Tissue-Specific Distribution of Legacy and Emerging Organophosphorus Flame Retardants and Plasticizers in Frogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analyses
2.3. Quality Assurance/Quality Control (QA/QC)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Occurrences of PFRs and Plasticizers in Different Frog Tissues
3.2. Tissue-Specific Distribution of PFRs and Plasticizers in Frogs
3.3. Relationships between Physiological Parameters and Pollutant Concentrations in Frog Livers
3.4. Parental Transfer Patterns in Frogs Accessed Using Different Tissues as Parental Tissues
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occur rence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef]
- Wei, G.-L.; Li, D.-Q.; Zhuo, M.-N.; Liao, Y.-S.; Xie, Z.-Y.; Guo, T.-L.; Li, J.-J.; Zhang, S.-Y.; Liang, Z.-Q. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environ. Pollut. 2015, 196, 29–46. [Google Scholar] [CrossRef]
- Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, Fate, Behavior and Ecotoxicological State of Phthalates in Different Environmental Matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar] [CrossRef] [PubMed]
- He, M.-J.; Lu, J.-F.; Wei, S.-Q. Organophosphate esters in biota, water, and air from an agricultural area of Chongqing, western China: Concentrations, composition profiles, partition and human exposure. Environ. Pollut. 2019, 244, 388–397. [Google Scholar] [CrossRef]
- Hou, L.; Jiang, J.; Gan, Z.; Dai, Y.; Yang, P.; Yan, Y.; Ding, S.; Su, S.; Bao, X. Spatial Distribution of Organophosphorus and Brominated Flame Retardants in Surface Water, Sediment, Groundwater, and Wild Fish in Chengdu, China. Arch. Environ. Contam. Toxicol. 2019, 77, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Lai, N.L.S.; Kwok, K.Y.; Wang, X.; Yamashita, N.; Liu, G.; Leung, K.M.Y.; Lam, P.K.S.; Lam, J.C.W. Assessment of organ-ophosphorus flame retardants and plasticizers in aquatic environments of China (Pearl River Delta, South China Sea, Yellow River Estuary) and Japan (Tokyo Bay). J. Hazard. Mater. 2019, 371, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Kim, U.J.; Oh, J.K.; Kannan, K. Occurrence, Removal, and Environmental Emission of Organophosphate Flame Retard-ants/Plasticizers in a Wastewater Treatment Plant in New York State. Environ. Sci. Technol. 2017, 51, 7872–7880. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Wei, L.; Sun, R.; Guo, H.; Liu, X.; Liu, S.; Li, Y.; Mai, B. The distribution and accumulation of phosphate flame retardants (PFRs) in water environment. Sci. Total. Environ. 2018, 630, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Zeng, X.; Song, H.; Li, H.; Yu, Z.; Sheng, G.; Fu, J. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China. Environ. Toxicol. Chem. 2012, 31, 1478–1484. [Google Scholar] [CrossRef]
- Cao, D.; Guo, J.; Wang, Y.; Li, Z.; Liang, K.; Corcoran, M.B.; Hosseini, S.; Bonina, S.M.C.; Rockne, K.J.; Sturchio, N.C.; et al. Organophosphate Esters in Sediment of the Great Lakes. Environ. Sci. Technol. 2017, 51, 1441–1449. [Google Scholar] [CrossRef]
- Tan, X.X.; Luo, X.J.; Zheng, X.B.; Li, Z.R.; Sun, R.X.; Mai, B.X. Distribution of organophosphorus flame retardants in sed-iments from the Pearl River Delta in South China. Sci. Total Environ. 2016, 544, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Zhang, S.; Huang, H.; Wu, T. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China. Environ. Pollut. 2016, 214, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.A.-E.; Covaci, A. Organophosphate Flame Retardants in Indoor Dust from Egypt: Implications for Human Exposure. Environ. Sci. Technol. 2014, 48, 4782–4789. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Jiang, J.; Gan, Z.; Yan, Y.; Ding, S.; Su, S.; Bao, X. Grain size distribution and exposure evaluation of organo-phosphorus and brominated flame retardants in indoor and outdoor dust and PM10 from Chengdu, China. J. Hazard. Mater. 2019, 365, 280–288. [Google Scholar] [CrossRef]
- de la Torre, A.; Navarro, I.; Sanz, P.; Martínez, M.d.l.Á. Organophosphate compounds, polybrominated di-phenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure. J. Hazard. Mater. 2020, 382, 121009. [Google Scholar] [CrossRef]
- Luo, P.; Bao, L.J.; Guo, Y.; Li, S.M.; Zeng, E.Y. Size-dependent atmospheric deposition and inhalation exposure of parti-cle-bound organophosphate flame retardants. J. Hazard. Mater. 2016, 301, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Giovanoulis, G.; Van Waes, S.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Magnér, J.; Haug, L.S.; Neels, H.; Covaci, A. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy. Environ. Sci. Technol. 2016, 50, 7752–7760. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Deng, Y.; Jian, K.; Li, J.; Ya, M.; Su, G. Traditional and emerging organophosphate esters (OPEs) in indoor dust of Nanjing, eastern China: Occurrence, human exposure, and risk assessment. Sci. Total. Environ. 2020, 712, 136494. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, F.; Chen, K.; Zeng, Y.; Luo, X.; Chen, S.; Mai, B.; Covaci, A. Flame retardants and organochlorines in in-door dust from several e-waste recycling sites in South China: Composition variations and implications for human exposure. Environ. Int. 2015, 78, 1–7. [Google Scholar] [CrossRef]
- Hou, R.; Liu, C.; Gao, X.; Xu, Y.; Zha, J.; Wang, Z. Accumulation and distribution of organophosphate flame retardants (PFRs) and their di-alkyl phosphates (DAPs) metabolites in different freshwater fish from locations around Beijing, China. Environ. Pollut. 2017, 229, 548–556. [Google Scholar] [CrossRef]
- Liu, Y.-E.; Luo, X.-J.; Corella, P.Z.; Zeng, Y.-H.; Mai, B.-X. Organophosphorus flame retardants in a typical freshwater food web: Bioaccumulation factors, tissue distribution, and trophic transfer. Environ. Pollut. 2019, 255, 113286. [Google Scholar] [CrossRef]
- Liu, Y.-E.; Luo, X.-J.; Huang, L.-Q.; Zeng, Y.-H.; Mai, B.-X. Organophosphorus flame retardants in fish from Rivers in the Pearl River Delta, South China. Sci. Total. Environ. 2019, 663, 125–132. [Google Scholar] [CrossRef]
- Liu, Y.-E.; Tang, B.; Liu, Y.; Luo, X.-J.; Mai, B.-X.; Covaci, A.; Poma, G. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site. Environ. Int. 2019, 133, 105240. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.E.; Luo, X.J.; Guan, K.L.; Huang, C.C.; Zhu, C.Y.; Qi, X.M.; Zeng, Y.H.; Mai, B.X. Legacy and emerging organo-phosphorus flame retardants and plasticizers in frogs: Sex difference and parental transfer. Environ. Pollut. 2020, 266, 115336. [Google Scholar] [CrossRef] [PubMed]
- Bekele, T.G.; Zhao, H.; Wang, Y.; Jiang, J.; Tan, F. Measurement and prediction of bioconcentration factors of organo-phosphate flame retardants in common carp (Cyprinus carpio). Ecotoxicol. Environ. Saf. 2018, 166, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Bekele, T.G.; Zhao, H.; Wang, Q. Tissue distribution and bioaccumulation of organophosphate esters in wild marine fish from Laizhou Bay, North China: Implications of human exposure via fish consumption. J. Hazard. Mater. 2021, 401, 123410. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, J.G.; Ankley, G.; Bell, H.; Carpenter, H.; Fort, D.; Gardiner, D.; Gardner, H.; Hale, R.; Helgen, J.C.; Jepson, P.; et al. Strategies for as-sessing the implications of malformed frogs for environmental health. Environ. Health Perspect. 2000, 108, 83–90. [Google Scholar] [CrossRef]
- Smalling, K.L.; Reeves, R.; Muths, E.; Vandever, M.; Battaglin, W.A.; Hladik, M.L.; Pierce, C.L. Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture. Sci. Total. Environ. 2015, 502, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Sparling, D.W.; Linder, G.; Bishop, C.A.; Krest, S. Ecotoxicology of Amphibians and Reptiles; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Tang, B.; Poma, G.; Bastiaensen, M.; Yin, S.-S.; Luo, X.-J.; Mai, B.-X.; Covaci, A. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio). Environ. Int. 2019, 126, 512–522. [Google Scholar] [CrossRef]
- Wang, G.; Shi, H.; Du, Z.; Chen, H.; Peng, J.; Gao, S. Bioaccumulation mechanism of organophosphate esters in adult zebrafish (Danio retio). Environ. Pollut. 2017, 229, 177–187. [Google Scholar] [CrossRef]
- Choo, G.; Cho, H.-S.; Park, K.; Lee, J.-W.; Kim, P.; Oh, J.-E. Tissue-specific distribution and bioaccumulation potential of organophosphate flame retardants in crucian carp. Environ. Pollut. 2018, 239, 161–168. [Google Scholar] [CrossRef]
- Hu, X.; Gu, Y.; Huang, W.; Yin, D. Phthalate monoesters as markers of phthalate contamination in wild marine organ-isms. Environ. Pollut. 2016, 218, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Christia, C.; Tang, B.; Yin, S.-S.; Luo, X.-J.; Mai, B.-X.; Poma, G.; Covaci, A. Simultaneous determination of legacy and emerging organophosphorus flame retardants and plasticizers in indoor dust using liquid and gas chromatography–tandem mass spectrometry: Method development, validation, and application. Anal. Bioanal. Chem. 2019, 411, 7015–7025. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-P.; Luo, X.; Zhang, Y.; Chen, S.-J.; Mai, B.-X.; Guan, Y.-T.; Yang, Z.-Y. Residues of Polybrominated Diphenyl Ethers in Frogs (Rana limnocharis) from a Contaminated Site, South China: Tissue Distribution, Biomagnification, and Maternal Transfer. Environ. Sci. Technol. 2009, 43, 5212–5217. [Google Scholar] [CrossRef]
- Kim, U.-J.; Jo, H.; Lee, I.-S.; Joo, G.-J.; Oh, J.-E. Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. Chemosphere 2015, 137, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Luo, X.; Tang, B.; Chen, L.; Liu, Y.; Mai, B. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer. Environ. Pollut. 2017, 222, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Crawshaw, G.J.; Weinkle, T.K. Clinical and pathological aspects of the amphibian liver. Semin. Avian Exot. Pet Med. 2000, 9, 165–173. [Google Scholar] [CrossRef]
- Chellappa, S.; Huntingford, F.A.; Strang, R.H.C.; Thomson, R.Y. Condition factor and hepatosomatic in-dex as estimates of energy status in male 3-spined stickleback. J. Fish Biol. 1995, 47, 775–787. [Google Scholar] [CrossRef]
- Facey, D.E.; Blazer, V.S.; Gasper, M.M.; Turcotte, C.L. Using fish biomarkers to monitor improvements in environ-mental quality. J. Aquat. Anim. Health 2005, 17, 263–266. [Google Scholar] [CrossRef]
- Du, X.; Yuan, B.; Zhou, Y.; Zheng, Z.; Wu, Y.; Qiu, Y.; Zhao, J.; Yin, G. Tissue-Specific Accumulation, Sexual Difference, and Maternal Transfer of Chlorinated Paraffins in Black-Spotted Frogs. Environ. Sci. Technol. 2019, 53, 4739–4746. [Google Scholar] [CrossRef]
- Schwaiger, J.; Spieser, O.; Bauer, C.; Ferling, H.; Mallow, U.; Kalbfus, W.; Negele, R. Chronic toxicity of nonylphenol and ethinylestradiol: Haematological and histopathological effects in juvenile Common carp (Cyprinus carpio). Aquat. Toxicol. 2000, 51, 69–78. [Google Scholar] [CrossRef]
- Zaroogian, G.; Gardner, G.; Horowitz, D.B.; Gutjahr-Gobell, R.; Haebler, R.; Mills, L. Effect of 17 beta-estradiol, o,p′-DDT, octylphenol and p,p′-DDE on gonadal development and liver and kidney pathology in juvenile male summer flounder (Paralichthys dentatus). Aquat. Toxicol. 2001, 54, 101–112. [Google Scholar] [CrossRef]
- Li, Z.-R.; Luo, X.-J.; Lin, L.; Zeng, Y.-H.; Mai, B.-X. Effect of laying sequence and selection of maternal tissues in assessment of maternal transfer of organohalogenated contaminants during chicken egg formation: A pilot study. Environ. Pollut. 2021, 270, 116157. [Google Scholar] [CrossRef] [PubMed]
Tissues | Female Black-Spotted Frogs | Male Black-Spotted Frogs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Liver | Heart | Kidney | Intestine | Lung | Liver | Heart | Kidney | Intestine | Lung | |
N | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
TEP | 0.18 ± 0.17 | 0.070 ± 0.030 | 0.16 ± 0.070 | 0.08 ± 0.040 | 0.14 ± 0.060 | 0.040 ± 0.010 | 0.020 ± 0.010 | 0.10 ± 0.010 | 0.030 ± 0.010 | 0.030 ± 0.020 |
TCEP | 2.8 ± 0.55 | 1.0 ± 0.44 | 1.4 ± 0.73 | 0.64 ± 0.25 | 2.1 ± 1.1 | 0.89 ± 0.25 | 0.82 ± 0.18 | 0.81 ± 0.32 | 0.58 ± 0.19 | 0.56 ± 0.20 |
TCIPP | 6.0 ± 0.50 | 0.030 ± 0.050 | 0.67 ± 0.38 | 0.30 ± 0.44 | 1.6 ± 0.83 | 0.76 ± 0.78 | 0.72 ± 0.83 | 1.3 ± 1.0 | 0.32 ± 0.070 | 0.29 ± 0.030 |
TNBP | 0.68 ± 0.32 | 0.40 ± 0.33 | 0.56 ± 0.73 | 0.16 ± 0.11 | 0.28 ± 0.15 | 0.30 ± 0.12 | 0.070 ± 0.070 | 0.040 ± 0.070 | 0.020 ± 0.020 | 0.040 ± 0.030 |
TDCIPP | 1.0 ± 0.99 | 0.61 ± 0.38 | 1.0 ± 0.82 | 0.22 ± 0.090 | 0.62 ± 0.59 | 0.010 ± 0.020 | 0.31 ± 0.16 | 0.10 ± 0.11 | 0.040 ± 0.030 | 0.10 ± 0.090 |
TPHP | 0.62 ± 0.45 | 0.90 ± 0.75 | 3.4 ± 3.9 | 0.62 ± 0.54 | 0.84 ± 0.43 | 0.14 ± 0.13 | 0.23 ± 0.17 | 0.33 ± 0.060 | 0.27 ± 0.11 | 0.12 ± 0.12 |
TBOEP | 0.29 ± 0.41 | 0.050 ± 0.080 | 2.8 ± 1.7 | 1.2 ± 2.0 | 0.42 ± 0.66 | ND | 0.020 ± 0.030 | 1.5 ± 1.2 | 0.20 ± 0.15 | 0.050 ± 0.050 |
EHDPHP | 0.99 ± 1.0 | 0.35 ± 0.39 | 0.22 ± 0.12 | 0.13 ± 0.11 | 0.060 ± 0.10 | 0.14 ± 0.13 | 0.090 ± 0.070 | 0.36 ± 0.24 | 0.14 ± 0.060 | 0.12 ± 0.11 |
TpTP | 0.050 ± 0.010 | 0.28 ± 0.29 | 0.18 ± 0.10 | 0.060 ± 0.060 | 0.090 ± 0.070 | 0.020 ± 0.020 | 0.060 ± 0.060 | 0.070 ± 0.030 | 0.030 ± 0.010 | 0.020 ± 0.010 |
TEHP | 0.15 ± 0.070 | 0.33 ± 0.31 | 0.080 ± 0.070 | 0.070 ± 0.060 | 0.060 ± 0.060 | 0.070 ± 0.080 | 0.080 ± 0.040 | 0.19 ± 0.040 | 0.10 ± 0.010 | 0.060 ± 0.050 |
iDDPHP | 0.14 ± 0.040 | 0.31 ± 0.25 | 0.46 ± 0.13 | 0.18 ± 0.18 | 0.22 ± 0.11 | 0.050 ± 0.070 | 0.070 ± 0.030 | 0.12 ± 0.050 | 0.040 ± 0.020 | 0.050 ± 0.050 |
RDP | ND | 0.010 ± 0.010 | 0.020 ± 0.020 | 0.010 ± 0.010 | ND | ND | ND | ND | ND | 0.010 ± 0.010 |
BDP | 0.15 ± 0.040 | 0.18 ± 0.20 | 0.44 ± 0.36 | 0.12 ± 0.10 | 0.070 ± 0.060 | 0.040 ± 0.060 | 0.010 ± 0.010 | 0.040 ± 0.020 | 0.090 ± 0.15 | 0.010 ± 0.010 |
∑PFRs | 13 ± 4.6 | 4.50 ± 3.5 | 11 ± 9.1 | 3.8 ± 4.0 | 6.5 ± 4.2 | 2.5 ± 1.7 | 2.5 ± 1.7 | 5.0 ± 3.1 | 1.9 ± 0.82 | 1.4 ± 0.78 |
DMP | 2.3 ± 2.5 | 20 ± 33 | 83 ± 91 | 25 ± 19 | 16 ± 24 | 52 ± 30 | 33 ± 18 | 61± 20 | 105 ± 82 | 55 ± 29 |
DEP | 5.7 ± 3.0 | 57 ± 82 | 90 ± 156 | 39 ± 21 | 6.8 ± 8.3 | 60 ± 55 | 31 ± 11 | 14 ± 13 | 77 ± 44 | 52 ± 45 |
DiBP | 44 ± 33 | 49 ± 29 | 354 ± 472 | 182 ± 77 | 238 ± 213 | 278 ± 180 | 139 ± 51 | 202 ± 59 | 196 ± 47 | 164 ± 73 |
DnBP | 2066 ± 1816 | 858 ± 1190 | 691 ± 378 | 481 ± 226 | 842 ± 79 | 514 ± 165 | 477± 88 | 717 ± 125 | 626 ± 137 | 499 ± 181 |
BBzP | 1.2 ± 0.77 | 29 ± 49 | 0.62 ± 1.1 | 2.5 ± 4.4 | 1.1 ± 1.5 | 2.2 ± 3.9 | 3.9 ± 3.5 | 1.3 ± 1.6 | 0.15 ± 0.26 | 0.74 ± 1.3 |
DEHP | 3081 ± 220 | 1443 ± 1311 | 1773 ± 1186 | 884 ± 724 | 1142 ± 400 | 551 ± 362 | 160 ± 11 | 503 ± 229 | 515 ± 366 | 251 ± 100 |
DEHT | 45 ± 24 | 10 ± 8.0 | 36 ± 49 | 14 ± 6.0 | 26 ± 17 | 4.6 ± 4.2 | 12 ± 12 | 12 ± 9.5 | 24 ± 13 | 26 ± 28 |
DIDP | 16 ± 2.5 | 28 ± 24 | 64 ± 20 | 84 ± 48 | 88 ± 104 | 4.8 ± 7.0 | ND | ND | 40 ± 17 | 30 ± 22 |
DINCH | 229 ± 190 | 86 ± 112 | ND | 58 ± 42 | 82 ± 117 | 7.2 ± 7.7 | ND | 45 ± 79 | 81 ± 61 | 40 ± 38 |
∑Plasticizers | 5503 ± 2181 | 2584 ± 1601 | 3103 ± 444 | 1772 ± 846 | 2448 ± 822 | 1478 ± 739 | 858 ± 116 | 1561 ± 38 | 1666 ± 701 | 1120 ± 317 |
Tissues | Female Bullfrogs | Male Bullfrogs | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Liver | Heart | Kidney | Intestine | Lung | Liver | Heart | Kidney | Intestine | Lung | |
N | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
TEP | 1.9 ± 1.8 | 0.070 ± 0.10 | 0.55 ± 0.67 | 0.30 ± 0.23 | 0.060 ± 0.050 | 0.70 ± 0.45 | 0.14 ± 0.20 | 0.53 ± 0.40 | 0.18 ± 0.15 | 0.040 ± 0.050 |
TCEP | 19 ± 16 | 4.0 ± 2.1 | 6.7 ± 7.2 | 1.6 ± 1.7 | 1.5 ± 1.1 | 9.5 ± 6.6 | 5.3 ± 2.3 | 4.1 ± 5.1 | 1.8 ± 1.7 | 1.1 ± 1.0 |
TCIPP | 0.62 ± 0.22 | 0.77 ± 0.40 | 0.25 ± 0.21 | 0.16 ± 0.15 | 0.16 ± 0.23 | 0.48 ± 0.17 | 0.83 ± 0.25 | 0.25 ± 0.28 | ND | 0.030 ± 0.060 |
TNBP | 0.56 ± 0.20 | 0.11 ± 0.050 | 0.10 ± 0.030 | 0.070 ± 0.030 | ND | 0.31 ± 0.21 | 0.090 ± 0.030 | 0.10 ± 0.060 | 0.010 ± 0.030 | ND |
TDCIPP | 0.59 ± 0.33 | ND | 0.030 ± 0.030 | 0.070 ± 0.040 | 0.050 ± 0.070 | 0.26 ± 0.20 | ND | 0.080 ± 0.070 | 0.050 ± 0.060 | 0.020 ± 0.030 |
TPHP | 17 ± 25 | 0.010 ± 0.020 | 1.3 ± 1.2 | 1.2 ± 1.1 | 0.56 ± 0.39 | 1.9 ± 1.4 | 0.11 ± 0.12 | 0.79 ± 0.35 | 0.49 ± 0.42 | 0.47 ± 0.30 |
TBOEP | 2.0 ± 1.6 | ND | 2.1 ± 1.7 | 0.75 ± 0.49 | 0.49 ± 0.49 | 0.52 ± 0.46 | 0.030 ± 0.040 | 1.8 ± 2.2 | 1.7 ± 3.0 | 0.89 ± 1.6 |
EHDPHP | 0.49 ± 0.55 | 0.020 ± 0.030 | 0.86 ± 0.72 | 0.69 ± 0.33 | 0.23 ± 0.31 | 0.29 ± 0.35 | 0.010 ± 0.030 | 1.9 ± 1.9 | 0.27 ± 0.23 | 0.17 ± 0.24 |
TpTP | 1.1 ± 0.43 | 0.56 ± 0.22 | 0.57 ± 0.65 | 0.090 ± 0.030 | 0.26 ± 0.21 | 0.84 ± 0.60 | 0.63 ± 0.15 | 0.080 ± 0.10 | 0.11 ± 0.070 | 0.22 ± 0.28 |
TEHP | 0.54 ± 0.45 | 0.050 ± 0.040 | 0.16 ± 0.080 | 0.17 ± 0.040 | 0.16 ± 0.11 | 0.23 ± 0.17 | 0.050 ± 0.060 | 0.26 ± 0.21 | 0.18 ± 0.16 | 0.33 ± 0.23 |
iDDPHP | 0.26 ± 0.45 | ND | 0.040 ± 0.050 | 0.10 ± 0.090 | 0.080 ± 0.12 | 0.080 ± 0.080 | ND | 0.080 ± 0.080 | 0.020 ± 0.030 | 0.040 ± 0.040 |
RDP | 0.49 ± 0.46 | ND | 0.070 ± 0.060 | 0.13 ± 0.080 | 0.030 ± 0.040 | 0.17 ± 0.16 | ND | 0.18 ± 0.25 | 0.020 ± 0.040 | 0.12 ± 0.24 |
BDP | 0.76 ± 0.77 | 0.32 ± 0.70 | 0.13 ± 0.070 | 2.3 ± 4.5 | 0.060 ± 0.060 | 0.19 ± 0.19 | ND | 0.37 ± 0.66 | 0.050 ± 0.060 | 0.18 ± 0.23 |
∑PFRs | 46 ± 29 | 5.9 ± 2.5 | 13 ± 6.8 | 7.6 ± 4.1 | 3.6 ± 1.2 | 16 ± 4.4 | 7.2 ± 2.2 | 10 ± 3.7 | 4.9 ± 2.8 | 3.6 ± 1.3 |
DMP | 23 ± 12 | 5.5 ± 4.5 | 45 ± 34 | 9.7 ± 4.5 | 14 ± 12 | 39 ± 45 | 5.5 ± 5.5 | 32 ± 24 | 7.55 ± 6.2 | 13 ± 9.6 |
DEP | 29 ± 28 | 4.9 ± 4.7 | 36 ± 28 | 9.1 ± 3.8 | 13 ± 11 | 48.33 ± 57.39 | 3.1 ± 3.2 | 29 ± 26 | 5.36 ± 3.6 | 12 ± 7.8 |
DiBP | 252 ± 132 | 77 ± 33 | 731 ± 624 | 120 ± 54 | 34 ± 28 | 435 ± 748 | 53 ± 53 | 485 ± 560 | 97 ± 73 | 29 ± 25 |
DnBP | 1146 ± 751 | 514 ± 223 | 609 ± 161 | 861 ± 459 | 174 ± 148 | 766 ± 821 | 430 ± 264 | 412 ± 297 | 412 ± 339 | 155 ± 117 |
BBzP | 8.0 ± 8.9 | 0.42 ± 0.57 | 0.51 ± 0.74 | 1.1 ± 1.0 | 0.11 ± 0.14 | 0.85 ± 0.84 | 0.18 ± 0.34 | 0.37 ± 0.59 | 0.13 ± 0.14 | 0.060 ± 0.020 |
DEHP | 1542 ± 1430 | 74 ± 96 | 286 ± 102 | 321 ± 225 | 96 ± 101 | 969 ± 859 | 146 ± 165 | 707 ± 352 | 378 ± 415 | 217 ± 128 |
DEHT | 64 ± 48 | 72 ± 158 | 18 ± 8.3 | 25 ± 20 | 9.6 ± 8.0 | 30 ± 32 | 20 ± 23 | 29 ± 22 | 20 ± 16 | 13 ± 18 |
DIDP | 128 ± 109 | 4.3 ± 5.9 | 56 ± 45 | 65 ± 28 | 9.8 ± 5.9 | 49 ± 48 | 11 ± 18 | 53 ± 40 | 31 ± 26 | 7.9 ± 5.8 |
DINCH | 312 ± 376 | 0.54 ± 1.2 | 5.2 ± 5.6 | 11 ± 18 | 3.0 ± 2.4 | 6.3 ± 7.6 | 3.2 ± 2.9 | 10 ± 8.3 | 11 ± 7.4 | 18 ± 34 |
∑Plasticizers | 3504 ± 1067 | 753 ± 487 | 1787 ± 645 | 1423 ± 712 | 355 ± 184 | 2344 ± 1399 | 672 ± 487 | 1758 ± 992 | 961 ± 819 | 465 ± 148 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.-E.; Luo, X.-J.; Guan, K.-L.; Huang, C.-C.; Qi, X.-M.; Zeng, Y.-H.; Mai, B.-X. Tissue-Specific Distribution of Legacy and Emerging Organophosphorus Flame Retardants and Plasticizers in Frogs. Toxics 2021, 9, 124. https://doi.org/10.3390/toxics9060124
Liu Y-E, Luo X-J, Guan K-L, Huang C-C, Qi X-M, Zeng Y-H, Mai B-X. Tissue-Specific Distribution of Legacy and Emerging Organophosphorus Flame Retardants and Plasticizers in Frogs. Toxics. 2021; 9(6):124. https://doi.org/10.3390/toxics9060124
Chicago/Turabian StyleLiu, Yin-E, Xiao-Jun Luo, Ke-Lan Guan, Chen-Chen Huang, Xue-Meng Qi, Yan-Hong Zeng, and Bi-Xian Mai. 2021. "Tissue-Specific Distribution of Legacy and Emerging Organophosphorus Flame Retardants and Plasticizers in Frogs" Toxics 9, no. 6: 124. https://doi.org/10.3390/toxics9060124
APA StyleLiu, Y. -E., Luo, X. -J., Guan, K. -L., Huang, C. -C., Qi, X. -M., Zeng, Y. -H., & Mai, B. -X. (2021). Tissue-Specific Distribution of Legacy and Emerging Organophosphorus Flame Retardants and Plasticizers in Frogs. Toxics, 9(6), 124. https://doi.org/10.3390/toxics9060124