Cross-Sectional Associations of Smoking and E-cigarette Use with Self-Reported Diagnosed Hypertension: Findings from Wave 3 of the Population Assessment of Tobacco and Health Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Hypertension
2.3. Assessment of Smoking and Vaping Status
2.4. Assessment of Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Previous Research on Vaping and Blood Pressure
4.1.1. Absolute Harms
4.1.2. Relative Harms
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2015 Tobacco Collaborators. Smoking Prevalence and Attributable Disease Burden in 195 Countries and Territories, 1990–2015: A Systematic Analysis from the Global Burden of Disease Study 2015. Lancet 2017, 389, 1885–1906. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Report on the Global Tobacco Epidemic, 2019; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- GBD 2017 Risk Factor Collaborators. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef] [Green Version]
- US Department of Health and Human Services. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General; Centers for Disease Control and Prevention, National Center on Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2014. [Google Scholar]
- US Department of Health and Human Services. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Attributable Disease: A Report of the Surgeon General; Centers for Disease Control and Prevention, National Center on Chronic Disease Prevention and Health Promotion, Office on Smoking and Health: Atlanta, GA, USA, 2010. [Google Scholar]
- Ezzati, M.; Henley, S.J.; Thun, M.J.; Lopez, A.D. Role of Smoking in Global and Regional Cardiovascular Mortality. Circulation 2005, 112, 489–497. [Google Scholar] [CrossRef]
- Wagner, K.A.; Flora, J.W.; Melvin, M.S.; Avery, K.C.; Ballentine, R.M.; Brown, A.P.; McKinney, W.J. An Evaluation of Electronic Cigarette Formulations and Aerosols for Harmful and Potentially Harmful Constituents (HPHCs) Typically Derived from Combustion. Regul. Toxicol. Pharmacol. 2018, 95, 153–160. [Google Scholar] [CrossRef]
- Helen, G.S.; Liakoni, E.; Nardone, N.; Addo, N.; Jacob, P., III; Benowitz, N.L. Comparison of Systemic Exposure to Toxic and/or Carcinogenic Volatile Organic Compounds (VOCs) during Vaping, Smoking, and Abstention. Cancer Prev. Res. 2019, 13, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farsalinos, K.E.; Gillman, G. Carbonyl Emissions in E-Cigarette Aerosol: A Systematic Review and Methodological Considerations. Front. Physiol. 2018, 8, 1119. [Google Scholar] [CrossRef] [PubMed]
- Romijnders, K.A.; Van Osch, L.; De Vries, H.; Talhout, R. Perceptions and Reasons Regarding E-Cigarette Use among Users and Non-Users: A Narrative Literature Review. Int. J. Environ. Res. Public Health 2018, 15, 1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alzahrani, T.; Pena, I.; Temesgen, N.; Glantz, S.A. Association between Electronic Cigarette Use and Myocardial Infarction. Am. J. Prev. Med. 2018, 55, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Osei, A.D.; Mirbolouk, M.; Orimoloye, O.A.; Dzaye, O.; Uddin, S.I.; Benjamin, E.J.; Hall, M.E.; DeFilippis, A.P.; Stokes, A.; Bhatnagar, A. Association between E-Cigarette Use and Cardiovascular Disease among Never and Current Combustible-Cigarette Smokers. Am. J. Med. 2019, 132, 949–954. [Google Scholar] [CrossRef]
- Farsalinos, K.E.; Polosa, R.; Cibella, F.; Niaura, R. Is E-Cigarette Use Associated with Coronary Heart Disease and Myocardial Infarction? Insights from the 2016 and 2017 National Health Interview Surveys. Ther. Adv. Chronic Dis. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parekh, T.; Pemmasani, S.; Desai, R. Risk of Stroke with E-Cigarette and Combustible Cigarette Use in Young Adults. Am. J. Prev. Med. 2020, 58, 446–452. [Google Scholar] [CrossRef] [Green Version]
- Skotsimara, G.; Antonopoulos, A.S.; Oikonomou, E.; Siasos, G.; Ioakeimidis, N.; Tsalamandris, S.; Charalambous, G.; Galiatsatos, N.; Vlachopoulos, C.; Tousoulis, D. Cardiovascular Effects of Electronic Cigarettes: A Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2019, 26, 1219–1228. [Google Scholar] [CrossRef]
- Olfert, I.M.; DeVallance, E.; Hoskinson, H.; Branyan, K.W.; Clayton, S.; Pitzer, C.R.; Sullivan, D.P.; Breit, M.J.; Wu, Z.; Klinkhachorn, P. Chronic Exposure to Electronic Cigarettes Results in Impaired Cardiovascular Function in Mice. J. Appl. Physiol. 2017, 124, 573–582. [Google Scholar] [CrossRef] [Green Version]
- Gerloff, J.; Sundar, I.K.; Freter, R.; Sekera, E.R.; Friedman, A.E.; Robinson, R.; Pagano, T.; Rahman, I. Inflammatory Response and Barrier Dysfunction by Different E-Cigarette Flavoring Chemicals Identified by Gas Chromatography–Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts. Appl. Vitro Toxicol. 2017, 3, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Oparil, S.; Zaman, M.A.; Calhoun, D.A. Pathogenesis of Hypertension. Ann. Intern. Med. 2003, 139, 761–776. [Google Scholar] [CrossRef] [PubMed]
- Groppelli, A.; Giorgi, D.M.; Omboni, S.; Parati, G.; Mancia, G. Persistent Blood Pressure Increase Induced by Heavy Smoking. J. Hypertens. 1992, 10, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Virdis, A.; Giannarelli, C.; Fritsch Neves, M.; Taddei, S.; Ghiadoni, L. Cigarette Smoking and Hypertension. Curr. Pharm. Des. 2010, 16, 2518–2525. [Google Scholar] [CrossRef]
- Conklin, D.J.; Schick, S.; Blaha, M.J.; Carll, A.; DeFilippis, A.; Ganz, P.; Hall, M.E.; Hamburg, N.; O’Toole, T.; Reynolds, L. Cardiovascular Injury Induced by Tobacco Products: Assessment of Risk Factors and Biomarkers of Harm. A Tobacco Centers of Regulatory Science Compilation. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H801–H827. [Google Scholar] [CrossRef]
- US Department of Health and Human Services; National Institutes of Health; National Institute on Drug Abuse; United States Department of Health and Human Services; Food and Drug Administration Center for Tobacco Products. Population Assessment of Tobacco and Health (PATH) Study; [United States] Public-Use Files, User Guide 2017; FDA: Washington, DC, USA, 2017. [Google Scholar]
- Hyland, A.; Ambrose, B.K.; Conway, K.P.; Borek, N.; Lambert, E.; Carusi, C.; Taylor, K.; Crosse, S.; Fong, G.T.; Cummings, K.M. Design and Methods of the Population Assessment of Tobacco and Health (PATH) Study. Tob. Control 2017, 26, 371–378. [Google Scholar] [CrossRef]
- Dai, H.; Leventhal, A.M. Prevalence of E-Cigarette Use among Adults in the United States, 2014–2018. JAMA 2019, 322, 1824–1827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammond, D.; Reid, J.L.; Rynard, V.L.; Fong, G.T.; Cummings, K.M.; McNeill, A.; Hitchman, S.; Thrasher, J.F.; Goniewicz, M.L.; Bansal-Travers, M. Prevalence of Vaping and Smoking among Adolescents in Canada, England, and the United States: Repeat National Cross Sectional Surveys. BMJ 2019, 365, l2219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, B.N.; Rostron, B.; Johnson, S.E.; Ambrose, B.K. Electronic Cigarette Use among US Adults in the Population Assessment of Tobacco and Health (PATH) Study, 2013–2014. Tob. Control 2017, 26, e117–e126. [Google Scholar] [CrossRef] [PubMed]
- Coleman, B.; Rostron, B.; Johnson, S.E.; Persoskie, A.; Pearson, J.; Stanton, C.; Choi, K.; Anic, G.; Goniewicz, M.L.; Cummings, K.M. Transitions in Electronic Cigarette Use among Adults in the Population Assessment of Tobacco and Health (PATH) Study, Waves 1 and 2 (2013–2015). Tob. Control 2019, 28, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Reichenheim, M.E.; Coutinho, E.S. Measures and Models for Causal Inference in Cross-Sectional Studies: Arguments for the Appropriateness of the Prevalence Odds Ratio and Related Logistic Regression. BMC Med. Res. Methodol. 2010, 10, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fryar, C.D.; Ostchega, Y.; Hales, C.M.; Zhang, G.; Kruszon-Moran, D. Hypertension Prevalence and Control among Adults: United States, 2015–2016; NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2017; Volume 289. [Google Scholar]
- Fuchs, F.D.; Whelton, P.K. High Blood Pressure and Cardiovascular Disease. Hypertension 2020, 75, 285–292. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Liu, P.; Roth, G.A.; Ng, M.; Biryukov, S.; Marczak, L.; Alexander, L.; Estep, K.; Abate, K.H.; Akinyemiju, T.F. Global Burden of Hypertension and Systolic Blood Pressure of at Least 110 to 115 Mm Hg, 1990–2015. JAMA 2017, 317, 165–182. [Google Scholar] [CrossRef] [Green Version]
- Rose, G. Sick Individuals and Sick Populations. Int. J. Epidemiol. 2001, 30, 427–432. [Google Scholar] [CrossRef]
- Goniewicz, M.L.; Smith, D.M.; Edwards, K.C.; Blount, B.C.; Caldwell, K.L.; Feng, J.; Wang, L.; Christensen, C.; Ambrose, B.; Borek, N. Comparison of Nicotine and Toxicant Exposure in Users of Electronic Cigarettes and Combustible Cigarettes. JAMA Netw. Open 2018, 1, e185937. [Google Scholar] [CrossRef] [Green Version]
- Bhatta, D.N.; Glantz, S.A. Association of E-Cigarette Use with Respiratory Disease among Adults: A Longitudinal Analysis. Am. J. Prev. Med. 2020, 58, 182–190. [Google Scholar] [CrossRef]
- Hedman, L.; Backman, H.; Stridsman, C.; Bosson, J.A.; Lundbäck, M.; Lindberg, A.; Rönmark, E.; Ekerljung, L. Association of Electronic Cigarette Use with Smoking Habits, Demographic Factors, and Respiratory Symptoms. JAMA Netw. Open 2018, 1, e180789. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Sundar, I.K.; McIntosh, S.; Ossip, D.J.; Goniewicz, M.L.; O’Connor, R.J.; Rahman, I. Association of Smoking and Electronic Cigarette Use with Wheezing and Related Respiratory Symptoms in Adults: Cross-Sectional Results from the Population Assessment of Tobacco and Health (PATH) Study, Wave 2. Tob. Control 2020, 29, 140–147. [Google Scholar] [CrossRef]
- Stokes, A.C.; Xie, W.; Wilson, A.E.; Yang, H.; Orimoloye, O.A.; Harlow, A.F.; Fetterman, J.L.; DeFilippis, A.P.; Benjamin, E.J.; Robertson, R.M. Association of Cigarette and Electronic Cigarette Use Patterns With Levels of Inflammatory and Oxidative Stress Biomarkers among US Adults: Population Assessment of Tobacco and Health Study. Circulation 2021, 143, 869–871. [Google Scholar] [CrossRef] [PubMed]
- Mainous, A.G., III; Yadav, S.; Hong, Y.-R.; Huo, J. E-Cigarette and Conventional Tobacco Cigarette Use, Dual Use, and C-Reactive Protein. J. Am. Coll. Cardiol. 2020, 75, 2271–2273. [Google Scholar] [CrossRef] [PubMed]
- Khalili, P.; Nilsson, P.M.; Nilsson, J.-A.; Berglund, G. Smoking as a Modifier of the Systolic Blood Pressure-Induced Risk of Cardiovascular Events and Mortality: A Population-Based Prospective Study of Middle-Aged Men. J. Hypertens. 2002, 20, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Barzi, F.; Lam, T.-H.; Huxley, R.; Feigin, V.L.; Ueshima, H.; Woo, J.; Gu, D.; Ohkubo, T.; Lawes, C.M. Cigarette Smoking, Systolic Blood Pressure, and Cardiovascular Diseases in the Asia-Pacific Region. Stroke 2008, 39, 1694–1702. [Google Scholar] [CrossRef]
- Hara, M.; Yakushiji, Y.; Suzuyama, K.; Nishihara, M.; Eriguchi, M.; Noguchi, T.; Nishiyama, M.; Nanri, Y.; Tanaka, J.; Hara, H. Synergistic Effect of Hypertension and Smoking on the Total Small Vessel Disease Score in Healthy Individuals: The Kashima Scan Study. Hypertens. Res. 2019, 42, 1738–1744. [Google Scholar] [CrossRef] [PubMed]
- Crotty Alexander, L.E.; Drummond, C.A.; Hepokoski, M.; Mathew, D.; Moshensky, A.; Willeford, A.; Das, S.; Singh, P.; Yong, Z.; Lee, J.H. Chronic Inhalation of E-Cigarette Vapor Containing Nicotine Disrupts Airway Barrier Function and Induces Systemic Inflammation and Multiorgan Fibrosis in Mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R834–R847. [Google Scholar] [CrossRef] [Green Version]
- Vlachopoulos, C.; Ioakeimidis, N.; Abdelrasoul, M.; Terentes-Printzios, D.; Georgakopoulos, C.; Pietri, P.; Stefanadis, C.; Tousoulis, D. Electronic Cigarette Smoking Increases Aortic Stiffness and Blood Pressure in Young Smokers. J. Am. Coll. Cardiol. 2016, 67, 2802–2803. [Google Scholar] [CrossRef] [PubMed]
- Pescatello, L.S.; Buchner, D.M.; Jakicic, J.M.; Powell, K.E.; Kraus, W.E.; Bloodgood, B.; Campbell, W.W.; Dietz, S.; DiPietro, L.; George, S.M. Physical Activity to Prevent and Treat Hypertension: A Systematic Review. Med. Sci. Sports Exerc. 2019, 51, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.R.; Wactawski-Wende, J.; Manson, J.E.; Haring, B.; Hovey, K.M.; Laddu, D.; Shadyab, A.H.; Wild, R.A.; Bea, J.W.; Tinker, L.F.; et al. Walking Volume and Speed Are Inversely Associated with Incidence of Treated Hypertension in Postmenopausal Women. Hypertension 2020, 76, 1435–1443. [Google Scholar] [CrossRef]
- Farsalinos, K.; Cibella, F.; Caponnetto, P.; Campagna, D.; Morjaria, J.B.; Battaglia, E.; Caruso, M.; Russo, C.; Polosa, R. Effect of Continuous Smoking Reduction and Abstinence on Blood Pressure and Heart Rate in Smokers Switching to Electronic Cigarettes. Intern. Emerg. Med. 2016, 11, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, J.; Hussain, M.; Vadiveloo, T.; Ireland, S.; Hopkinson, P.; Struthers, A.D.; Donnan, P.T.; Khan, F.; Lang, C.C. Cardiovascular Effects of Switching from Tobacco Cigarettes to Electronic Cigarettes. J. Am. Coll. Cardiol. 2019, 74, 3112–3120. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Duan, Z.; Kwok, J.; Binns, S.; Vera, L.E.; Kim, Y.; Szczypka, G.; Emery, S.L. Vaping versus JUULing: How the Extraordinary Growth and Marketing of JUUL Transformed the US Retail e-Cigarette Market. Tob. Control 2019, 28, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Polosa, R.; Morjaria, J.; Caponnetto, P.; Battaglia, E.; Russo, C.; Ciampi, C.; Adams, G.; Bruno, C. Blood Pressure Control in Smokers with Arterial Hypertension Who Switched to Electronic Cigarettes. Int. J. Environ. Res. Public Health 2016, 13, 1123. [Google Scholar] [CrossRef] [Green Version]
- Tourangeau, R.; Yan, T.; Sun, H.; Hyland, A.; Stanton, C.A. Population Assessment of Tobacco and Health (PATH) Reliability and Validity Study: Selected Reliability and Validity Estimates. Tob. Control 2018, 28, 663–668. [Google Scholar] [CrossRef]
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R.; Simons-Morton, D.G. Effects on Blood Pressure of Reduced Dietary Sodium and the Dietary Approaches to Stop Hypertension (DASH) Diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Chiolero, A.; Wietlisbach, V.; Ruffieux, C.; Paccaud, F.; Cornuz, J. Clustering of Risk Behaviors with Cigarette Consumption: A Population-Based Survey. Prev. Med. 2006, 42, 348–353. [Google Scholar] [CrossRef]
- Alkerwi, A.; Baydarlioglu, B.; Sauvageot, N.; Stranges, S.; Lemmens, P.; Shivappa, N.; Hébert, J.R. Smoking Status Is Inversely Associated with Overall Diet Quality: Findings from the ORISCAV-LUX Study. Clin. Nutr. 2017, 36, 1275–1282. [Google Scholar] [CrossRef]
- Mentz, G.; Schulz, A.J.; Mukherjee, B.; Ragunathan, T.E.; Perkins, D.W.; Israel, B.A. Hypertension: Development of a Prediction Model to Adjust Self-Reported Hypertension Prevalence at the Community Level. BMC Health Serv. Res. 2012, 12, 312. [Google Scholar] [CrossRef] [Green Version]
- Vargas, C.M.; Burt, V.L.; Gillum, R.F.; Pamuk, E.R. Validity of Self-Reported Hypertension in the National Health and Nutrition Examination Survey III, 1988–1991. Prev. Med. 1997, 26, 678–685. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.J.; Fix, B.V.; McNeill, A.; Goniewicz, M.L.; Bansal-Travers, M.; Heckman, B.W.; Cummings, K.M.; Hitchman, S.; Borland, R.; Hammond, D. Characteristics of Nicotine Vaping Products Used by Participants in the 2016 ITC Four Country Smoking and Vaping Survey. Addiction 2019, 114, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havermans, A.; Krüsemann, E.J.; Pennings, J.; De Graaf, K.; Boesveldt, S.; Talhout, R. Nearly 20 000 E-Liquids and 250 Unique Flavour Descriptions: An Overview of the Dutch Market Based on Information from Manufacturers. Tob. Control 2021, 30, 57–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Overall Sample (n = 19,147) | Current Vaping Status | Current Smoking Status | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Characteristic | No (n = 18,013) | Yes (n = 1100) | No (n = 13,481) | Yes (n = 5654) | ||||||
n | % (95% CI) | n | % (95% CI) | n | % (95% CI) | n | % (95% CI) | n | % (95% CI) | |
Hypertension *† | ||||||||||
No | 16,267 | 82.7 (81.9–83.6) | 15,344 | 82.9 (82.0–83.7) | 897 | 78.7 (75.8–81.3) | 11,851 | 84.0 (83.0–84.9) | 4404 | 77.4 (76.0–78.8) |
Yes | 2859 | 17.3 (16.4–18.1) | 2650 | 17.1 (16.3–18.0) | 201 | 21.3 (18.7–24.2) | 1618 | 16.0 (15.1–17.0) | 1241 | 22.6 (21.2–24.0) |
Vaping status † | ||||||||||
Never vaper | 16,040 | 91.3 (90.8–91.8) | --- | --- | --- | --- | 11,968 | 95.6 (95.2–95.9) | 4064 | 73.8 (72.2–75.4) |
Former vaper | 1565 | 5.0 (4.6–5.3) | --- | --- | --- | --- | 618 | 2.3 (2.1–2.6) | 946 | 15.9 (14.7–17.1) |
Current vaper | 1100 | 3.7 (3.4–4.0) | --- | --- | --- | --- | 517 | 2.1 (1.8–2.4) | 581 | 10.3 (9.4–11.3) |
Smoking status * | ||||||||||
Never smoker | 2832 | 16.2 (15.3–17.1) | 10,227 | 66.3 (65.0–67.6) | 184 | 12.9 (10.8–15.5) | --- | --- | --- | --- |
Former smoker | 10,426 | 64.3 (63.0–65.6) | 2498 | 15.6 (14.7–16.5) | 333 | 32.7 (29.4–36.2) | --- | --- | --- | --- |
Current smoker | 5654 | 19.5 (18.7–20.3) | 5056 | 18.1 (17.4–18.9) | 581 | 54.4 (50.4–58.2) | --- | --- | --- | --- |
Age *† | ||||||||||
18–24 years | 7238 | 18.7 (18.2–19.3) | 6838 | 18.5 (17.9–19.1) | 389 | 25.1 (22.5–28.0) | 6154 | 20.2 (19.5–20.9) | 1082 | 12.6 (11.7–13.5) |
25–34 years | 4985 | 27.3 (26.4–28.3) | 4695 | 27.3 (26.3–28.3) | 282 | 29.4 (26.6–32.3) | 3265 | 26.6 (25.4–27.8) | 1718 | 30.5 (28.9–32.1) |
35–44 years | 3549 | 26.0 (25.0–27.1) | 3300 | 26.0 (25.0–27.1) | 239 | 24.9 (22.3–27.7) | 2133 | 25.5 (24.2–26.7) | 1412 | 28.3 (26.8–29.9) |
45–54 years | 3375 | 27.9 (27.0–28.9) | 3180 | 28.2 (27.3–29.1) | 190 | 20.6 (17.9–23.7) | 1929 | 27.7 (26.7–28.8) | 1442 | 28.6 (27.3–30.1) |
Sex *† | ||||||||||
Female | 10,505 | 53.8 (53.1–54.5) | 9951 | 54.1 (53.4–54.8) | 538 | 44.9 (41.3–48.5) | 7419 | 54.8 (53.9–55.6) | 3081 | 49.7 (48.2–51.1) |
Male | 8626 | 46.2 (45.5–46.9) | 8046 | 45.9 (45.2–46.6) | 562 | 55.1 (51.5–58.7) | 6048 | 45.2 (44.4–46.1) | 2571 | 50.3 (48.9–51.8) |
Race-ethnicity *† | ||||||||||
Non-Hispanic White | 10,428 | 59.4 (58.7–60.1) | 9627 | 58.8 (58.1–59.6) | 786 | 76.0 (72.7–79.0) | 6792 | 57.3 (56.4–58.1) | 3632 | 68.7 (67.0–70.3) |
Non-Hispanic Black | 2674 | 11.6 (11.1–12.1) | 2613 | 11.8 (11.3–12.4) | 57 | 5.3 (4.0–7.0) | 1968 | 11.6 (11.0–12.2) | 703 | 11.7 (10.7–12.9) |
Hispanic | 4256 | 19.8 (19.2–20.4) | 4083 | 20.1 (19.5–20.7) | 161 | 11.5 (9.4–14.0) | 3432 | 21.2 (20.5–22.0) | 820 | 13.6 (12.6–14.6) |
Non-Hispanic Other | 1580 | 9.2 (8.6–9.7) | 1485 | 9.3 (8.7–9.8) | 94 | 7.2 (5.4–9.4) | 1162 | 9.9 (9.3–10.6) | 417 | 6.0 (5.3–6.8) |
Annual household income *† | ||||||||||
≥USD 50,000 | 6793 | 48.3 (47.0–49.5) | 6449 | 48.7 (47.5–50.0) | 340 | 37.1 (33.8–40.6) | 5402 | 52.8 (51.5–54.2) | 1388 | 29.7 (27.8–31.5) |
<USD 50,000 | 11,045 | 51.7 (50.5–53.0) | 10,331 | 51.3 (50.0–52.5) | 689 | 62.9 (59.4–66.2) | 7043 | 47.2 (45.8–48.5) | 3994 | 70.3 (68.5–72.2) |
Education status *† | ||||||||||
Bachelors and beyond | 4085 | 30.9 (30.2–31.5) | 3949 | 31.5 (30.8–32.2) | 133 | 14.4 (11.9–17.3) | 3514 | 35.4 (34.6–36.2) | 570 | 11.8 (10.6–13.3) |
Some college | 6812 | 33.0 (32.2–33.8) | 6309 | 32.6 (31.8–33.4) | 496 | 45.5 (42.1–48.9) | 4792 | 32.5 (31.6–33.4) | 2019 | 35.3 (33.8–36.9) |
High school or less | 8166 | 36.1 (35.4–36.8) | 7681 | 35.9 (35.2–36.7) | 463 | 40.1 (36.6–43.7) | 5122 | 32.1 (31.2–33.1) | 3035 | 52.8 (51.1–54.5) |
Leisure-time physical activity *† | ||||||||||
≥4 days/week | 7638 | 38.2 (37.0–39.3) | 7191 | 38.1 (37.0–39.3) | 439 | 39.1 (35.8–42.5) | 5477 | 38.1 (36.7–39.5) | 2156 | 38.3 (36.7–40.0) |
1–3 days/week | 8427 | 46.5 (45.4–47.6) | 7953 | 46.6 (45.5–47.7) | 457 | 42.2 (38.8–45.7) | 6191 | 48.2 (46.9-49.4) | 2233 | 39.5 (38.0-41.0) |
0 days/week | 3015 | 15.3 (14.6-16.1) | 2808 | 15.2 (14.5-16.0) | 199 | 18.6 (15.9-21.7) | 1773 | 13.7 (12.8-14.6) | 1239 | 22.2 (20.9-23.4) |
Body mass index * | ||||||||||
<18.5 kg/m2 | 528 | 2.2 (2.0-2.5) | 494 | 2.2 (2.0-2.4) | 32 | 2.6 (1.7-3.9) | 381 | 2.2 (1.9-2.5) | 146 | 2.4 (2.0-2.8) |
18.5–24.9 kg/m2 | 6975 | 33.5 (32.4–34.6) | 6559 | 33.4 (32.4–34.6) | 409 | 35.1 (31.7–38.7) | 5086 | 33.6 (32.3–34.8) | 1888 | 33.2 (31.8–34.6) |
25.0–29.9 kg/m2 | 5469 | 31.9 (30.8–33.1) | 5183 | 32.2 (31.0–33.3) | 273 | 26.1 (23.3–29.0) | 3828 | 32.0 (30.7–33.4) | 1638 | 31.5 (30.1–33.0) |
≥30 kg/m2 | 5636 | 32.4 (31.2–33.5) | 5259 | 32.2 (31.0–33.4) | 367 | 36.2 (32.8–39.8) | 3810 | 32.2 (30.9–33.6) | 1824 | 32.9 (31.3–34.4) |
Heavy alcohol use *† | ||||||||||
No | 17,920 | 95.3 (94.8–95.7) | 16,901 | 95.5 (95.0–95.9) | 990 | 90.9 (88.8–92.6) | 12,922 | 96.8 (96.4–97.2) | 4988 | 88.8 (87.7–89.9) |
Yes | 1111 | 4.7 (4.3–5.2) | 1008 | 4.5 (4.1–5.0) | 98 | 9.1 (7.4–11.2) | 510 | 3.2 (2.8–3.6) | 600 | 11.2 (10.1–12.3) |
Insurance status † | ||||||||||
Insured | 15,495 | 85.0 (84.2–85.8) | 14,587 | 85.1 (84.2–85.9) | 889 | 83.0 (80.2–85.5) | 11230 | 87.2 (86.3–88.1) | 4260 | 75.9 (74.3–77.4) |
Uninsured | 3452 | 15.0 (14.2–15.8) | 3240 | 14.9 (14.1–15.8) | 199 | 17.0 (14.5–19.8) | 2100 | 12.8 (11.9–13.7) | 1345 | 24.1 (22.6–25.7) |
Marital status *† | ||||||||||
Married | 6393 | 49.9 (48.8–51.1) | 6034 | 50.5 (49.3–51.6) | 346 | 34.6 (31.4–38.0) | 4561 | 53.4 (52.1–54.6) | 1830 | 35.6 (33.6–37.6) |
Widowed, divorced or separated | 2378 | 13.4 (12.7–14.2) | 2196 | 13.2 (12.4–14.1) | 176 | 18.9 (16.4–21.7) | 1086 | 10.8 (10.0-11.6) | 1289 | 24.6 (23.1-26.1) |
Never married | 10,150 | 36.6 (35.7–37.6) | 9570 | 36.3 (35.3-37.3) | 566 | 46.5 (43.0-50.0) | 7692 | 35.9 (34.8-37.0) | 2451 | 39.8 (37.9-41.8) |
Hyperlipidemia † | ||||||||||
No | 16,867 | 84.3 (83.4-85.1) | 15,891 | 84.2 (83.4-85.0) | 947 | 85.3 (82.9-87.5) | 12,089 | 84.5 (83.6-85.5) | 4768 | 83.1 (82.0-84.1) |
Yes | 2277 | 15.7 (14.9–16.6) | 2120 | 15.8 (15.0–16.6) | 152 | 14.7 (12.5–17.1) | 1390 | 15.5 (14.5–16.4) | 885 | 16.9 (15.9–18.0) |
Diabetes mellitus | ||||||||||
No | 17,784 | 91.5 (90.8–92.1) | 16,750 | 91.5 (90.8–92.2) | 1005 | 91.1 (88.7–93.0) | 12,655 | 91.6 (90.8–92.4) | 5119 | 90.9 (90.0–91.7) |
Yes | 1336 | 8.5 (7.9–9.2) | 1240 | 8.5 (7.8–9.2) | 91 | 8.9 (7.0–11.3) | 815 | 8.4 (7.6–9.2) | 519 | 9.1 (8.3–10.0) |
Variable | Prevalence of Hypertension | Multivariable Odds of Hypertension | ||
---|---|---|---|---|
n | Cases | % (95% CI) | aOR (95% CI) | |
Current vaper | ||||
No | 18,013 | 2650 | 17.1 (16.3–18.0) | REF |
Yes | 1100 | 201 | 21.3 (18.7–24.2) | 1.31 (1.05–1.63) |
Current smoker | ||||
No | 13,481 | 1618 | 16.0 (15.1–17.0) | REF |
Yes | 5654 | 1241 | 22.6 (21.2–24.0) | 1.27 (1.10–1.47) |
Age | ||||
18–24 years | 7238 | 310 | 4.5 (3.8–5.1) | REF |
25–34 years | 4985 | 573 | 10.9 (9.7–12.2) | 2.33 (1.82–2.99) |
35–44 years | 3549 | 798 | 18.3 (16.8–19.9) | 3.58 (2.82–4.55) |
45–54 years | 3375 | 1178 | 31.1 (29.2–33.0) | 6.19 (4.90–7.83) |
Sex | ||||
Female | 10,505 | 1465 | 15.2 (14.1–16.4) | REF |
Male | 8626 | 1393 | 19.7 (18.4–20.9) | 1.60 (1.39–1.85) |
Race-ethnicity | ||||
Non-Hispanic White | 10,428 | 1538 | 17.6 (16.4–18.8) | REF |
Non-Hispanic Black | 2674 | 581 | 26.1 (24.0–28.4) | 1.56 (1.32–1.84) |
Hispanic | 4256 | 452 | 12.8 (11.4–14.3) | 0.67 (0.54–0.82) |
Non-Hispanic Other | 1580 | 230 | 12.4 (10.1–15.0) | 0.95 (0.72–1.24) |
Annual household income | ||||
≥USD 50,000 | 6793 | 927 | 15.7 (14.3–17.3) | REF |
<USD 50,000 | 11,045 | 1801 | 19.2 (18.1–20.5) | 1.32 (1.09–1.60) |
Education status | ||||
Bachelors and beyond | 4085 | 557 | 13.9 (12.4–15.7) | REF |
Some college | 6812 | 1069 | 18.1 (16.9–19.5) | 1.10 (0.92–1.32) |
High school or less | 8166 | 1223 | 19.3 (18.1–20.5) | 1.08 (0.89–1.33) |
Insurance status | ||||
Insured | 15,495 | 2437 | 18.0 (17.0–19.0) | REF |
Uninsured | 3452 | 400 | 13.4 (12.0–15.0) | 0.70 (0.58–0.85) |
Marital status | ||||
Married | 6393 | 1208 | 18.0 (16.8–19.3) | REF |
Widowed, divorced or separated | 2378 | 648 | 26.0 (23.6–28.6) | 1.26 (1.01–1.57) |
Never married | 10,150 | 960 | 12.9 (11.9–13.9) | 1.23 (1.04–1.45) |
Leisure-time physical activity | ||||
≥4 days/week | 7638 | 953 | 15.3 (14.1–16.5) | REF |
1–3 days/week | 8427 | 1244 | 16.5 (15.5–17.6) | 0.92 (0.80–1.07) |
0 days/week | 3015 | 651 | 24.3 (22.2–26.5) | 1.18 (0.98–1.42) |
Body mass index | ||||
<18.5 kg/m2 | 528 | 26 | 5.9 (3.3–10.2) | REF |
18.5–24.9 kg/m2 | 6975 | 420 | 6.6 (5.8–7.5) | 1.10 (0.52–2.34) |
25.0–29.9 kg/m2 | 5469 | 790 | 15.4 (14.2–16.7) | 1.98 (0.95–4.13) |
≥30 kg/m2 | 5636 | 1527 | 30.5 (28.9–32.2) | 4.11 (1.98–8.55) |
Heavy alcohol use | ||||
No | 17,920 | 2629 | 17.0 (16.2–17.9) | REF |
Yes | 1111 | 211 | 21.4 (18.4–24.8) | 1.33 (1.01–1.75) |
Hypercholesterolemia | ||||
No | 16,867 | 1797 | 12.5 (11.8–13.3) | REF |
Yes | 2277 | 1062 | 42.6 (39.3–45.9) | 2.85 (2.36–3.45) |
Diabetes mellitus | ||||
No | 17,784 | 2163 | 13.9 (13.1–14.8) | REF |
Yes | 1336 | 683 | 52.2 (47.9–56.4) | 2.95 (2.39–3.65) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miller, C.R.; Shi, H.; Li, D.; Goniewicz, M.L. Cross-Sectional Associations of Smoking and E-cigarette Use with Self-Reported Diagnosed Hypertension: Findings from Wave 3 of the Population Assessment of Tobacco and Health Study. Toxics 2021, 9, 52. https://doi.org/10.3390/toxics9030052
Miller CR, Shi H, Li D, Goniewicz ML. Cross-Sectional Associations of Smoking and E-cigarette Use with Self-Reported Diagnosed Hypertension: Findings from Wave 3 of the Population Assessment of Tobacco and Health Study. Toxics. 2021; 9(3):52. https://doi.org/10.3390/toxics9030052
Chicago/Turabian StyleMiller, Connor R., Hangchuan Shi, Dongmei Li, and Maciej L. Goniewicz. 2021. "Cross-Sectional Associations of Smoking and E-cigarette Use with Self-Reported Diagnosed Hypertension: Findings from Wave 3 of the Population Assessment of Tobacco and Health Study" Toxics 9, no. 3: 52. https://doi.org/10.3390/toxics9030052
APA StyleMiller, C. R., Shi, H., Li, D., & Goniewicz, M. L. (2021). Cross-Sectional Associations of Smoking and E-cigarette Use with Self-Reported Diagnosed Hypertension: Findings from Wave 3 of the Population Assessment of Tobacco and Health Study. Toxics, 9(3), 52. https://doi.org/10.3390/toxics9030052