Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model-Based PFAS-Protein Affinity Screening
2.2. Experimental Assessment of Binding Affinity
2.2.1. Materials
2.2.2. Equilibrium Dialysis (EqD)
2.3. Analysis by LC-MS/MS
2.4. Comparison to Existing PFAS-Protein KDs and Methods
3. Results and Discussion
3.1. Screening Protein–PFAS Pairs by Molecular Dynamics
3.2. EqD-Based Dissociation Constant (KD) Estimates
3.2.1. PPAR-α
3.2.2. PPAR-γ
3.2.3. PPAR-δ
3.2.4. L-FABP
3.3. Comparison Across In Vitro Methods to Evaluate Binding
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; de Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P.J. Perfluoroalkyl and Polyfluoroalkyl Substances in the Environment: Terminology, Classification, and Origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef]
- Kärrman, A.; Elgh-Dalgren, K.; Lafossas, C.; Møskeland, T. Environmental Levels and Distribution of Structural Isomers of Perfluoroalkyl Acids after Aqueous Fire-Fighting Foam (AFFF) Contamination. Environ. Chem. 2011, 8, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Guelfo, J.L.; Higgins, C.P. Subsurface Transport Potential of Perfluoroalkyl Acids at Aqueous Film-Forming Foam (AFFF)-Impacted Sites. Environ. Sci. Technol. 2013, 47, 4164–4171. [Google Scholar] [CrossRef]
- Houtz, E.F.; Higgins, C.P.; Field, J.A.; Sedlak, D.L. Persistence of Perfluoroalkyl Acid Precursors in AFFF-Impacted Groundwater and Soil. Environ. Sci. Technol. 2013, 47, 8187–8195. [Google Scholar] [CrossRef]
- Place, B.J.; Field, J.A. Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams Used by the US Military. Available online: https://pubs.acs.org/doi/pdf/10.1021/es301465n (accessed on 18 June 2020).
- Backe, W.J.; Day, T.C.; Field, J.A. Zwitterionic, Cationic, and Anionic Fluorinated Chemicals in Aqueous Film Forming Foam Formulations and Groundwater from U.S. Military Bases by Nonaqueous Large-Volume Injection HPLC-MS/MS. Environ. Sci. Technol. 2013, 47, 5226–5234. [Google Scholar] [CrossRef]
- Weiner, B.; Yeung, L.W.Y.; Marchington, E.B.; D’Agostino, L.A.; Mabury, S.A. Organic Fluorine Content in Aqueous Film Forming Foams (AFFFs) and Biodegradation of the Foam Component 6: 2 Fluorotelomermercaptoalkylamido Sulfonate (6: 2 FTSAS). Environ. Chem. 2013, 10, 486–493. [Google Scholar] [CrossRef]
- Harding-Marjanovic, K.C.; Yi, S.; Weathers, T.S.; Sharp, J.O.; Sedlak, D.L.; Alvarez-Cohen, L. Effects of Aqueous Film-Forming Foams (AFFFs) on Trichloroethene (TCE) Dechlorination by a Dehalococcoides Mccartyi-Containing Microbial Community. Environ. Sci. Technol. 2016, 50, 3352–3361. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, J.; Buck, R.C.; Korzeniowski, S.H.; Wolstenholme, B.W.; Folsom, P.W.; Sulecki, L.M. 6:2 Fluorotelomer Sulfonate Aerobic Biotransformation in Activated Sludge of Waste Water Treatment Plants. Chemosphere 2011, 82, 853–858. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, G.; Li, W.; Mejia Avendaño, S. Isomer-Specific Biotransformation of Perfluoroalkyl Sulfonamide Compounds in Aerobic Soil. Sci. Total Environ. 2019, 651, 766–774. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, H.; Boudreau, T.M.; Mabury, S.A.; Solomon, K.R. Effects of Perfluorooctane Sulfonate and Perfluorooctanoic Acid on the Zooplanktonic Community. Ecotoxicol. Environ. Saf. 2004, 58, 68–76. [Google Scholar] [CrossRef]
- Newsted, J.L.; Jones, P.D.; Coady, K.; Giesy, J.P. Avian Toxicity Reference Values for Perfluorooctane Sulfonate. Environ. Sci. Technol. 2005, 39, 9357–9362. [Google Scholar] [CrossRef]
- Naile, J.E.; Khim, J.S.; Wang, T.; Chen, C.; Luo, W.; Kwon, B.-O.; Park, J.; Koh, C.-H.; Jones, P.D.; Lu, Y.; et al. Perfluorinated Compounds in Water, Sediment, Soil and Biota from Estuarine and Coastal Areas of Korea. Environ. Pollut. 2010, 158, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Butenhoff, J.L.; Kennedy, G.L.; Frame, S.R.; O’Connor, J.C.; York, R.G. The Reproductive Toxicology of Ammonium Perfluorooctanoate (APFO) in the Rat. Toxicology 2004, 196, 95–116. [Google Scholar] [CrossRef] [PubMed]
- Conder, J.M.; Hoke, R.A.; de Wolf, W.; Russell, M.H.; Buck, R.C. Are PFCAs Bioaccumulative? A Critical Review and Comparison with Regulatory Criteria and Persistent Lipophilic Compounds. Environ. Sci. Technol. 2008, 42, 995–1003. [Google Scholar] [CrossRef]
- Houde, M.; De Silva, A.O.; Muir, D.C.G.; Letcher, R.J. Monitoring of Perfluorinated Compounds in Aquatic Biota: An Updated Review: PFCs in Aquatic Biota. Environ. Sci. Technol. 2011, 45, 7962–7973. [Google Scholar] [CrossRef]
- Ng, C.A.; Hungerbühler, K. Bioaccumulation of Perfluorinated Alkyl Acids: Observations and Models. Environ. Sci. Technol. 2014, 48, 4637–4648. [Google Scholar] [CrossRef] [PubMed]
- Luebker, D.J.; Hansen, K.J.; Bass, N.M.; Butenhoff, J.L.; Seacat, A.M. Interactions of Flurochemicals with Rat Liver Fatty Acid-Binding Protein. Toxicology 2002, 176, 175–185. [Google Scholar] [CrossRef]
- Han, X.; Snow, T.A.; Kemper, R.A.; Jepson, G.W. Binding of Perfluorooctanoic Acid to Rat and Human Plasma Proteins. Chem. Res. Toxicol. 2003, 16, 775–781. [Google Scholar] [CrossRef]
- Kärrman, A.; Langlois, I.; van Bavel, B.; Lindström, G.; Oehme, M. Identification and Pattern of Perfluorooctane Sulfonate (PFOS) Isomers in Human Serum and Plasma. Environ. Int. 2007, 33, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Bischel, H.N.; MacManus-Spencer, L.A.; Luthy, R.G. Noncovalent Interactions of Long-Chain Perfluoroalkyl Acids with Serum Albumin. Environ. Sci. Technol. 2010, 44, 5263–5269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ren, X.-M.; Guo, L.-H. Structure-Based Investigation on the Interaction of Perfluorinated Compounds with Human Liver Fatty Acid Binding Protein. Environ. Sci. Technol. 2013, 47, 11293–11301. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Hotamisligil, G.S. Fatty Acid-Binding Proteins: Role in Metabolic Diseases and Potential as Drug Targets. Nat. Rev. Drug Discov. 2008, 7, 489–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemberger, T.; Desvergne, B.; Wahli, W. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS: A Nuclear Receptor Signaling Pathway in Lipid Physiology. Annu. Rev. Cell Dev. Biol. 1996, 12, 335–363. [Google Scholar] [CrossRef]
- Berger, J.; Wagner, J.A. Physiological and Therapeutic Roles of Peroxisome Proliferator-Activated Receptors. Diabetes Technol. Ther. 2002, 4, 163–174. [Google Scholar] [CrossRef]
- Elcombe, C.R.; Elcombe, B.M.; Foster, J.R.; Chang, S.-C.; Ehresman, D.J.; Butenhoff, J.L. Hepatocellular Hypertrophy and Cell Proliferation in Sprague–Dawley Rats from Dietary Exposure to Potassium Perfluorooctanesulfonate Results from Increased Expression of Xenosensor Nuclear Receptors PPARα and CAR/PXR. Toxicology 2012, 293, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Behr, A.-C.; Plinsch, C.; Braeuning, A.; Buhrke, T. Activation of Human Nuclear Receptors by Perfluoroalkylated Substances (PFAS). Toxicol. In Vitro 2020, 62, 104700. [Google Scholar] [CrossRef] [PubMed]
- Woodcroft, M.W.; Ellis, D.A.; Rafferty, S.P.; Burns, D.C.; March, R.E.; Stock, N.L.; Trumpour, K.S.; Yee, J.; Munro, K. Experimental Characterization of the Mechanism of Perfluorocarboxylic Acids’ Liver Protein Bioaccumulation: The Key Role of the Neutral Species. Environ. Toxicol. Chem. 2010, 29, 1669–1677. [Google Scholar] [CrossRef]
- Sheng, N.; Li, J.; Liu, H.; Zhang, A.; Dai, J. Interaction of Perfluoroalkyl Acids with Human Liver Fatty Acid-Binding Protein. Arch. Toxicol. 2016, 90, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, H.; Hirano, M.; Kim, E.-Y.; Iwata, H. In vitro and In Silico Evaluations of Binding Affinities of Perfluoroalkyl Substances to Baikal Seal and Human Peroxisome Proliferator-Activated Receptor α. Environ. Sci. Technol. 2019, 53, 2181–2188. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, X.-M.; Wan, B.; Guo, L.-H. Structure-Dependent Binding and Activation of Perfluorinated Compounds on Human Peroxisome Proliferator-Activated Receptor γ. Toxicol. Appl. Pharmacol. 2014, 279, 275–283. [Google Scholar] [CrossRef]
- Li, L.; Song, G.W.; Xu, Z.S. Study on the Interaction between Bovine Serum Albumin and Potassium Perfluoro Octane Sulfonate. J. Dispers. Sci. Technol. 2010, 31, 1547–1551. [Google Scholar] [CrossRef]
- Bischel, H.N.; Macmanus-Spencer, L.A.; Zhang, C.; Luthy, R.G. Strong Associations of Short-Chain Perfluoroalkyl Acids with Serum Albumin and Investigation of Binding Mechanisms. Environ. Toxicol. Chem. 2011, 30, 2423–2430. [Google Scholar] [CrossRef]
- Ulrich, J. A Systematic Investigation of the Effects of Chain Length and Ionic Head Group on Perfluoroalkyl Acid Binding to Human Serum Albumin. Honors Thesis, Union College, Schenectady, NY, USA, 2017. Available online: https://digitalworks.union.edu/cgi/viewcontent.cgi?article=1258&context=theses (accessed on 22 February 2021).
- Wu, L.-L.; Gao, H.-W.; Gao, N.-Y.; Chen, F.-F.; Chen, L. Interaction of Perfluorooctanoic Acid with Human Serum Albumin. BMC Struct. Biol. 2009, 9, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morris, M. Investigation of the Mechanism of Binding of Perfluoroalkyl Acids with Human Serum Albumin Using an Improved Approach to Equilibrium Dialysis. Honors Thesis, Union College, Schenectady, NY, USA, 2014; 68p. Available online: https://digitalworks.union.edu/cgi/viewcontent.cgi?article=1561&context=theses (accessed on 22 February 2021).
- Chi, Q.; Li, Z.; Huang, J.; Ma, J.; Wang, X. Interactions of Perfluorooctanoic Acid and Perfluorooctanesulfonic Acid with Serum Albumins by Native Mass Spectrometry, Fluorescence and Molecular Docking. Chemosphere 2018, 198, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Beesoon, S.; Martin, J.W. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins. Environ. Sci. Technol. 2015, 49, 5722–5731. [Google Scholar] [CrossRef]
- Messina, P.; Prieto, G.; Dodero, V.; Cabrerizo-Vílchez, M.A.; Maldonado-Valderrama, J.; Ruso, J.M.; Sarmiento, F. Surface Characterization of Human Serum Albumin and Sodium Perfluorooctanoate Mixed Solutions by Pendant Drop Tensiometry and Circular Dichroism. Biopolymers 2006, 82, 261–271. [Google Scholar] [CrossRef] [Green Version]
- Messina, P.V.; Prieto, G.; Ruso, J.M.; Sarmiento, F. Conformational Changes in Human Serum Albumin Induced by Sodium Perfluorooctanoate in Aqueous Solutions. J. Phys. Chem. B 2005, 109, 15566–15573. [Google Scholar] [CrossRef]
- Cheng, W.; Ng, C.A. Predicting Relative Protein Affinity of Novel Per- and Polyfluoroalkyl Substances (PFASs) by An Efficient Molecular Dynamics Approach. Environ. Sci. Technol. 2018, 52, 7972–7980. [Google Scholar] [CrossRef] [PubMed]
- MacManus-Spencer, L.A.; Tse, M.L.; Hebert, P.C.; Bischel, H.N.; Luthy, R.G. Binding of Perfluorocarboxylates to Serum Albumin: A Comparison of Analytical Methods. Anal. Chem. 2010, 82, 974–981. [Google Scholar] [CrossRef] [PubMed]
- Flanagan, R.J.; Taylor, A.A.; Watson, I.D.; Whelpton, R. Fundamentals of Analytical Toxicology; John Wiley & Sons: Hoboken, NJ, USA, 2008; ISBN 978-0-470-31934-5. [Google Scholar]
- Laguerre, A.; Wielens, J.; Parker, M.W.; Porter, C.J.H.; Scanlon, M.J. Preparation, Crystallization and Preliminary X-Ray Diffraction Analysis of Two Intestinal Fatty-Acid Binding Proteins in the Presence of 11-(Dansylamino)Undecanoic Acid. Acta Cryst. F 2011, 67, 291–295. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Sharma, A. Fatty Acid Induced Remodeling within the Human Liver Fatty Acid-Binding Protein. J. Biol. Chem. 2011, 286, 31924–31928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malapaka, R.R.V.; Khoo, S.; Zhang, J.; Choi, J.H.; Zhou, X.E.; Xu, Y.; Gong, Y.; Li, J.; Yong, E.-L.; Chalmers, M.J.; et al. Identification and Mechanism of 10-Carbon Fatty Acid as Modulating Ligand of Peroxisome Proliferator-Activated Receptors. J. Biol. Chem. 2012, 287, 183–195. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, J.C.; Bernardes, A.; Giampietro, L.; Ammazzalorso, A.; De Filippis, B.; Amoroso, R.; Polikarpov, I. Different Binding and Recognition Modes of GL479, a Dual Agonist of Peroxisome Proliferator-Activated Receptor α/γ. J. Struct. Biol. 2015, 191, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Batista, F.A.H.; Trivella, D.B.B.; Bernardes, A.; Gratieri, J.; Oliveira, P.S.L.; Figueira, A.C.M.; Webb, P.; Polikarpov, I. Structural Insights into Human Peroxisome Proliferator Activated Receptor Delta (PPAR-Delta) Selective Ligand Binding. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Webster, G.M.; Venners, S.A.; Mattman, A.; Martin, J.W. Associations between Perfluoroalkyl Acids (PFASs) and Maternal Thyroid Hormones in Early Pregnancy: A Population-Based Cohort Study. Environ. Res. 2014, 133, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Schröter-Kermani, C.; Müller, J.; Jürling, H.; Conrad, A.; Schulte, C. Retrospective Monitoring of Perfluorocarboxylates and Perfluorosulfonates in Human Plasma Archived by the German Environmental Specimen Bank. Int. J. Hyg. Environ. Health 2013, 216, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Yeung, L.W.Y.; Robinson, S.J.; Koschorreck, J.; Mabury, S.A. Part I. A Temporal Study of PFCAs and Their Precursors in Human Plasma from Two German Cities 1982–2009. Environ. Sci. Technol. 2013, 47, 3865–3874. [Google Scholar] [CrossRef]
- Yeung, L.W.Y.; Robinson, S.J.; Koschorreck, J.; Mabury, S.A. Part II. A Temporal Study of PFOS and Its Precursors in Human Plasma from Two German Cities in 1982–2009. Environ. Sci. Technol. 2013, 47, 3875–3882. [Google Scholar] [CrossRef]
- So, M.K.; Yamashita, N.; Taniyasu, S.; Jiang, Q.; Giesy, J.P.; Chen, K.; Lam, P.K.S. Health Risks in Infants Associated with Exposure to Perfluorinated Compounds in Human Breast Milk from Zhoushan, China. Environ. Sci. Technol. 2006, 40, 2924–2929. [Google Scholar] [CrossRef] [PubMed]
- Joensen, U.N.; Bossi, R.; Leffers, H.; Jensen, A.A.; Skakkebaek, N.E.; Jørgensen, N. Do Perfluoroalkyl Compounds Impair Human Semen Quality? Environ. Health Perspect. 2009, 117, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Kuklenyik, Z.; Caudill, S.P.; Reidy, J.A.; Needham, L.L. Perfluorochemicals in Pooled Serum Samples from United States Residents in 2001 and 2002. Environ. Sci. Technol. 2006, 40, 2128–2134. [Google Scholar] [CrossRef]
- Fromme, H.; Wöckner, M.; Roscher, E.; Völkel, W. ADONA and Perfluoroalkylated Substances in Plasma Samples of German Blood Donors Living in South Germany. Int. J. Hyg. Environ. Health 2017, 220, 455–460. [Google Scholar] [CrossRef]
- Steenland, K.; Tinker, S.; Frisbee, S.; Ducatman, A.; Vaccarino, V. Association of Perfluorooctanoic Acid and Perfluorooctane Sulfonate with Serum Lipids among Adults Living near a Chemical Plant. Am. J. Epidemiol. 2009, 170, 1268–1278. [Google Scholar] [CrossRef] [Green Version]
- Weiss, O.; Wiesmüller, G.A.; Bunte, A.; Göen, T.; Schmidt, C.K.; Wilhelm, M.; Hölzer, J. Perfluorinated Compounds in the Vicinity of a Fire Training Area--Human Biomonitoring among 10 Persons Drinking Water from Contaminated Private Wells in Cologne, Germany. Int. J. Hyg. Environ. Health 2012, 215, 212–215. [Google Scholar] [CrossRef]
- Allred, B.M.; Lang, J.R.; Barlaz, M.A.; Field, J.A. Physical and Biological Release of Poly- and Perfluoroalkyl Substances (PFASs) from Municipal Solid Waste in Anaerobic Model Landfill Reactors. Environ. Sci. Technol. 2015, 49, 7648–7656. [Google Scholar] [CrossRef] [PubMed]
- Dhein, S.; Mohr, F.W.; Delmar, M. (Eds.) Practical Methods in Cardiovascular Research; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 978-3-540-40763-8. [Google Scholar]
- Reddick, L.E.; Vaughn, M.D.; Wright, S.J.; Campbell, I.M.; Bruce, B.D. In vitro Comparative Kinetic Analysis of the Chloroplast Toc GTPases. J. Biol. Chem. 2007, 282, 11410–11426. [Google Scholar] [CrossRef] [Green Version]
- Motulsky, H.J.; Neubig, R.R. Analyzing Binding Data. Curr. Protoc. Neurosci. 2018, 52, 7.5.1–7.5.65. [Google Scholar] [CrossRef]
- D’Agostino, V.G.; Adami, V.; Provenzani, A. A Novel High Throughput Biochemical Assay to Evaluate the HuR Protein-RNA Complex Formation. PLoS ONE 2013, 8, e72426. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, G.; Keating, A.E. Protein Binding Specificity versus Promiscuity. Curr. Opin. Struct. Biol. 2011, 21, 50–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollard, T.D. A Guide to Simple and Informative Binding Assays. Mol. Biol. Cell 2010, 21, 4061–4067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-K.; Lee, K.T.; Kang, C.S.; Tao, L.; Kannan, K.; Kim, K.-R.; Kim, C.-K.; Lee, J.S.; Park, P.S.; Yoo, Y.W.; et al. Distribution of Perfluorochemicals between Sera and Milk from the Same Mothers and Implications for Prenatal and Postnatal Exposures. Environ. Pollut. 2011, 159, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Darrow, L.A.; Stein, C.R.; Steenland, K. Serum Perfluorooctanoic Acid and Perfluorooctane Sulfonate Concentrations in Relation to Birth Outcomes in the Mid-Ohio Valley, 2005–2010. Environ. Health Perspect. 2013, 121, 1207–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisbee, S.J.; Shankar, A.; Knox, S.S.; Steenland, K.; Savitz, D.A.; Fletcher, T.; Ducatman, A.M. Perfluorooctanoic Acid, Perfluorooctanesulfonate, and Serum Lipids in Children and Adolescents: Results from the C8 Health Project. Arch. Pediatr. Adolesc. Med. 2010, 164, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Yeung, L.W.Y.; Guruge, K.S.; Taniyasu, S.; Yamashita, N.; Angus, P.W.; Herath, C.B. Profiles of Perfluoroalkyl Substances in the Liver and Serum of Patients with Liver Cancer and Cirrhosis in Australia. Ecotoxicol. Environ. Saf. 2013, 96, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Worley, R.R.; Moore, S.M.; Tierney, B.C.; Ye, X.; Calafat, A.M.; Campbell, S.; Woudneh, M.B.; Fisher, J. Per- and Polyfluoroalkyl Substances in Human Serum and Urine Samples from a Residentially Exposed Community. Environ. Int. 2017, 106, 135–143. [Google Scholar] [CrossRef]
- Weihe, P.; Kato, K.; Calafat, A.M.; Nielsen, F.; Wanigatunga, A.A.; Needham, L.L.; Grandjean, P. Serum Concentrations of Polyfluoroalkyl Compounds in Faroese Whale Meat Consumers. Environ. Sci. Technol. 2008, 42, 6291–6295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riu, A.; Grimaldi, M.; Le Maire, A.; Bey, G.; Phillips, K.; Boulahtouf, A.; Perdu, E.; Zalko, D.; Bourguet, W.; Balaguer, P. Peroxisome Proliferator-Activated Receptor γ Is a Target for Halogenated Analogs of Bisphenol A. Environ. Health Perspect. 2011, 119, 1227–1232. [Google Scholar] [CrossRef]
- Hall, M.D.; Yasgar, A.; Peryea, T.; Braisted, J.C.; Jadhav, A.; Simeonov, A.; Coussens, N.P. Fluorescence Polarization Assays in High-Throughput Screening and Drug Discovery: A Review. Methods Appl. Fluoresc. 2016, 4, 022001. [Google Scholar] [CrossRef] [Green Version]
- Sheng, N.; Cui, R.; Wang, J.; Guo, Y.; Wang, J.; Dai, J. Cytotoxicity of Novel Fluorinated Alternatives to Long-Chain Perfluoroalkyl Substances to Human Liver Cell Line and Their Binding Capacity to Human Liver Fatty Acid Binding Protein. Arch. Toxicol. 2018, 92, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Ren, X.-M.; Cao, L.-Y.; Qin, W.-P.; Guo, L.-H. Investigation of Binding and Activity of Perfluoroalkyl Substances to the Human Peroxisome Proliferator-Activated Receptor β/δ. Environ. Sci. Processes Impacts 2019, 21, 1908–1914. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.; Anitole, K.; Hodes, C.; Lai, D.; Pfahles-Hutchens, A.; Seed, J. Perfluoroalkyl Acids: A Review of Monitoring and Toxicological Findings. Toxicol. Sci. 2007, 99, 366–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.S.; Pineau, T.; Drago, J.; Lee, E.J.; Owens, J.W.; Kroetz, D.L.; Fernandez-Salguero, P.M.; Westphal, H.; Gonzalez, F.J. Targeted Disruption of the Alpha Isoform of the Peroxisome Proliferator-Activated Receptor Gene in Mice Results in Abolishment of the Pleiotropic Effects of Peroxisome Proliferators. Mol. Cell. Biol. 1995, 15, 3012–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein * | PDB Code | Resolution | Chain Length | Known Ligands |
---|---|---|---|---|
L-FABP | 3STM | 2.22 Å | 132 | palmitic acid |
I-FABP | 3AKM | 1.9 Å | 131 | 11-(Dansylamino) undecanoic acid |
PPAR-α | 4CI4 | 2.3 Å | 274 | propanoic acid |
PPAR-γ | 3U9Q | 1.5 Å | 269 | decanoic acid |
PPAR-δ | 3TKM | 1.95 Å | 275 | GW0742 |
Material Extracts | PFBA | PFHxA | PFHpA | PFOA | PFNA | PFBS | PFHxS | PFOS | Surrogate Recovery |
---|---|---|---|---|---|---|---|---|---|
Collection tube | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 89% |
Recover tube | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 90% |
Dialysis membrane | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 89% |
Dialysis cap | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | <LOD | 91% |
Sorption to Materials | |||||||||
2000 ng/L Spike 1 | 5700 | 2700 | 3200 | 3300 | 2600 | 2600 | 2030 | 2700 | |
2000 ng/L Spike 2 | 2500 | 1500 | 2100 | 2600 | 1900 | 1700 | 2600 | 2400 | |
% Recovery 1 | 285% | 135% | 160% | 165% | 130% | 130% | 101% | 135% | |
% Recovery 2 | 125% | 75% | 105% | 130% | 95% | 85% | 130% | 120% |
Protein | PFAS | KD (µM) |
---|---|---|
L-FABP | PFHxA | ND |
PFOA | 0.099 ± 0.015 | |
PFBS | ND | |
PFHxS | 1.7 ± 0.031 | |
PFOS | 0.18 ± 0.032 | |
I-FABP | PFHpA | ND |
PFNA | ND | |
PPAR-α | PFBA | ND |
PFHxA | 0.097 ± 0.070 | |
PFHpA | ND | |
PFNA | 0.083 ± 0.028 | |
PPAR-γ | PFOA | 0.057 ± 0.027 |
PFOS | 8.5 ± 0.46 | |
PPAR-δ | PFBA | 0.044 ± 0.013 |
PFBS | ND | |
PFHxS | 0.035 ± 0.0020 | |
PFOS | 0.69 ± 0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khazaee, M.; Christie, E.; Cheng, W.; Michalsen, M.; Field, J.; Ng, C. Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. Toxics 2021, 9, 45. https://doi.org/10.3390/toxics9030045
Khazaee M, Christie E, Cheng W, Michalsen M, Field J, Ng C. Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. Toxics. 2021; 9(3):45. https://doi.org/10.3390/toxics9030045
Chicago/Turabian StyleKhazaee, Manoochehr, Emerson Christie, Weixiao Cheng, Mandy Michalsen, Jennifer Field, and Carla Ng. 2021. "Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods" Toxics 9, no. 3: 45. https://doi.org/10.3390/toxics9030045
APA StyleKhazaee, M., Christie, E., Cheng, W., Michalsen, M., Field, J., & Ng, C. (2021). Perfluoroalkyl Acid Binding with Peroxisome Proliferator-Activated Receptors α, γ, and δ, and Fatty Acid Binding Proteins by Equilibrium Dialysis with a Comparison of Methods. Toxics, 9(3), 45. https://doi.org/10.3390/toxics9030045