, J.G. Essentials of Polarized Light Microscopy and Ancillary Techniques; The McCrone Group: Westmont, IL, USA, 2007; pp. 1–602. [Google Scholar]
- Pallarés, S.; Gómez, E.T.; Jordán, M.M. Typological characterisation of mineral and combustion airborne particles in-doors in primary schools. Atmosphere 2019, 10, 209. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, J.C.A.; Gomes, O.D.F.M.; Paciornik, S. Automatic recognition of hematite grains under polarized reflected light microscopy through image analysis. Miner. Eng. 2011, 24, 1264–1270. [Google Scholar] [CrossRef]
- González, L.T.; Rodríguez, F.L.; Sánchez-Domínguez, M.; Cavazos, A.; Leyva-Porras, C.; Silva-Vidaurri, L.G.; Askar, K.A.; Kharissov, B.I.; Chiu, J.V.; Barbosa, J.A. Determination of trace metals in TSP and PM 2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 2017, 196, 8–22. [Google Scholar] [CrossRef]
- Centro Mario Molina. PROYECTO: Propuestas Para el Desarrollo Sustentable de una Ciudad Mexicana. 2019. Available online: https://centromariomolina.org/wp-content/uploads/2019/05/2.-Resumen-Ejecutivo-Monterrey_218.pdf (accessed on 17 February 2021).
- González, L.T.; Longoria-Rodríguez, F.E.; Sánchez-Domínguez, M.; Leyva-Porras, C.; Acuña-Askar, K.; Kharissov, B.I.; Arizpe-Zapata, A.; Alfaro-Barbosa, J.M. Seasonal variation and chemical composition of particulate matter: A study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. J. Environ. Sci. 2018, 74, 32–49. [Google Scholar] [CrossRef]
- Worobiec, A.; Potgieter-Vermaak, S.; Brooker, A.; Darchuk, L.; Stefaniak, E.; Grieken, R. Van Interfaced SEM/EDX and micro-Raman Spectrometry for characterisation of heterogeneous environmental particles—Fundamental and practical challenges. Microchem. J. 2010, 94, 65–72. [Google Scholar] [CrossRef]
- Longoria-Rodríguez, F.E.; González, L.T.; Mendoza, A.; Leyva-Porras, C.; Arizpe-Zapata, A.; Esneider-Alcalá, M.; Acu-ña-Askar, K.; Gaspar-Ramirez, O.; López-Ayala, O.; Alfaro-Barbosa, J.M.; et al. Environmental Levels, Sources, and Can-cer Risk Assessment of PAHs Associated with PM2.5 and TSP in Monterrey Metropolitan Area. Arch. Environ. Contam. Toxicol. 2020, 78, 377–391. [Google Scholar] [CrossRef] [PubMed]
- López-Ayala, O.; González-Hernández, L.T.; Alcantar-Rosales, V.M.; Elizarragaz-de la Rosa, D.; Heras-Ramírez, M.E.; Silva-Vidaurri, L.G.; Alfaro-Barbosa, J.M.; Gaspar-Ramírez, O. Levels of polycyclic aromatic hydrocarbons associated with particulate matter in a highly urbanized and industrialized region in northeastern Mexico. Atmos. Pollut. Res. 2019, 10, 1655–1662. [Google Scholar] [CrossRef]
- Sze, S.K.; Siddique, N.; Sloan, J.J.; Escribano, R. Raman spectroscopic characterization of carbonaceous aerosols. Atmos. Environ. 2001, 35, 561–568. [Google Scholar] [CrossRef]
- Ivleva, N.P.; McKeon, U.; Niessner, R.; Pöschl, U. Raman Microspectroscopic Analysis of Size-Resolved Atmospheric Aerosol Particle Samples Collected with an ELPI: Soot, Humic-Like Substances, and Inorganic Compounds. Aerosol Sci. Technol. 2007, 41, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Michaelian, K.H. The Raman spectrum of kaolinite #9 at 21 °C. Can. J. Chem. 1986, 64, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Yadav, A.K.; Singh, P. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 2015, 5, 67583–67609. [Google Scholar] [CrossRef]
- Rivera, B.H.; Rodriguez, M.G. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques. Int. J. Environ. Res. Public Health 2016, 13, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Liu, F.; Fan, W. Characteristics of PM10 and PM2.5 at Mount Wutai Buddhism Scenic Spot, Shanxi, China. Atmosphere 2015, 6, 1195–1210. [Google Scholar] [CrossRef] [Green Version]
- Micic, M.; Leblanc, R.M.; Markovic, D.; Stamatovic, A.; Vukelic, N.; Polic, P. Atlas of the tropospheric aerosols from Bel-grade troposphere. Fresenius Environ. Bull. 2003, 12, 1015–1024. [Google Scholar]
- Inoue, J.; Yoshie, A.; Tanaka, T.; Onji, T.; Inoue, Y. Disappearance and alteration process of charcoal fragments in cumula-tive soils studied using Raman spectroscopy. Geoderma 2017, 285, 164–172. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.W.; Dallmeyer, I.; Johnson, T.J.; Brauer, C.S.; McEwen, J.-S.; Espinal, J.F.; Garcia-Perez, M. Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles. Carbon 2016, 100, 678–692. [Google Scholar] [CrossRef] [Green Version]
- Mancilla, Y.; Mendoza, A.; Fraser, M.P.; Herckes, P. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers. Atmos. Chem. Phys. Discuss. 2016, 16, 953–970. [Google Scholar] [CrossRef] [Green Version]
- Chacón, D.; Giner, M.; Vázquez, M.; Roe, S.; Maldonado, J.; Lindquist, H.; Strode, B.; Anderson, R.; Quiroz, C.; Scheiber, J. Emisión de Gases de Efecto Invernadero en Nuevo León y Proyecciones de Referencia 1990–2025; Banco de Desarrollo del América del Norte: San Antonioc, TX, USA, 2010; ISBN 9786078021109. [Google Scholar]
- Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 2009, 177, 941–948. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Gonet, T.; Maher, B.A. Airborne, Vehicle-Derived Fe-Bearing Nanoparticles in the Urban Environment: A Review. Environ. Sci. Technol. 2019, 53, 9970–9991. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.; Dasgupta, R.; Li, J.; Buono, A. Nonstoichiometry and growth of some Fe carbides. Contrib. Miner. Pet. 2013, 166, 935–957. [Google Scholar] [CrossRef] [Green Version]
- Urbonaite, S.; Hälldahl, L.; Svensson, G. Raman spectroscopy studies of carbide derived carbons. Carbon 2008, 46, 1942–1947. [Google Scholar] [CrossRef]
- Rantitsch, G.; Bhattacharyya, A.; Schenk, J.; Lünsdorf, N.K. Assessing the quality of metallurgical coke by Raman spec-troscopy. Int. J. Coal Geol. 2014, 130, 1–7. [Google Scholar] [CrossRef]
- Osacky, M.; Geramian, M.; Dyar, M.D.; Sklute, E.C.; Valter, M.; Ivey, D.G.; Liu, Q.; Etsell, T.H. Characterisation of petrologic end members of oil sands from the athabasca region, Alberta, Canada. Can. J. Chem. Eng. 2013, 91, 1402–1415. [Google Scholar] [CrossRef]
- Iglesias, J.C. Álvarez; Augusto, K.S.; Gomes, O.D.F.M.; Domingues, A.L.A.; Vieira, M.B.; Casagrande, C.; Paciornik, S. Automatic characterization of iron ore by digital microscopy and image analysis. J. Mater. Res. Technol. 2018, 7, 376–380. [Google Scholar] [CrossRef]
- Labrada-Delgado, G.; Aragon-Pina, A.; Campos-Ramos, A.; Castro-Romero, T.; Amador-Munoz, O.; Villalobos-Pietrini, R. Chemical and morphological characterization of PM2.5 collected during MILAGRO campaign using scanning electron microscopy. Atmos. Pollut. Res. 2012, 3, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Doughty, D.C.; Hill, S.C. Journal of Quantitative Spectroscopy & Radiative Transfer Automated aerosol Raman spec-trometer for semi-continuous sampling of atmospheric aerosol. J. Quant. Spectrosc. Radiat. Transf. 2017, 188, 103–117. [Google Scholar]
% Phases | Monitoring Station | ||
---|---|---|---|
Obispado | Santa Catarina | Cadereyta | |
Calcite | 72.3 ± 1.6 | 77.9 ± 2.1 | 71 ± 1.9 |
Quartz | 11.7 ± 1.2 | 10.3 ± 1.6 | 15.0 ± 1.3 |
Gypsum | 11.1 ± 0.9 | 7.3 ± 1.1 | 10.4 ± 0.8 |
Aluminosilicates | 3.0 ± 0.8 | 3.2 ± 1.0 | 1.7 ± 0.7 |
Hematite | 1.8 ± 0.4 | 1.3 ± 0.7 | 1.9 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longoria-Rodríguez, F.E.; González, L.T.; Mancilla, Y.; Acuña-Askar, K.; Arizpe-Zapata, J.A.; González, J.; Kharissova, O.V.; Mendoza, A. Sequential SEM-EDS, PLM, and MRS Microanalysis of Individual Atmospheric Particles: A Useful Tool for Assigning Emission Sources. Toxics 2021, 9, 37. https://doi.org/10.3390/toxics9020037
Longoria-Rodríguez FE, González LT, Mancilla Y, Acuña-Askar K, Arizpe-Zapata JA, González J, Kharissova OV, Mendoza A. Sequential SEM-EDS, PLM, and MRS Microanalysis of Individual Atmospheric Particles: A Useful Tool for Assigning Emission Sources. Toxics. 2021; 9(2):37. https://doi.org/10.3390/toxics9020037
Chicago/Turabian StyleLongoria-Rodríguez, Francisco E., Lucy T. González, Yasmany Mancilla, Karim Acuña-Askar, Jesús Alejandro Arizpe-Zapata, Jessica González, Oxana V. Kharissova, and Alberto Mendoza. 2021. "Sequential SEM-EDS, PLM, and MRS Microanalysis of Individual Atmospheric Particles: A Useful Tool for Assigning Emission Sources" Toxics 9, no. 2: 37. https://doi.org/10.3390/toxics9020037
APA StyleLongoria-Rodríguez, F. E., González, L. T., Mancilla, Y., Acuña-Askar, K., Arizpe-Zapata, J. A., González, J., Kharissova, O. V., & Mendoza, A. (2021). Sequential SEM-EDS, PLM, and MRS Microanalysis of Individual Atmospheric Particles: A Useful Tool for Assigning Emission Sources. Toxics, 9(2), 37. https://doi.org/10.3390/toxics9020037