Acute and Cumulative Effects of Repeated Exposure to Chlorpyrifos on the Liver and Kidney Function among Egyptian Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Setting
2.2. Procedures
2.3. Questionnaires
2.4. Blood Sampling
2.5. Cholinesterase (ChE) Analysis
2.6. Analysis of Liver and Kidney Function
2.7. Urine Collection and Analysis for 3,5,6-Trichloro-2 Pyridinol (TCPy)
2.8. Statistical Analysis
3. Results
3.1. Demographic and Exposure Characteristics of the Study Group
3.2. Exposure and Effect Biomarkers
3.3. Liver and Kidney Functions Changes during the Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study Year | 2014 | 2015 | 2016 | Time | Group | T*G | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Testing Time | 1 | 3 | 6 | 9 | 11 | 13 | 14 | ||||
Field Station | Quesna | 143.3 ± 12.2 | 21.5 ± 10.1 a | 37.7 ± 9.4 a | 30.7 ± 8.5 a | 18.6 ± 8.4 a | 31.1 ± 8.2 a | 26.0 ± 8.5 a | 8.5, <0.001 | 2.2, <0.05 | 5.2, <0.001 |
Shohada | 19.6 ± 10.3 | 18.1 ± 9.8 | 44.3 ± 8.4 ab | 23.5 ± 7.9 b | 19.4 ± 8.5 | 34.9 ± 8.5 | 18.6 ± 8.6 | ||||
Tala | 32.1 ± 11.7 | 22.4 ± 12.6 | 42.8 ± 9.1 | 22.0 ± 9.5 | 13.1 ± 10.3 | 45.2 ± 9.9 b | 22.1 ± 10.2 | ||||
Berket El-Sabea’ | 24.3 ± 14.3 | 43.4 ± 10.5 | 20.4 ± 9.6 | 28.0 ± 9.8 | 36.2 ± 0.2 | ||||||
Group Diff. | c | ||||||||||
TCPy | High exposed | 74.9 ± 7.3 | 26.3 ± 8.0 a | 62.4 ± 6.3 b | 46.0 ± 6.3 ab | 26.1 ± 7.5 ab | 45.8 ± 5.3 b | 42.6 ± 6.8 | 3.0, 0.007 | 63.4, <0.001 | 3.0, 0.007 |
Low exposed | 14.6 ± 11.0 | 16.2 ± 8.0 | 14.5 ± 6.6 a | 16.5 ± 5.5 | 15.1 ± 5.2 | 16.5 ± 6.6 | 14.4 ± 5.6 a | ||||
Group Diff. | c | c | c | c | c |
References
- Eddleston, M. Patterns and problems of deliberate self-poisoning in the developing world. QJM Int. J. Med. 2000, 93, 715–731. [Google Scholar] [CrossRef] [Green Version]
- Rekha, R.; Raina, S.; Hamid, S. Histopathological effects of pesticide-cholopyrifos on kidney in albino rats. Int. J. Res. Med. Sci. 2013, 1, 465–475. [Google Scholar] [CrossRef]
- Ismail, A.A.; Wang, K.; Olson, J.R.; Bonner, M.R.; Hendy, O.; Rasoul, G.A.; Rohlman, D.S. The impact of repeated organophosphorus pesticide exposure on biomarkers and neurobehavioral outcomes among adolescent pesticide applicators. J. Toxicol. Environ. Health Part A 2017, 80, 542–555. [Google Scholar] [CrossRef]
- Eaton, D.L.; Daroff, R.B.; Autrup, H.; Bridges, J.; Buffler, P.; Costa, L.G.; Coyle, J.; McKhann, G.; Mobley, W.C.; Nadel, L.; et al. Review of the Toxicology of Chlorpyrifos With an Emphasis on Human Exposure and Neurodevelopment. Crit. Rev. Toxicol. 2008, 38, 1–125. [Google Scholar] [CrossRef] [PubMed]
- Foxenberg, R.J.; McGarrigle, B.P.; Knaak, J.B.; Kostyniak, P.J.; Olson, J.R. Human Hepatic Cytochrome P450-Specific Metabolism of Parathion and Chlorpyrifos. Drug Metab. Dispos. 2006, 35, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Knights, K.M.; Rowland, A.; Miners, J.O. Renal drug metabolism in humans: The potential for drug–endobiotic interactions involving cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT). Br. J. Clin. Pharmacol. 2013, 76, 587–602. [Google Scholar] [CrossRef] [Green Version]
- Mansour, S.A.; Mossa, A.H. Adverse effects of lactational exposure to chlorpyrifos in suckling rats. Hum. Exp. Toxicol. 2009, 29, 77–92. [Google Scholar] [CrossRef]
- Li, B.; Ma, Y.; Zhang, Y.H. Oxidative stress and hepatotoxicity in the frog, Rana chensinensis, when exposed to low doses of trichlorfon. J. Environ. Sci. Heal. Part B 2017, 52, 1–7. [Google Scholar] [CrossRef]
- Muller, R.; Lloyd, R. Sublethal and Chronic Effects of Pollutants on Freshwater Fish; Blackwell: Oxford, UK, 1994. [Google Scholar]
- Miller, M.A.; Zachary, J.F. Mechanisms and Morphology of Cellular Injury, Adaptation, and Death. Pathol. Basis Vet. Dis. 2017, 2–43.e19. [Google Scholar] [CrossRef]
- Michalek, J.E.; Ketchum, N.S.; Longnecker, M. Serum Dioxin and Hepatic Abnormalities in Veterans of Operation Ranch Hand. Ann. Epidemiol. 2001, 11, 304–311. [Google Scholar] [CrossRef]
- Patil, J.; Patil, A.; Sonttake, A.; Govindwar, S. Occupational pesticides exposure of sprayers of grape gardens in Western Maharashtra (India): Effects on liver and kidney function. J. Basic Clin. Physiol. Pharmacol. 2009, 20, 335–355. [Google Scholar] [CrossRef]
- Wafa, T.; Nadia, K.; Amel, N.; Ikbal, C.; Insaf, T.; Asma, K.; Hedi, M.A.; Mohamed, H. Oxidative stress, hematological and biochemical alterations in farmers exposed to pesticides. J. Environ. Sci. Health Part B 2013, 48, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Araoud, M.; Neffeti, F.; Douki, W.; Ben Hfaiedh, H.; Akrout, M.; Hassine, M.; Najjar, M.F.; Kenani, A. Adverse effects of pesticides on biochemical and haematological parameters in Tunisian agricultural workers. J. Expo. Sci. Environ. Epidemiol. 2012, 22, 243–247. [Google Scholar] [CrossRef]
- Malekirad, A.A.; Faghih, M.; Mirabdollahi, M.; Kiani, M.; Fathi, A.; Abdollahi, M. Neurocognitive, Mental Health, and Glucose Disorders in Farmers Exposed to Organophosphorus Pesticides. Arch. Ind. Hyg. Toxicol. 2013, 64, 1–8. [Google Scholar] [CrossRef] [Green Version]
- García-García, C.R.; Parrón, T.; Requena, M.D.M.; Alarcón, R.; Tsatsakis, A.; Hernández, A.F. Occupational pesticide exposure and adverse health effects at the clinical, hematological and biochemical level. Life Sci. 2016, 145, 274–283. [Google Scholar] [CrossRef]
- Hu, R.; Huang, X.; Huang, J.; Li, Y.; Zhang, C.; Yin, Y.; Chen, Z.; Cai, J.; Cui, F. Long- and Short-Term Health Effects of Pesticide Exposure: A Cohort Study from China. PLoS ONE 2015, 10, e0128766. [Google Scholar] [CrossRef]
- Mendley, S.R.; Levin, A.; Correa-Rotter, R.; Joubert, B.R.; Whelan, E.A.; Curwin, B.; Koritzinsky, E.H.; Gaughan, D.M.; Kimmel, P.L.; Anand, S.; et al. Chronic kidney diseases in agricultural communities: Report from a workshop. Kidney Int. 2019, 96, 1071–1076. [Google Scholar] [CrossRef]
- Trabanino, R.G.; Aguilar, R.; Silva, C.R.; Mercado, M.O.; Merino, R.L. [End-stage renal disease among patients in a referral hospital in El Salvador]. Rev. Panam. Salud Publica 2002, 12, 202–206. [Google Scholar] [CrossRef]
- Kupferman, J.; Ramírez-Rubio, O.; Amador, J.J.; López-Pilarte, D.; Wilker, E.H.; Laws, R.L.; Sennett, C.; Robles, N.V.; Lau, J.L.; Salinas, A.J.; et al. Acute Kidney Injury in Sugarcane Workers at Risk for Mesoamerican Nephropathy. Am. J. Kidney Dis. 2018, 72, 475–482. [Google Scholar] [CrossRef]
- Peraza, S.; Wesseling, C.; Aragon, A.; Leiva, R.; García-Trabanino, R.A.; Torres, C.; Jakobsson, K.; Elinder, C.G.; Hogstedt, C. Decreased Kidney Function Among Agricultural Workers in El Salvador. Am. J. Kidney Dis. 2012, 59, 531–540. [Google Scholar] [CrossRef] [Green Version]
- Murray, K.O.; Fischer, R.S.; Chavarria, D.; Duttmann, C.; Garcia, M.N.; Gorchakov, R.; Hotez, P.J.; Jiron, W.; Leibler, J.H.; Lopez, J.E.; et al. Mesoamerican nephropathy: A neglected tropical disease with an infectious etiology? Microbes Infect. 2015, 17, 671–675. [Google Scholar] [CrossRef]
- Wesseling, C.; Crowe, J.; Hogstedt, C.; Jakobsson, K.; Lucas, R.; Wegman, D.H. Resolving the Enigma of the Mesoamerican Nephropathy: A Research Workshop Summary. Am. J. Kidney Dis. 2014, 63, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Torres, C.; Aragón, A.; Gonzalez-Quiroz, M.; López, I.; Jakobsson, K.; Elinder, C.-G.; Lundberg, I.; Wesseling, C. Decreased Kidney Function of Unknown Cause in Nicaragua: A Community-Based Survey. Am. J. Kidney Dis. 2010, 55, 485–496. [Google Scholar] [CrossRef] [Green Version]
- Wesseling, C.; Aragón, A.; González, M.; Weiss, I.; Glaser, J.; Bobadilla, N.A.; Roncal-Jiménez, C.; Correa-Rotter, R.; Johnson, R.J.; Barregard, L. Kidney function in sugarcane cutters in Nicaragua—A longitudinal study of workers at risk of Mesoamerican nephropathy. Environ. Res. 2016, 147, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Jayasumana, C.; Paranagama, P.; Agampodi, S.B.; Wijewardane, C.; Gunatilake, S.; Siribaddana, S. Drinking well water and occupational exposure to Herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 2015, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bhalli, J.A.; Khan, Q.; Haq, M.; Khalid, A.; Nasim, A. Cytogenetic analysis of Pakistani individuals occupationally exposed to pesticides in a pesticide production industry. Mutagenesis 2006, 21, 143–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaafar, A.R.; Mahmoud, E.A.S.; Atef, A.M.; Olfat, M.H.; Diane, S.R.; Ahmed, A.I. Effects of occupational pesticide exposure on children applying pesticides. Neurotoxicology 2008, 29, 833–838. [Google Scholar]
- Ismail, A.A.; Anger, K.; Rohlman, D. Evaluating Testing System Transitions: Correlation of BARS Tests on Different Operating Systems. In Proceedings of the 13th International Neurotoxicology Association (INS) & 11th International Symposium on Neurobehavioral Methods and Effects in Occupational and Environmental Health, Xian, China, 5 June 2011. [Google Scholar]
- Farahat, F.M.; Ellison, C.A.; Bonner, M.R.; McGarrigle, B.P.; Crane, A.L.; Fenske, R.A.; Lasarev, M.R.; Rohlman, D.S.; Anger, W.K.; Lein, P.J.; et al. Biomarkers of Chlorpyrifos Exposure and Effect in Egyptian Cotton Field Workers. Environ. Health Perspect. 2011, 119, 801–806. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.; Andres, V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- McConnell, R.; Cedillo, L.; Keifer, M.; Palomo, M.R. Monitoring organophosphate insecticide-exposed workers for cholinesterase depression. New technology for office or field use. J. Occup. Med. Off. Publ. Ind. Med. Assoc. 1992, 34, 34–37. [Google Scholar]
- Fog, J.; Jellum, E. Structure of Bilirubin. Nat. Cell Biol. 1963, 198, 88–89. [Google Scholar] [CrossRef]
- Momose, T.; Ohkura, Y.; Tomita, J. Determination of Urea in Blood and Urine with Diacetyl Monoxime-Glucuronolactone Reagent. Clin. Chem. 1965, 11, 113–121. [Google Scholar] [CrossRef]
- Delanghe, J.R.; Speeckaert, M.M. Creatinine determination according to Jaffe—What does it stand for? NDT Plus 2011, 4, 83–86. [Google Scholar] [CrossRef]
- Fabiny, D.L.; Ertingshausen, G. Automated Reaction-Rate Method for Determination of Serum Creatinine with the CentrifiChem. Clin. Chem. 1971, 17, 696–700. [Google Scholar] [CrossRef]
- Fan, Y.; Li, R. Variable selection in linear mixed effects models. Ann. Stat. 2012, 40, 2043–2068. [Google Scholar] [CrossRef]
- Simonsen, R.; Virji, A.M. Interpreting the profile of liver-function tests in pediatric liver transplants. Clin. Chem. 1984, 30, 1607–1610. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.E. Special considerations in interpreting liver function tests. Am. Fam. Physician 1999, 59, 2223–2230. [Google Scholar] [PubMed]
- Puzantian, H.V.; Townsend, R.R. Understanding kidney function assessment: The basics and advances. J. Am. Assoc. Nurse Pr. 2013, 25, 334–341. [Google Scholar] [CrossRef]
- Callahan, C.L.; Hamad, L.A.; Olson, J.R.; Ismail, A.A.; Abdel-Rasoul, G.; Hendy, O.; Rohlman, D.S.; Bonner, M.R. Longitudinal assessment of occupational determinants of chlorpyrifos exposure in adolescent pesticide workers in Egypt. Int. J. Hyg. Environ. Heal. 2017, 220, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Crane, A.L.; Rasoul, G.A.; Ismail, A.; Hendy, O.; Bonner, M.R.; Lasarev, M.R.; Al-Batanony, M.; Singleton, S.T.; Khan, K.; Olson, J.R.; et al. Longitudinal assessment of chlorpyrifos exposure and effect biomarkers in adolescent Egyptian agricultural workers. J. Expo. Sci. Environ. Epidemiol. 2013, 23, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Rohlman, D.S.; Ismail, A.; Rasoul, G.A.; Bonner, M.R.; Hendy, O.; Mara, K.; Wang, K.; Olson, J.R. A 10-month prospective study of organophosphorus pesticide exposure and neurobehavioral performance among adolescents in Egypt. Cortex 2016, 74, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Farahat, F.M.; Fenske, R.A.; Olson, J.R.; Galvin, K.; Bonner, M.R.; Rohlman, D.S.; Farahat, T.M.; Lein, P.J.; Anger, W.K. Chlorpyrifos exposures in Egyption cotton field workers. NeuroToxicology 2010, 31, 297–304. [Google Scholar] [CrossRef] [Green Version]
- Aroonvilairat, S.; Kespichayawattana, W.; Sornprachum, T.; Chaisuriya, P.; Siwadune, T.; Ratanabanangkoon, K. Effect of Pesticide Exposure on Immunological, Hematological and Biochemical Parameters in Thai Orchid Farmers—A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2015, 12, 5846–5861. [Google Scholar] [CrossRef] [Green Version]
- Attia, A.M. Risk Assessment of Occupational Exposure to Pesticides. In Comparative Risk Assessment and Environmental Decision Making; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Awad, O.M.; El-Fiki, S.A.; Abou-Shanab, R.A.I.; Hassanin, N.M.A.; Abd El Rahman, R. Influence of exposure to pesticides on liver enzymes and cholinesterase levels in male agriculture workers. Glob. Nest J. 2014, 16. [Google Scholar] [CrossRef]
- Gaikwad, A.A.; Karunamoorthy, P.; Kondhalkar, S.J.; Ambikapathy, M.; Beerappa, R. Assessment of hematological, biochemical effects and genotoxicity among pesticide sprayers in grape garden. J. Occup. Med. Toxicol. 2015, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Khan, D.A.; Bhatti, M.M.; A Khan, F.; Naqvi, S.T.; Karam, A. Adverse Effects of Pesticides Residues on Biochemical Markers in Pakistani Tobacco Farmers. Int. J. Clin. Exp. Med. 2008, 1, 274–282. [Google Scholar]
- Patil, J.A.; Patil, A.; Govindwar, S.P. Biochemical effects of various pesticides on sprayers of grape gardens. Indian J. Clin. Biochem. 2003, 18, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Tomei, F.; Biagi, M.; Baccolo, T.P.; Tomao, E.; Giuntoli, P.; Rosati, M.V. Liver Damage among Environmental Disinfestation Workers. J. Occup. Health 1998, 40, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Reyes, J.; Alegria, H. Toxic effects of exposure to pesticides in farm workers in Navolato, Sinaloa (Mexico). Rev. Int. Contam. Ambient. 2018, 34, 505–516. [Google Scholar] [CrossRef]
- Yaqub, S.; Rahamon, S.; Arinola, G. Indices of Hepatic and Renal functions in Applicators and Farmers Exposed to Organophosphate Pesticides in Southwest, Nigeria. Arch. Basic Appl. Med. 2015, 2, 83–86. [Google Scholar]
- Ismail, A.A.; Rohlman, D.S.; Rasoul, G.M.A.; Salem, M.E.A.; Hendy, O.M. Clinical and biochemical parameters of children and adolescents applying pesticides. Int. J. Occup. Environ. Med. 2010, 1, 132–143. [Google Scholar]
- Karami-Mohajeri, S.; Abdollahi, M. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates. Hum. Exp. Toxicol. 2010, 30, 1119–1140. [Google Scholar] [CrossRef] [PubMed]
- Naime, A.A.; Lopes, M.W.; Colle, D.; Dafré, A.L.; Suñol, C.; Da Rocha, J.B.T.; Aschner, M.; Leal, R.B.; Farina, M. Glutathione in Chlorpyrifos-and Chlorpyrifos-Oxon-Induced Toxicity: A Comparative Study Focused on Non-cholinergic Toxicity in HT22 Cells. Neurotox. Res. 2020, 38, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Wang, X.; Lang, L.; Fu, F. Protective effect of reduced glutathione on the liver injury induced by acute omethoate poisoning. Environ. Toxicol. Pharmacol. 2010, 30, 279–283. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristics | Study Year | |||
---|---|---|---|---|
2014 (n = 119) | 2015 (n = 279) | 2016 (n = 249) | ||
Field stations | Quesna, No. (%) | 44 (37.0) | 79 (28.3) | 69 (27.7) |
Shohada, No. (%) | 44 (37.0) | 74 (26.5) | 71 (28.5) | |
Tala, No. (%) | 31 (26.0) | 63 (22.6) | 57 (22.9) | |
Berket El-Sabe’, No. (%) | - | 63 (22.6) | 52 (20.9) | |
Age | Mean ± SD | 16.1 ± 1.8 | 16.5 ± 2.6 | 17.4 ± 2.7 |
Applicators | No. (%) | 119 (100.0) | 203 (72.8) | 182 (73.1) |
Applying with the Ministry of Agriculture | No. * | 87 | 139 | 130 |
Years worked: | ||||
Range | 1–6 | 1–7 | 2–8 | |
Mean ± SD | 2.4 ± 1.4 | 3.0 ± 1.3 | 4.1 ± 1.4 | |
Days/week: | ||||
Range | 1–6 | 1–6 | 1–5 | |
Mean ± SD | 3.0 ± 1.1 | 2.7 ± 1.0 | 2.7 ± 0.7 | |
Hours/day: | ||||
Range | 1–6 | 1–7 | 1–5 | |
Mean ± SD | 3.7 ± 1.1 | 2.8 ± 1.2 | 2.8 ± 0.8 | |
Applying as private applicator | No. * | 45 | 41 | 43 |
Times/week: | ||||
Range | 1–6 | 1–4 | 1–4 | |
Mean ± SD | 2.8 ± 1.4 | 2.3 ± 0.7 | 2.4 ± 0.7 | |
Applying in family farm | No. * | 88 | 133 | 116 |
Application at home (numbers among all participants) | No. | 96 | 96 | 249 |
Times in the past year: | ||||
Range | 2–365 | 1–70 | 5–85 | |
Mean ± SD | 31.8 ± 40.0 | 23.1 ± 12.1 | 31.4 ± 12.8 |
Study Year | 2014 | 2015 | 2016 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Testing Time (Date) | Time 2 (Jul 5) | Time 3 (Jul 12) | Time 4 (Jul 19) | Time 5 (Oct 25) | Time 6 (Jul 12) | Time 7 (Jul 25) | Time 8 (Aug 15) | Time 9 (Aug 29) | Time 10 (Dec 12) | Time 11 (Apr 16) | Time 12 (Jul 9) | Time 13 (Jul 23) | Time 14 (Aug 27) | Time 15 (Dec 10) | |
Day from Baseline | 7 | 14 | 21 | 121 | 388 | 401 | 4221 | 435 | 58 | 672 | 735 | 749 | 773 | 876 | |
Total No. (%) of applicators | 118 (100.0) | 106 (100.0) | 104 (100.0) | 85 (100.0) | 129 (74.6) | 153 (72.9) | 150 (71.1) | 153 (72.9) | 152 (75.6) | 148 (74.0) | 158 (72.8) | 156 (75.0) | 141 (73.4) | 146 (73.0) | |
MOA | Hours today: No. Range Mean ± SD | 51 1.0–4.0 2.1 ± 0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7 2.0–2.0 2.0 ± 0.0 | 41 2.0–2.5 2.2 ± 0.2 | 0 | 0 |
Days/week in the past week: No. Range Mean ± SD | 31 1–5 1.6 ± 1.0 | 8 1–3 1.9 ± 0.6 | 8 1–3 1.9 ± 0.6 | 0 | 90 1–2 1.9 ± 0.3 | 108 1–2 1.9 ± 0.3 | 102 1–3 1.8 ± 0.6 | 0 | 0 | 0 | 113 1–3 1.9 ± 0.3 | 32 1 1.0 ± 1.0 | 0 | 0 | |
Mixed/applied as private in the past week | No. (%) | 1 (0.8) | 8 (7.5) | 3 (2.9) | 0 | 28 (21.7) | 21 (13.7) | 13 (8.7) | 15 (9.8) | 6 (3.9) | 0 | 18 (11.4) | 6 (3.8) | 15 (10.6) | 6 (4.1) |
Applied at home in the past week | No. (%) | 12 (10.2) | 17 (16.1) | 3 (2.9) | 0 | 102 (79.1) | 138 (90.2) | 2 (1.3) | 4 (2.6) | 0 | 83 (56.1) | 109 (69.0) | 54 (34.6) | 4 (2.8) | 44 (30.1) |
Mixed/applied in the family farm in the past week | No. (%) | 6 (5.1) | 6 (5.7) | 7 (6.7) | 0 | 80 (62.0) | 93 (60.8) | 47 (31.3) | 60 (39.2) | 26 (17.1) | 4 (2.7) | 37 (23.4) | 15 (9.6) | 40 (28.4) | 28 (19.2) |
Study Year | 2014 | 2015 | 2016 | Time | Group | T*G | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Testing Time | 2 | 4 | 5 | 7 | 8 | 10 | 12 | 14 | 15 | ||||
AChE (U/g Hgb) | High exposed | 27.5 ± 0.3 | 27.8 ± 0.3 | 27.9 ± 0.4 | 27.5 ± 0.3 | 27.9 ± 0.3 b | 27.5 ± 0.3 b | 27.5 ± 0.3 | 28.2 ± 0.3 ab | 27.4 ± 0.3 b | 5.5, <0.001 | 0.5, 0.9 | 1.4, 0.2 |
Low exposed | 27.7 ± 0.3 | 27.9 ± 0.3 | 28.1 ± 0.4 | 28.0 ± 0.3 | 27.9 ± 0.3 | 27.8 ± 0.3 | 28.1 ± 0.3 | 28.3 ± 0.3 a | 27.8 ± 0.3 b | ||||
Group Diff. | |||||||||||||
BChE (U/mL) | High exposed | 1.6 ± 0.05 | 1.6 ± 0.03 | 1.8 ± 0.05 ab | 1.6 ± 0.04 b | 1.5 ± 0.04 b | 1.7 ± 0.04 b | 1.6 ± 0.04 | 1.6 ± 0.04 | 1.7 ± 0.04 ab | 13.2, <0.001 | 1.0, 0.3 | 2.0, 0.04 |
Low exposed | 1.6 ± 0.05 | 1.6 ± 0.05 | 1.08 ± 0.05 ab | 1.7 ± 0.04 a | 1.7 ± 0.05 | 1.7 ± 0.04 a | 1.7 ± 0.04 | 1.7 ± 0.04 | 1.7 ± 0.04 ab | ||||
Group Diff. | c |
Study Year | 2014 | 2015 | 2016 | Time | Group | T*G | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Testing Time | 2 | 4 | 5 | 7 | 8 | 10 | 12 | 14 | 15 | ||||
ALT (U/L) | High exposed | 15.5 ± 1.4 | 34.7 ± 1.5 ab | 17.8 ± 1.7 b | 18.9 ± 0.9 a | 26.4 ± 1.0 ab | 19.8 ± 1.0 ab | 17.2 ± 0.9 b | 29.9 ± 1.0 ab | 19.4 ± 1.0 ab | 69.2, <0.001 | 6.0, 0.02 | 0.3, 1.0 |
Low exposed | 12.8 ± 1.4 | 34.1 ± 1.5 ab | 15.4 ± 1.5 b | 16.8 ± 1.0 a | 25.0 ± 1.0 ab | 18.4 ± 1.0 ab | 16.4 ± 0.9 a | 27.5 ± 1.0 ab | 16.7 ± 1.0 ab | ||||
Group Diff. | |||||||||||||
AST (U/L) | High exposed | 20.9 ± 1.8 | 36.2 ± 1.9 ab | 24.8 ± 2.1 b | 24.9 ± 1.2 a | 37.3 ± 1.2 ab | 30.0 ± 1.2 ab | 22.9 ± 1.1 b | 35.3 ± 1.2 ab | 26.2 ± 1.2 ab | 44.7, <0.001 | 3.3, 0.07 | 0.7, 0.7 |
Low exposed | 18.7 ± 1.7 | 34.5 ± 1.8 ab | 24.8 ± 1.8 ab | 22.3 ± 1.2 | 35.8 ± 1.2 ab | 28.4 ± 1.2 ab | 24.1 ± 1.2 ab | 33.5 ± 1.6 ab | 22.7 ± 1.2 ab | ||||
Group Diff. | * | ||||||||||||
ALP (U/L) | High exposed | 85.8 ± 8.3 | 114.4 ± 8.9 ab | 113.2 ± 9.7 a | 104.9 ± 5.3 a | 124.2 ± 5.6 ab | 112.1 ± 5.5 a | 112.2 ± 5.3 a | 125.5 ± 5.5 a | 114.8 ± 5.5 a | 4.4, <0.001 | 0.2, 0.65 | 0.6, 0.74 |
Low exposed | 93.0 ± 7.8 | 113.6 ± 8.5 | 106.8 ± 8.7 | 104.2 ± 5.4 | 114.5 ± 5.6 a | 120.4 ± 5.8 a | 102.9 ± 5.4 b | 120.0 ± 5.7 ab | 116.7 ± 5.7 a | ||||
Group Diff. | |||||||||||||
GGT (U/L) | High exposed | 13.6 ± 1.6 | 12.0 ± 1.7 | 13.1 ± 1.9 | 26.9 ± 1.0 ab | 32.1 ± 1.1 ab | 31.1 ± 1.0 a | 37.4 ± 1.0 ab | 39.7 ± 1.1 a | 34.2 ± 1.1 ab | 128.1, <0.001 | 1.4, 0.2 | 0.4, 0.9 |
Low exposed | 11.9 ± 1.5 | 11.0 ± 1.6 | 11.7 ± 1.7 | 26.9 ± 1.0 ab | 32.5 ± 1.1 ab | 28.4 ± 1.1 ab | 37.6 ± 1.0 ab | 39.5 ± 1.1 a | 33.8 ± 1.1 ab | ||||
Group Diff. | |||||||||||||
Total Bilirubin (mg/dl) | High exposed | 0.40 ± 0.03 | 0.44 ± 0.03 | 0.53 ± 0.04 ab | 0.62 ± 0.02 ab | 0.72 ± 0.02 ab | 0.62 ± 0.02 ab | 0.67 ± 0.02 a | 0.84 ± 0.02 ab | 0.73 ± 0.02 ab | 68.4, <0.001 | 1.3, 0.3 | 0.7, 0.8 |
Low exposed | 0.36 ± 0.03 | 0.38 ± 0.03 | 0.47 ± 0.03 a | 0.60 ± 0.02 ab | 0.75 ± 0.02 ab | 0.62 ± 0.02 b | 0.66 ± 0.02 a | 0.82 ± 0.02 ab | 0.74 ± 0.02 ab | ||||
Group Diff. | |||||||||||||
Direct Bilirubin (mg/dl) | High exposed | 0.15 ± 0.01 | 0.13 ± 0.01 | 0.15 ± 0.01 | 0.18 ± 0.01 a | 0.18 ± 0.01 a | 0.20 ± 0.01 a | 0.17 ± 0.01 b | 0.21 ± 0.01 ab | 0.18 ± 0.01 ab | 12.7, <0.001 | 1.0, 0.3 | 0.9, 0.5 |
Low exposed | 0.15 ± 0.01 | 0.12 ± 0.01 | 0.15 ± 0.01 | 0.17 ± 0.01 b | 0.19 ± 0.01 ab | 0.18 ± 0.01 a | 0.18 ± 0.01 a | 0.21 ± 0.01 ab | 0.17 ± 0.01 b | ||||
Group Diff. | c | ||||||||||||
Creatinine (mg/dl) | High exposed | 0.78 ± 0.02 | 0.92 ± 0.03 ab | 0.70 ± 0.03 ab | 0.75 ± 0.02 | 0.74 ± 0.02 | 0.75 ± 0.02 | 0.79 ± 0.02 | 0.78 ± 0.01 | 0.75 ± 0.02 | 12.4, <0.001 | 0.6, 0.4 | 0.9, 0.5 |
Low exposed | 0.79 ± 0.02 | 0.89 ± 0.03 ab | 0.71 ± 0.03 ab | 0.78 ± 0.02 b | 0.70 ± 0.02 ab | 0.73 ± 0.02 a | 0.78 ± 0.02 | 0.74 ± 0.02 | 0.75 ± 0.02 | ||||
Group Diff. | |||||||||||||
Urea (mg/dl) | High exposed | 23.1 ± 1.0 | 20.5 ± 1.1 | 23.3 ± 1.1 | 29.6 ± 0.7 ab | 27.1 ± 0.7 ab | 26.0 ± 0.7 a | 28.9 ± 0.6 ab | 29.4 ± 0.7 | 27.8 ± 0.7 a | 28.1, <0.001 | 0.3, 0.6 | 0.2, 1.0 |
Low exposed | 24.0 ± 0.9 | 20.9 ± 1.0 ab | 22.6 ± 1.0 | 29.7 ± 0.7 ab | 28.1 ± 0.7 a | 26.2 ± 0.7 ab | 29.7 ± 0.6 ab | 29.4 ± 0.7 a | 27.8 ± 0.7 a | ||||
Group Diff. | |||||||||||||
Summary Index | High exposed | 0.3 ± 0.1 | 0.6 ± 0.1 | 0.5 ± 0.1 | 0.5 ± 0.1 | 1.0 ± 0.1 ab | 0.8 ± 0.1 a | 0.5 ± 0.1 b | 1.1 ± 0.1 ab | 0.5 ± 0.1 b | 16.3, <0.001 | 0.7, 0.4 | 0.4, 0.9 |
Low exposed | 0.3 ± 0.1 | 0.6 ± 0.1 | 0.4 ± 0.1 | 0.4 ± 0.1 | 1.1 ± 0.1 ab | 0.7 ± 0.1 ab | 0.5 ± 0.1 | 1.0 ± 0.1 ab | 0.4 ± 0.1 b | ||||
Group Diff. |
Liver & Kidney Function | Field Stations | Notes | |||
---|---|---|---|---|---|
Berket El-Sabea’ | Quesna | Shohada | Tala | ||
AST (U/L) | 24.5 ± 1.0 | 30.7 ± 0.8 | 29.7 ± 0.7 | 27.0 ± 0.9 | Quesna and Shohada were significantly higher than Berket El-Sabea’ and Tala |
ALT (U/L) | 19.4 ± 0.9 | 21.7 ± 0.7 | 22.4 ± 0.6 | 21.5 ± 0.8 | Quesna and Shohada were significantly higher than Berket El-Sabea’ |
ALP (U/L) | 100.7 ± 4.2 | 114.3 ± 3.1 | 115.8 ± 2.9 | 113.6 ± 3.7 | Quesna, Shohada, and Tala were significantly higher than Berket El-Sabea’ |
Creatinine (U/L) | 0.79 ± 0.02 | 0.77 ± 0.01 | 0.77 ± 0.01 | 0.74 ± 0.01 | There were significant differences between the 4 field stations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ismail, A.A.; Hendy, O.; Abdel Rasoul, G.; Olson, J.R.; Bonner, M.R.; Rohlman, D.S. Acute and Cumulative Effects of Repeated Exposure to Chlorpyrifos on the Liver and Kidney Function among Egyptian Adolescents. Toxics 2021, 9, 137. https://doi.org/10.3390/toxics9060137
Ismail AA, Hendy O, Abdel Rasoul G, Olson JR, Bonner MR, Rohlman DS. Acute and Cumulative Effects of Repeated Exposure to Chlorpyrifos on the Liver and Kidney Function among Egyptian Adolescents. Toxics. 2021; 9(6):137. https://doi.org/10.3390/toxics9060137
Chicago/Turabian StyleIsmail, Ahmed A., Olfat Hendy, Gaafar Abdel Rasoul, James R. Olson, Matthew R. Bonner, and Diane S. Rohlman. 2021. "Acute and Cumulative Effects of Repeated Exposure to Chlorpyrifos on the Liver and Kidney Function among Egyptian Adolescents" Toxics 9, no. 6: 137. https://doi.org/10.3390/toxics9060137
APA StyleIsmail, A. A., Hendy, O., Abdel Rasoul, G., Olson, J. R., Bonner, M. R., & Rohlman, D. S. (2021). Acute and Cumulative Effects of Repeated Exposure to Chlorpyrifos on the Liver and Kidney Function among Egyptian Adolescents. Toxics, 9(6), 137. https://doi.org/10.3390/toxics9060137