Assessment of Metals Concentrations in Soils of Abu Dhabi Emirate Using Pollution Indices and Multivariate Statistics
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sample Selection
2.3. Geochemical Analyses
2.4. Multivariate Analyses
2.5. Evaluating the Soil Pollution by Pollution Indices
3. Results and Discussion
3.1. Geochemical Setup
3.2. Multivariate Geostatistics
- uncontaminated/moderately contamination with Cd at sites 33 and 76;
- uncontaminated/moderately contamination with Cu at sites 1–5, 7–16, 20–23, 26, 27, 29–35, 57, 66, 69, 80 and moderately contaminated soils at sites 6, 17, 24, 25, 28, 72 and 75;
- uncontaminated/moderately contamination with Ni at sites 31, 73, 74, 80, 81; moderated contamination at site 66, 69–71, 82–84; moderated to high pollution at 67, 68, 72, 75–79, and 84;
- uncontaminated/moderately contamination with Pb at sites 64, 66, 67, 69,71, 72,75, 78 and moderately contamination at 68, 70, 76, 77, 82, and 83;
- uncontaminated/moderately contamination with Zn at sites 50, 52, 57, 67, 71, 75–78, 82, 83; moderately contamination at 68–70.
- The sites not mentioned are not polluted.
- For Cd: 1 < PI < 2 (low soil pollution) at sites 35–55, 59–68, 70–73, 77,78, 80–84 and PI = 2.50 (moderate soil pollution) at 76;
- For Cu: low soil pollution at 2, 3, 5, 7, 9, 14, 16, 20, 26, 29, 31, 34, 64, 66, 69, 70, 76–79, 82; moderate soil pollution at 1, 4, 8, 10–13, 15, 21–23, 30, 32, 33, 35, 80; strong soil pollution at 6, 17, 24, 25, 27, 28, 67, 68, 72; strong soil pollution at 75;
- For Ni: low soil pollution at sites 31, 48, 49, 52, 55–57, 59, 60, 62, 65, 73, 74; strong and very strong soil pollution for the sites from cluster 3;
- For Pb: low soil pollution at sites 52, 64, 66, 71, 78, 81, 84; moderate at 67, 72, 75; strong soil pollution at sites 76, 77, 82, 83; very high soil pollution at 68, and 70;
- For Zn: low soil pollution at sites 39, 40, 42, 47, 49, 50, 52, 53, 62, 64, 66, 79, 82–84; moderate at 57, 67, 71, 75–78; strong soil pollution at 69, 70, 72; very strong soil pollution at 54, 68;
- For Cr: low soil pollution at sites 37, 40, 67, 68, 76.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- D’Amore, J.J.; Al-Abed, S.R.; Scheckel, K.G.; Ryan, J.A. Methods for Speciation of Metals in Soils. J. Environ. Qual. 2005, 34, 1707–1745. [Google Scholar] [CrossRef] [Green Version]
- Bărbulescu, A.; Postolache, F. New approaches for modeling the regional pollution in Europe. Sci. Total Environ. 2021, 753, 141993. [Google Scholar] [CrossRef]
- Barbeş, L.; Bărbulescu, A.; Stanciu, G. Statistical analysis of mineral elements content in different melliferous plants from the Dobrogea region, Romania. Rom. Rep. Phys. 2020, 72, 705. [Google Scholar]
- Pourret, O. On the Necessity of Banning the Term “Heavy Metal” from the Scientific Literature. Sustainability 2018, 10, 2879. [Google Scholar] [CrossRef] [Green Version]
- Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef] [Green Version]
- Barbeş, L.; Bărbulescu, A. Monitoring and statistical assessement of heavy metals in soil and leaves of Populus nigra L. Environ. Eng. Manag. J. 2017, 16, 187–196. [Google Scholar]
- Barbeş, L.; Bărbulescu, A.; Rădulescu, C.; Stihi, C. Determination of heavy metals in leaves and bark of Populus nigra L. Rom. Rep. Phys. 2014, 66, 877–886. [Google Scholar]
- Jia, L.; Wang, W.; Li, Y.; Yang, L. Heavy Metals in Soil and Crops of an Intensively Farmed Area: A Case Study in Yucheng City, Shandong Province, China. Int. J. Environ. Res. Public Health 2010, 7, 395–412. [Google Scholar] [CrossRef] [Green Version]
- Rădulescu, C.; Stihi, C.; Barbeş, L.; Chilian, A.; Chelărescu, D.E. Studies concerning heavy metals accumulation of Carduus nutans L. and Taraxacum officinale as potential soil bioindicator species. Rev. Chim. 2013, 64, 754–760. [Google Scholar]
- Kumar Sharma, R.; Agrawal, M.; Marshall, F. Heavy Metal Contamination of Soil and Vegetables in Suburban Areas of Varanasi, India. Ecotoxicol. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef]
- Micó, C.; Recatalá, L.; Peris, M.; Sánchez, J. Assessing Heavy Metal Sources in Agricultural Soils of an European Mediterranean Area by Multivariate Analysis. Chemosphere 2006, 65, 863–872. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J.; Wang, Y.; Sun, L.; Yu, H. Multivariate and Geostatistical Analyses of the Spatial Distribution and Sources of Heavy Metals in Agricultural Soil in Dehui, Northeast China. Chemosphere 2013, 92, 517–523. [Google Scholar] [CrossRef]
- Zhuang, P.; McBride, M.B.; Xia, H.; Li, N.; Li, Z. Health Risk from Heavy Metals via Consumption of Food Crops in the Vicinity of Dabaoshan Mine, South China. Sci. Total Environ. 2009, 407, 1551–1561. [Google Scholar] [CrossRef] [PubMed]
- Banat, K.M.; Howari, F.M.; Al-Hamad, A.A. Heavy Metals in Urban Soils of Central Jordan: Should We Worry about Their Environmental Risks? Environ. Res. 2005, 97, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Zalidis, G.; Stamatiadis, S.; Takavakoglou, V.; Eskridge, K.; Misopolinos, N. Impacts of Agricultural Practices on Soil and Water Quality in the Mediterranean Region and Proposed Assessment Methodology. Agric. Ecosyst. Environ. 2002, 88, 137–146. [Google Scholar] [CrossRef]
- Jerome, O.N.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar]
- Sacchi, E.; Mallen, L.; Facchinelli, A. Multivariate Statistical and GIS-Based Approach to Identify Heavy Metal Sources in Soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar]
- Aydinalp, C.; Marinova, S. Distribution and Forms of Heavy Metals in Some Agricultural Soils. Pol. J. Environ. Stud. 2003, 12, 629–633. [Google Scholar]
- Bruemmer, G.W.; Gerth, J.; Herms, U. Heavy Metal Species, Mobility and Availability in Soils. Z. Pflanz. Bodenkd. 1986, 149, 382–398. [Google Scholar] [CrossRef]
- Parveen, N.; Ghaffar, A.; Shirazi, S.A.; Bhalli, M.N. A GIS Based Assessment of Heavy Metals Contamination in Surface Soil of Urban Parks: A Case Study of Faisalabad City-Pakistan. J. Geogr. Nat. Disasters 2012, 02, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Acosta, J.A.; Faz, A.; Martínez-Martínez, S.; Arocena, J.M. Enrichment of Metals in Soils Subjected to Different Land Uses in a Typical Mediterranean Environment (Murcia City, Southeast Spain). Appl. Geochem. 2011, 26, 405–414. [Google Scholar] [CrossRef]
- Wilcke, W.; Müller, S.; Kanchanakool, N.; Zech, W. Urban Soil Contamination in Bangkok: Heavy Metal and Aluminium Partitioning in Topsoils. Geoderma 1998, 86, 211–228. [Google Scholar] [CrossRef]
- Li, X.; Lee, S.I.; Wong, S.C.; Shi, W.; Thornton, I. The Study of Metal Contamination in Urban Soils of Hong Kong Using a GIS-Based Approach. Environ. Pollut. 2004, 129, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, A.; Prochaska, C.; Papadopoulos, F.; Gantidis, N.; Metaxa, E. Determination and Evaluation of Cadmium, Copper, Nickel, and Zinc in Agricultural Soils of Western Macedonia, Greece. Environ. Manag. 2007, 40, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Vavoulidou, E.; Avramides, E.J.; Papadopoulos, P.; Dimirkou, A.; Charoulis, A.; Konstantinidou-Doltsinis, S. Copper Content in Agricultural Soils Related to Cropping Systems in Different Regions of Greece. Commun. Soil Sci. Plant Anal. 2005, 36, 759–773. [Google Scholar] [CrossRef]
- Heikens, A. Arsenic Contamination of Irrigation Water, Soil and Crops in Bangladesh: Risk Implications for Sustainable Agriculture and Food Safety in Asia. FAO RAP Publ. 2006, 20, 2. [Google Scholar]
- Sillanpää, M. Trace Elements in Soil and Agriculture. In FAO Soils Bulletin; FAO: Roma, Italy, 1976; Volume 17, Available online: http://www.fao.org/3/d4779e/d4779e.pdf (accessed on 5 June 2020).
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Musa, D.; Muazu, A.; Ujih, U.; Sabiu, N.; Abubakar, M.; Gebbe, H.; Chiroma, Y. Bioconcentration of Heavy Metals by Wild Plants Along Holomorphic Soils in Sule-Tankarkar Local Government Area, Jigawa State, Nigeria. J. Nat. Sci. Res. 2016, 6, 18–24. [Google Scholar]
- Altland, J. Managing Manganese Deficiency in Nursery Production of Red Maple; OSU Extension Service: Corvallis, OR, USA, 2006; pp. 1–7. [Google Scholar]
- Llopis, C.; Peris, M.; Sánchez, J.; Recatalá, L. Heavy Metal Content of Agricultural Soils in a Mediterranean Semiarid Area: The Segura River Valley (Alicante, Spain). Span. J. Agric. Res. 2006, 4, 363. [Google Scholar] [CrossRef] [Green Version]
- Melo, L.C.A.; Alleoni, L.R.F.; Carvalho, G.; Azevedo, R.A. Cadmium- and Barium-Toxicity Effects on Growth and Antioxidant Capacity of Soybean (Glycine max L.) Plants, Grown in Two Soil Types with Different Physicochemical Properties. J. Plant Nutr. Soil Sci. 2011, 174, 847–859. [Google Scholar] [CrossRef]
- Lewandowski, A.; Zumwinkle, M. Assessing the Soil System. A Soil Quality Literature Review. Available online: https://wrl.mnpals.net/islandora/object/WRLrepository%3A3001/datastream/PDF/view (accessed on 12 February 2021).
- Moldoveanu, A.M. Assessment of Soil Pollution with Heavy Metals in Romania. In Environmental Risk Assessment of Soil Contamination; Hernandez-Soriano, M.C., Ed.; IntechOpen: London, UK, 2014; Available online: https://www.intechopen.com/books/environmental-risk-assessment-of-soil-contamination/assessment-of-soil-pollution-with-heavy-metals-in-romania (accessed on 22 February 2020). [CrossRef] [Green Version]
- Hamad, R.; Balzter, H.; Kolo, K. Assessment of Heavy Metal Release into the Soil after Mine Clearing in Halgurd-Sakran National Park, Kurdistan, Iraq. Environ. Sci. Pollut. Res. 2019, 26, 1517–1536. [Google Scholar] [CrossRef] [Green Version]
- Moor, C.; Lymberopoulou, T.; Dietrich, V.J. Determination of Heavy Metals in Soils, Sediments and Geological Materials by ICP-AES and ICP-MS. Mikrochim. Acta 2001, 136, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Shokr, M.S.; El Baroudy, A.A.; Fullen, M.A.; El-beshbeshy, T.R.; Ramadan, A.R.; Abd El Halim, A.; Guerra, A.J.T.; Jorge, M.C.O. Spatial Distribution of Heavy Metals in the Middle Nile Delta of Egypt. Int. Soil Water Conserv. Res. 2016, 4, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Al-Taani, A.; Nazzal, Y.; Howari, F.; Iqbal, J.; Bou-Orm, N.; Xavier, C.M.; Bărbulescu, A.; Sharma, M.; Dumitriu, C.S. Contamination assessment of heavy metals in soil, Liwa area, UAE. Toxics 2021, 9, 53. [Google Scholar] [CrossRef]
- Nazzal, Y.; Alarifi, N.; Jafri, M.; Kishawy, H.A.; Ghrefat, H.; Elwaheidi, M.; Batayneh, A.; Zumlot, T. Multivariate Statistical Analysis of Urban Soil Contamination by Heavy Metals at Selected Industrial Locations in the Greater Toronto Area, Canada. Geol. Croat. 2015, 68. [Google Scholar] [CrossRef]
- Castrignanò, A.; Costantini, E.A.C.; Barbetti, R.; Sollitto, D. Accounting for Extensive Topographic and Pedologic Secondary Information to Improve Soil Mapping. Catena 2009, 77, 28–38. [Google Scholar] [CrossRef]
- Reghunath, R.; Murthy, T.R.S.; Raghavan, B.R. The Utility of Multivariate Statistical Techniques in Hydrogeochemical Studies: An Example from Karnataka, India. Water Res. 2002, 36, 2437–2442. [Google Scholar] [CrossRef]
- Lu, A.; Wang, J.; Qin, X.; Wang, K.; Han, P.; Zhang, S. Multivariate and Geostatistical Analyses of the Spatial Distribution and Origin of Heavy Metals in the Agricultural Soils in Shunyi, Beijing, China. Sci. Total Environ. 2012, 425, 66–74. [Google Scholar] [CrossRef]
- Venkatramanan, S.; Chung, S.Y.; Lee, S.Y.; Park, N. Assessment of River Water Quality via Environmentric Multivariate Statistical Tools and Water Quality Index: A Case Study of Nakdong River Basin, Korea. Carpathian J. Earth Environ. Sci. 2014, 9, 125–132. [Google Scholar]
- Lagacherie, P.; McBratney, A.B. Spatial Soil Information Systems and Spatial Soil Inference Systems: Perspectives for Digital Soil Mapping. In Digital Soil Mapping; Lagacherie, P., McBratney, A.B., Voltz, M.B.T.-D., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 3–22. [Google Scholar]
- Lucà, F.; Buttafuoco, G.; Terranova, O. GIS and Soil. Compr. Geogr. Inf. Syst. 2018, 3, 37–50. [Google Scholar] [CrossRef]
- Das Chagas, P.S.F.; de Souza, M.F.; Dombroski, J.L.D.; de Junior, R.S.O.; de Nunes, G.H.S.; Pereira, G.A.M.; Silva, T.S.; Passos, A.B.R.; dos Santos, J.B.; Silva, D.V. Multivariate Analysis Reveals Significant Diuron-Related Changes in the Soil Composition of Different Brazilian Regions. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Theocharopoulos, S.P.; Petrakis, P.V.; Trikatsoula, A. Multivariate Analysis of Soil Grid Data as a Soil Classification and Mapping Tool: The Case Study of a Homogeneous Plain in Vagia, Viotia, Greece. Geoderma 1997, 77, 63–79. [Google Scholar] [CrossRef]
- Oumenskou, H.; El Baghdadi, M.; Barakat, A.; Aquit, M.; Ennaji, W.; Karroum, L.A.; Aadraoui, M. Multivariate Statistical Analysis for Spatial Evaluation of Physicochemical Properties of Agricultural Soils from Beni-Amir Irrigated Perimeter, Tadla Plain, Morocco. Geol. Ecol. Landsc. 2019, 3, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; O’Connor, D.; Ok, Y.S.; Tsang, D.C.W.; Liu, A.; Hou, D. Assessment of Sources of Heavy Metals in Soil and Dust at Children’s Playgrounds in Beijing Using GIS and Multivariate Statistical Analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keshavarzi, A.; Bagherzadeh, A.; Brevik, E.C. The Use of Multivariate Statistical Analysis and Soil Quality Indices as Tools to Be Included in Regional Management Plans. A Case Study from the Mashhad Plain, Iran. Geogr. Res. Lett. 2019, 45, 687–708. [Google Scholar] [CrossRef] [Green Version]
- Shriadah, M.M.A. Heavy Metals in Mangrove Sediments of the United Arab Emirates Shoreline (Arabian Gulf). Water Air Soil Pollut. 1999, 116, 523–534. [Google Scholar] [CrossRef]
- El Tokhi, M.; Amin, B.; Alaabed, S.A. Environmental Assessment of Heavy Metals Contamination of Bottom Sediments of Oman Gulf, United Arab Emirates. J. Pollut. Eff. Control 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Howari, F.M. Distribution of Heavy Metal Concentrations in Surface Sediments in Dubai Creeks, United Arab Emirates. Ann. Chim. 2005, 95, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Bărbulescu, A.; Nazzal, Y.; Howari, F. Assessing the groundwater quality in the Liwa area, the United Arab Emirates. Water 2020, 12, 2816. [Google Scholar] [CrossRef]
- Mahmoud, M.T.; Hamouda, M.A.; Al Kendi, R.R.; Mohamed, M.M. Health Risk Assessment of Household Drinking Water in a District in the UAE. Water 2018, 10, 1726. [Google Scholar] [CrossRef] [Green Version]
- Jolly, J.; Ahmed, F. Spectrophotometric Studies of Sea Water Samples of United Arab Emirates. Int. J. Adv. Sci. Eng. Technol. 2018, 6, 34–37. [Google Scholar]
- Samara, F.; Elsayed, Y.; Soghomonian, B.; Knuteson, S.L. Chemical and Biological Assessment of Sediments and Water of Khalid Khor, Sharjah, United Arab Emirates. Mar. Pollut. Bull. 2016, 111, 268–276. [Google Scholar] [CrossRef]
- Ajaj, R.; Shahin, S.; Kurup, S.; Cheruth, A.-J.; Salem, M.A. Elemental Fingerprint of Agriculture Soils of Eastern Region of the Arabian Desert by ICP-OES with GIS Mapping. Curr. Environ. Eng. 2018, 5, 102–124. [Google Scholar] [CrossRef]
- Nourzadeh, M.; Mahdian, M.H.; Malakouti, M.J.; Khavazi, K. Investigation and Prediction Spatial Variability in Chemical Properties of Agricultural Soil Using Geostatistics. Arch. Agron. Soil Sci. 2012, 58, 461–475. [Google Scholar] [CrossRef]
- Wälder, K.; Wälder, O.; Rinklebe, J.; Menz, J. Estimation of Soil Properties with Geostatistical Methods in Floodplains. Arch. Agron. Soil Sci. 2008, 54, 275–295. [Google Scholar] [CrossRef]
- Iqbal, J.; Nazzal, Y.; Howari, F.; Xavier, C.; Yousef, A. Hydrochemical Processes Determining the Groundwater Quality for Irrigation Use in an Arid Environment: The Case of Liwa Aquifer, Abu Dhabi, United Arab Emirates. Groundw. Sustain. Dev. 2018, 7, 212–219. [Google Scholar] [CrossRef]
- Farrant, A.; Ellison, R.; Merritt, J.; Merritt, J.E.; Newell, A.; Lee, J.; Price, S.J.; Leslie, A.; Thomas, B.; Farrant, A.R.; et al. Geology of the Abu Dhabi 1:100,000 Map Sheet, 100–116, United Arab Emirates; British Geological Survey: Nottingham, UK, 2012; p. 69. [Google Scholar]
- Shahid, S.; Abdelfattah, M. Soils of Abu Dhabi Emirate. In Terrestrial Environment of Abu Dhabi Emirate; Environmental Agency 581: Abu Dhabi, United Arab Emirates, 2008; pp. 71–91. [Google Scholar]
- Shahid, S.A.; Taha, F.K.; Abdelfattah, M.A. Developments in Soil Classification, Land Use Planning and Policy Implications: Innovative Thinking of Soil Inventory for Land Use Planning and Management of Land Resources; Springer: Dordrecht, The Nederlands, 2013. [Google Scholar]
- Imakumbili, I.M.L. Soil Sampling and Preparation for Soil Chemical Analysis. PLoS ONE 2019. [Google Scholar] [CrossRef]
- U.S. EPA Method 3051A (SW-846): Microwave Assisted Acid Digestion of Sediments, Sludges, and Oils. 2007. Available online: https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-soils-and-oils (accessed on 4 February 2020).
- European Reference Material, Certified Reference Material ERM®-CC141. Available online: https://www.researchgate.net/publication/236902288_The_Certification_of_the_Mass_Fraction_of_the_Total_Content_and_the_Aqua_Regia_Extractable_Content_of_As_Cd_Co_Cr_Cu_Mn_Ni_Pb_and_Zn_in_Loam_Soil_Certified_Reference_Material_ERM-CC141 (accessed on 4 April 2020).
- Jolliffe, I. Principal Component Analysis; Wiley Stats. Ref. Online: Hoboken, NJ, USA, 2014. [Google Scholar]
- Kaiser, H.F.; Rice, J. Little Jiffy, Mark Iv. Educ. Psychol. Meas. 1974, 34, 111–117. [Google Scholar] [CrossRef]
- Cattell, R.B. The Scree Test for The Number Of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef] [PubMed]
- Gorsuch, R.L. Factor Analysis; Saunders: Philadelphia, PA, USA, 1974. [Google Scholar]
- Zwick, W.; Velicer, W. Factors Influencing Four Rules For Determining The Number Of Components to Retain. Multivar. Behav. Res. 1982, 17, 253–269. [Google Scholar] [CrossRef]
- GeeksforGeeks. Available online: https://www.geeksforgeeks.org/ml-hierarchical-clustering-agglomerative-and-divisive-clustering/ (accessed on 21 March 2020).
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hejuje, M.M.; Al-Saad, H.T.; Hussain, N.A. Application of geo-accumulation index (I-geo) for assessment the sediments contamination with heavy metals at Shatt Al-Arab River-Iraq. J. Sci. Eng. Resear. 2018, 5, 342–351. [Google Scholar]
- Müller, G. Heavy Metals in the Sediments of the Rhine: Changes since 1971. A look around. Sci. Technol. 1971, 79, 778–783. [Google Scholar]
- Sutherland, R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol. 2000, 39, 611–627. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. GSA Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Badr, N.; El-Fiky, A.; Mostafa, A.; Al-Mur, B. Metal Pollution Records in Core Sediments of Some Red Sea Coastal Areas, Kingdom of Saudi Arabia. Environ. Monit. Assess. 2008, 155, 509–526. [Google Scholar] [CrossRef] [PubMed]
- Ray, A.K.; Tripathy, S.C.; Patra, S.; Sarma, V.V. Assessment of Godavari Estuarine Mangrove Ecosystem through Trace Metal Studies. Environ. Int. 2006, 32, 219–223. [Google Scholar] [CrossRef]
- Tomlinson, D.; Wilson, J.; Harris, C.R.; Jeffrey, D.W. Problems in Assessment of Heavy Metals in Estuaries and the Formation of Pollution Index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Selvam, A.P.; Priya, S.L.; Banerjee, K.; Hariharan, G.; Purvaja, R.; Ramesh, R. Heavy Metal Assessment Using Geochemical and Statistical Tools in the Surface Sediments of Vembanad Lake, Southwest Coast of India. Environ. Monit. Assess. 2012, 184, 5899–5915. [Google Scholar] [CrossRef]
- Cheng, J.; Shi, Z.; Zhu, Y. Assessment and mapping of environmental quality in agricultural soils of Zhejiang Province, China. J. Environ. Sci. 2007, 19, 50–54. [Google Scholar] [CrossRef]
- Gong, Q.; Deng, J.; Xiang, Y.; Wang, Q.; Yang, L. Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. J. China Univ. Geosci. 2008, 19, 230–241. [Google Scholar]
- Taylor, S.R. Abundance of Chemical Elements in the Continental Crust: A New Table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Mason, P.F. The Atlantic City ore mine: A study in economic geography. Prof. Geogr. 1966, 18, 280–282. [Google Scholar] [CrossRef]
- Bowen, H.J.M. Trace Elements in Biochemistry; Academic Press: London, UK; New York, NY, USA, 1966. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Rafati Rahimzadeh, M.; Rafati Rahimzadeh, M.; Kazemi, S.; Moghadamnia, A.A. Cadmium toxicity and treatment: An update. Caspian J. Intern Med. 2017, 8, 135–145. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace elements in Terrestrial Environments Biogeochemistry, Bioavailability and Risks of Metals, 2nd ed.; Springer: New York, NY, USA, 2001. [Google Scholar]
- Spargo, J.; Allen, T.; Kariuki, S. Interpreting Your Soil Test Results. Available online: https://ag.umass.edu/sites/ag.umass.edu/files/fact-sheets/pdf/spttl_2_interpreting_your_soil_test_results_0.pdf (accessed on 28 February 2021).
- Lenntech. Available online: https://www.lenntech.com/periodic/elements/cu.htm (accessed on 23 March 2021).
- Bhatti, S.S.; Kumar, V.; Singh, N.; Sambyal, V.; Singh, J.; Katnoria, J.K.; Nagpal, A.K. Physico-Chemical Properties and Heavy Metal Contents of Soils and Kharif Crops of Punjab, India. Procedia Environ. Sci. 2016, 35, 801–808. [Google Scholar] [CrossRef]
- US Department of Health and Human Services, Toxicological Profile for Zinc 2005. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp60.pdf (accessed on 12 February 2021).
- Barabasz, W.; Albinska, D.; Jaskowska, M.; Lipiec, J. Ecotoxicology of Aluminium. Pol. J. Environ. Stud. 2002, 11, 199–203. [Google Scholar]
- Al-Taani, A.; Nazzal, Y.; Howari, F.M. Assessment of heavy metals in roadside dust along the Abu Dhabi–Al Ain National Highway, UAE. Environ. Earth Sci. 2019, 78, 411. [Google Scholar] [CrossRef]
- Bărbulescu, A.; Nazzal, Y. Statistical analysis of the dust storms in the United Arab Emirates. Atmosph. Res. 2020, 231, 104669. [Google Scholar] [CrossRef]
- Nazzal, Y.; Bărbulescu, A.; Howari, F.M.; Yousef, A.; Al-Taani, A.A.; Al Aydaroos, F.; Naseem, M. New insight to dust storm from historical records, UAE. Arabian J. Geosci. 2019, 12, 396. [Google Scholar] [CrossRef]
Element | Min | Max | Mean | Standard Deviation | Skewness | Kurtosis |
---|---|---|---|---|---|---|
Cd | 0.026 | 1.491 | 0.568 | 0.186 | 1.12 | 9.728 |
Cu | 0.892 | 158.672 | 33.479 | 24.879 | 1.93 | 6.552 |
Ni | 1.424 | 416.381 | 68.795 | 103.205 | 1.936 | 2.771 |
Pb | 0.017 | 113.574 | 8.966 | 18.493 | 4.148 | 19.783 |
Zn | 1.867 | 376.479 | 52.434 | 68.727 | 2.736 | 9.281 |
Cr | 1.630 | 138.966 | 42.577 | 36.315 | 0.557 | −0.585 |
Co | 0.003 | 3.556 | 0.373 | 0.572 | 3.239 | 12.775 |
Ba | 2.141 | 512.905 | 46.555 | 82.400 | 3.693 | 15.76 |
Fe | 48.828 | 4632.881 | 1244.609 | 869.188 | 1.443 | 2.989 |
Mn | 11.309 | 529.245 | 203.476 | 167.196 | 0.092 | −1.454 |
As | 0.001 | 0.011 | 0.007 | 0.003 | −0.463 | −1.548 |
Al | 382.085 | 3401.256 | 1638.612 | 663.136 | 0.557 | 0.143 |
Ca | 382.085 | 92,233.720 | 29,419.223 | 33,473.114 | 1.522 | 3.51 |
Mg | 375.989 | 19,643.617 | 3932.598 | 3059.733 | 2.587 | 9.169 |
Na | 17.830 | 9026.637 | 908.503 | 1377.381 | 3.449 | 15.1 |
Sr | 7.090 | 1216.286 | 151.852 | 148.852 | 4.752 | 31.552 |
K | 754.013 | 3582.475 | 2038.429 | 851.492 | 0.236 | −1.521 |
Metal | Igeo | Contamination Level (Cluster 1) | Contamination Level (Cluster 2) | Contamination Level (Cluster 3) |
---|---|---|---|---|
Cd | −0.40 | −0.43 | 0.06 | −0.22 |
Cu | 0.16 | 0.05 | 0.07 | 0.65 |
Ni | 0.20 | −0.95 | 0.03 | 2.19 |
Pb | −0.74 | −2.20 | −9.79 | 1.42 |
Zn | −0.52 | −1.16 | −2.72 | 1.05 |
Cr | −1.82 | −2.13 | −3.40 | −0.77 |
Co | −5.92 | −6.56 | −2.66 | −4.35 |
Ba | −4.01 | −5.19 | −6.29 | −1.99 |
As | −10.10 | −10.22 | −10.87 | −9.58 |
Mn | −2.65 | −2.97 | −6.02 | −1.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazzal, Y.; Bărbulescu, A.; Howari, F.; Al-Taani, A.A.; Iqbal, J.; Xavier, C.M.; Sharma, M.; Dumitriu, C.Ș. Assessment of Metals Concentrations in Soils of Abu Dhabi Emirate Using Pollution Indices and Multivariate Statistics. Toxics 2021, 9, 95. https://doi.org/10.3390/toxics9050095
Nazzal Y, Bărbulescu A, Howari F, Al-Taani AA, Iqbal J, Xavier CM, Sharma M, Dumitriu CȘ. Assessment of Metals Concentrations in Soils of Abu Dhabi Emirate Using Pollution Indices and Multivariate Statistics. Toxics. 2021; 9(5):95. https://doi.org/10.3390/toxics9050095
Chicago/Turabian StyleNazzal, Yousef, Alina Bărbulescu, Fares Howari, Ahmed A. Al-Taani, Jibran Iqbal, Cijo M. Xavier, Manish Sharma, and Cristian Ștefan Dumitriu. 2021. "Assessment of Metals Concentrations in Soils of Abu Dhabi Emirate Using Pollution Indices and Multivariate Statistics" Toxics 9, no. 5: 95. https://doi.org/10.3390/toxics9050095
APA StyleNazzal, Y., Bărbulescu, A., Howari, F., Al-Taani, A. A., Iqbal, J., Xavier, C. M., Sharma, M., & Dumitriu, C. Ș. (2021). Assessment of Metals Concentrations in Soils of Abu Dhabi Emirate Using Pollution Indices and Multivariate Statistics. Toxics, 9(5), 95. https://doi.org/10.3390/toxics9050095