Synthesis of Silver-Impregnated Magnetite Mesoporous Silica Composites for Removing Iodide in Aqueous Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Silver Functionalized Magnetic Silica Adsorbents
2.2.1. Synthesis of Mag@silica Composites
2.2.2. Synthesis of Mag@silica-Ag Composites
2.3. Characterization
2.4. Adsorption Experiments
2.4.1. Adsorption Isotherms
2.4.2. Adsorption Kinetics
2.4.3. Effect of pH
2.4.4. Effect of Co-Existing Ions
3. Results and Discussion
3.1. Characterization of the Adsorbent
3.2. Adsorption Experiments
3.2.1. Adsorption Isotherm
3.2.2. Adsorption Kinetics
3.2.3. Effect of pH
3.2.4. Effect of Co-Existing Ions on I− Sorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahad, F.; Ganie, S.A. Iodine, iodine metabolism and iodine deficiency disorders revisited. Indian J. Endocrinol. Metab. 2010, 14, 13–17. [Google Scholar]
- Wu, T.-J.; Chiu, H.-Y.; Yu, J.; Cautela, M.P.; Sarmento, B.; das Neves, J.; Catala, C.; Pazos-Perez, N.; Guerrini, L.; Alvarez-Puebla, R.; et al. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. In Nanotechnologies in Preventive and Regenerative Medicine; Elsevier BV: Amsterdam, The Netherlands, 2018; pp. 1–92. [Google Scholar]
- Bo, A.; Sarina, S.; Zheng, Z.; Yang, D.; Liu, H.; Zhu, H. Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent. J. Hazard. Mater. 2013, 246–247, 199–205. [Google Scholar] [CrossRef]
- Hosseini, S.; Choong, T.S.Y.; Abdullah, L.C.; Beh, C.L. Removal of iodide ions from aqueous solution by electric arc furnace slag. J. Eng. Sci. Technol. 2015, 1, 73–81. [Google Scholar]
- Nagata, T.; Fukushi, K.; Takahashi, Y. Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation. J. Colloid Interface Sci. 2009, 332, 309–316. [Google Scholar] [CrossRef]
- Brown, C.F.; Geiszler, K.N.; Vickerman, T.S. Extraction and quantitative analysis of iodine in solid and solution matrixes. Anal. Chem. 2005, 77, 7062–7066. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Eskandari, H. Efficient and selective extraction of iodide through a liquid membrane. Microchem. J. 2001, 69, 45–50. [Google Scholar] [CrossRef]
- Curdts, B.; Pflitsch, C.; Pasel, C.; Helmich, M.; Bathen, D.; Atakan, B. Novel silica-based adsorbents with activated carbon structure. Microporous Mesoporous Mater. 2015, 210, 202–205. [Google Scholar] [CrossRef]
- Huve, J.; Ryzhikov, A.; Nouali, H.; Lalia, V.; Augé, G.; Daou, T.J. Porous sorbents for the capture of radioactive iodine compounds: A review. RSC Adv. 2018, 8, 29248–29273. [Google Scholar] [CrossRef] [Green Version]
- Scheele, R.; Burger, L.; Soldat, J. Adequacy of Radioiodine Control and Monitoring at Nuclear Fuels Reprocessing Plants; Pacific Northwest Lab.: Richland, WA, USA, 1984.
- Vance, E.R.; Agrawal, D.K. X-ray studies of iodine sorption in some silver zeolites. J. Mater. Sci. 1982, 17, 1889–1894. [Google Scholar] [CrossRef]
- Maeck, W.; Pence, D.; Keller, J. A Highly Efficient Inorganic Adsorber for Airborne Iodine Species (Silver Zeolite Development Studies); Idaho Nuclear Corp.: Idaho Falls, ID, USA, 1968.
- Pence, D.; Duce, F.; Maeck, W. Study of the Adsorption Properties of Metal Zeolites for Airborne Iodine Species; Idaho Nuclear Corp.: Idaho Falls, ID, USA, 1971.
- Pence, D.T.; Duce, F.A.; Maeck, W.J. Application of metal zeolites to nuclear fuel reprocessing plant off-gas treatment. Trans. ANS 1972, 15, 96. [Google Scholar]
- Staples, B.; Murphy, L.; Thomas, T. Airborne Elemental Iodine Loading Capacities of Metal Zeolites and a Dry Method for Recycling Silver Zeolite; Allied Chemical Corp.: Idaho Falls, ID, USA, 1976.
- Wilhelm, J.; Reichert, U.; Puppe, L. Method and adsorption agent for removing iodine and/or iodine compounds from gases and/or vapors. Verfahren und Adsorptionsmittel zur Entfernung von Jod und/oder organischen Jod-Verbindungen aus Gasen und/oder. Daempfen. Patent No. DEN-92-013681, EDB-92-176780, 21 January 1989. [Google Scholar]
- Ahmad, I.; Siddiqi, W.A.; Ahmad, T. Synthesis and characterization of molecularly imprinted magnetite nanomaterials as a novel adsorbent for the removal of heavy metals from aqueous solution. J. Mater. Res. Technol. 2019, 8, 4239–4252. [Google Scholar] [CrossRef]
- N’Guyen, T.T.T.; Duong, H.T.T.; Basuki, J.; Montembault, V.; Pascual, S.; Guibert, C.; Fresnais, J.; Boyer, C.; Whittaker, M.R.; Davis, T.P.; et al. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew. Chem. 2013, 125, 14402–14406. [Google Scholar] [CrossRef]
- Huang, S.; Liao, M.; Chen, D. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol. Prog. 2003, 19, 1095–1100. [Google Scholar] [CrossRef]
- Hyeon, T.; Lee, J.; Park, J.; Chung, Y.; Bin Na, H. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 2001, 123, 12798–12801. [Google Scholar] [CrossRef]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef]
- Lee, H.K.; Yang, D.S.; Oh, W.; Choi, S.-J. Copper ferrocyanide functionalized core–shell magnetic silica composites for the selective removal of cesium ions from radioactive liquid waste. J. Nanosci. Nanotechnol. 2016, 16, 6223–6230. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Górecka, H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: Kinetics, equilibrium and the mechanism of the process. Chemosphere 2005, 59, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, X.; Guo, T.; Li, Q.; Liu, H.; Ye, X.; Guo, M.; Wu, Z. Adsorption of iodide ions on a calcium alginate-silver chloride composite adsorbent. Colloids Surf. A Physicochem. Eng. Asp. 2011, 386, 166–171. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 2017, 1–11. [Google Scholar] [CrossRef]
- Atta, A.M.; Moustafa, Y.M.; Ezzat, A.O.; Hashem, A.I. Novel magnetic silica-ionic liquid nanocomposites for wastewater treatment. Nanomaterials 2019, 10, 71. [Google Scholar] [CrossRef] [Green Version]
- Magnacca, G.; Laurenti, E.; Vigna, E.; Franzoso, F.; Tomasso, L.; Montoneri, E.; Boffa, V. Refuse derived bio-organics and immobilized soybean peroxidase for green chemical technology. Process. Biochem. 2012, 47, 2025–2031. [Google Scholar] [CrossRef]
- Alothman, Z.A. A review: Fundamental aspects of silicate mesoporous materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Cychosz, K.A.; Thommes, M. Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 2018, 4, 559–566. [Google Scholar] [CrossRef]
- Jo, D.H.; Park, C.; Jung, H.; Kim, S.H. Adsorption of carbon dioxide onto tetraethylenepentamine impregnated PMMA sorbents with different pore structure. Korean Chem. Eng. Res. 2015, 53, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, S.; Yun, S.-J.; Yang, J.E.; Jeong, S.-W.; Shim, H.E.; Choi, M.H.; Park, S.H.; Choi, Y.J.; Jeon, J. Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes. Environ. Sci. Nano 2017, 4, 2157–2163. [Google Scholar] [CrossRef]
- Ye, Z.; Chen, L.; Liu, C.; Ning, S.; Wang, X.; Wei, Y. The rapid removal of iodide from aqueous solutions using a silica-based ion-exchange resin. React. Funct. Polym. 2019, 135, 52–57. [Google Scholar] [CrossRef]
- Sen, T.; Sebastianelli, A.; Bruce, I.J. Mesoporous silica-magnetite nanocomposite: Fabrication and applications in magnetic bioseparations. J. Am. Chem. Soc. 2006, 128, 7130–7131. [Google Scholar] [CrossRef]
- Girginova, P.; Daniel-Da-Silva, A.L.; Lopes, C.; Figueira, P.; Otero, M.; Amaral, V.S.; Pereira, E.; Trindade, T. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J. Colloid Interface Sci. 2010, 345, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Banaei, A.; Vojoudi, H.; Karimi, S.; Bahar, S.; Pourbasheer, E. Synthesis and characterization of new modified silica coated magnetite nanoparticles with bisaldehyde as selective adsorbents of Ag(I) from aqueous samples. RSC Adv. 2015, 5, 83304–83313. [Google Scholar] [CrossRef]
- Musić, S.; Filipović-Vinceković, N.; Sekovanić, L. Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 2011, 28, 89–94. [Google Scholar] [CrossRef]
- Gan, W.; Gao, L.; Zhan, X.; Li, J. Preparation of thiol-functionalized magnetic sawdust composites as an adsorbent to remove heavy metal ions. RSC Adv. 2016, 6, 37600–37609. [Google Scholar] [CrossRef]
- Ibrahim, A.S.; Al-Salamah, A.A.; El-Toni, A.M.; El-Tayeb, M.A.; Elbadawi, Y.B. Cyclodextrin glucanotransferase immobilization onto functionalized magnetic double mesoporous core-shell silica nanospheres. Electron. J. Biotechnol. 2014, 17, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Zhang, D.; Chen, Z.; Zhang, Y. Controlled synthesis of core/shell magnetic iron oxide/carbon systems via a self-template method. J. Mater. Chem. 2009, 19, 7710–7715. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.; Mei, M.; Xu, X. Magnetic adsorbent constructed from the loading of amino functionalized Fe3O4 on coordination complex modified polyoxometalates nanoparticle and its tetracycline adsorption removal property study. J. Solid State Chem. 2016, 238, 182–188. [Google Scholar] [CrossRef]
- Haq, Z.; Bancroft, G.M.; Fyfe, W.S.; Bird, G.; Lopata, V.J. Sorption of iodide on copper. Environ. Sci. Technol. 1980, 14, 1106–1110. [Google Scholar] [CrossRef]
- Vu, H.; Khan, M.; Tran, V.; Quang, D.; Dao, V.-D.; Lee, S.; Ahn, J.; Jung, S.-H. Use of calcite mud from paper factories in phosphorus treatment. Sustainability 2020, 12, 5982. [Google Scholar] [CrossRef]
- Zhao, X.; Han, X.; Li, Z.; Huang, H.; Liu, D.; Zhong, C. Enhanced removal of iodide from water induced by a metal-incorporated porous metal-organic framework. Appl. Surf. Sci. 2015, 351, 760–764. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, P.; Li, X.; Zhang, G. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon. Chem. Eng. J. 2017, 322, 129–139. [Google Scholar] [CrossRef]
- Li, C.; Wei, Y.; Wang, X.; Yin, X. Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide. J. Taiwan Inst. Chem. Eng. 2018, 85, 193–200. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Zhao, X.; Chen, D.; Cai, R.; Yang, W.; Komarneni, S.; Yang, D. Selective capture of iodide from solutions by microrosette-like δ-Bi2O3. ACS Appl. Mater. Interfaces 2014, 6, 16082–16090. [Google Scholar] [CrossRef]
- Lefèvre, G.; Walcarius, A.; Ehrhardt, J.-J.; Bessière, J.J.L. Sorption of iodide on cuprite (Cu2O). Langmuir 2000, 16, 4519–4527. [Google Scholar] [CrossRef]
- Shahzad, A.; Rasool, K.; Miran, W.; Nawaz, M.; Jang, J.; Mahmoud, K.A.; Lee, D.S. Engineering, two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water. ACS Sustain. Chem. Eng. 2017, 5, 11481–11488. [Google Scholar] [CrossRef]
Element | Wt (%) | Atomic (%) |
---|---|---|
N | 5.84 | 11.10 |
O | 34.30 | 57.07 |
Si | 13.39 | 12.69 |
Fe | 33.43 | 15.93 |
Ag | 13.04 | 3.22 |
Total | 100 | 100 |
Samples | BET Surface Area (m2g−1) | Pore Size (nm) | Pore Volume (cm3g−1) |
---|---|---|---|
silica | 768 | 5 | 0.7 |
mag@silica | 128 | 4 | 0.4 |
mag@silica-Ag | 97 | 4 | 0.3 |
Samples | C | O | Si | Fe | Ag |
---|---|---|---|---|---|
mag@silica | 21.2 | 41.0 | 32.1 | 5.7 | |
mag@silica-Ag | 16.8 | 35.0 | 25.1 | 6.7 | 16.4 |
Langmuir Model | Freundlich Model | |||||||
---|---|---|---|---|---|---|---|---|
qm (mmol/g) | b (L/mmol) | R2 | SEE | Kf | N | R2 | SEE | |
mag@silica | 0.13 | 7.57 | 0.83 | 0.1511 | 0.9735 | 0.38 | 0.76 | 0.1893 |
mag@silica-Ag | 0.82 | 11.01 | 0.84 | 0.0260 | 0.1471 | 0.42 | 0.72 | 0.0337 |
Adsorbent | Maximum Adsorption Capacity (qmax) (mmol/g) | Reference |
---|---|---|
mag@silica-Ag | 0.82 | This study |
Cu/Cu2O hybrids | 0.18 | [32,43] |
Cu2O/Cu-C | 0.32 | [44] |
Mg-Al LDO/SiO2 | 0.55 | [45] |
LDH | 0.41 | [46] |
T3NT | 0.5 | [3] |
T3NL | 0.2 | |
T3NF | 0.1 | |
Silver-impregnated activated carbon | 0.097 | [21,44] |
Electric Arc Furnace Slag | 0.34 | [4] |
Nanocomposite membranes | 0.012 | [31] |
Concentration of I− (mg/L) | Kinetic Model | Parameters | ||
---|---|---|---|---|
50 | PFOKM | qe (mg/g) 38.4637 | k1 (min−1) 0.4518 | R2 0.8319 |
PSOKM | qe (mg/g) 41.3988 | k2 (g/mg/min) 0.0158 | R2 0.9048 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, S.-E.; Choi, J.-W.; Choi, S.-J. Synthesis of Silver-Impregnated Magnetite Mesoporous Silica Composites for Removing Iodide in Aqueous Solution. Toxics 2021, 9, 175. https://doi.org/10.3390/toxics9080175
Jo S-E, Choi J-W, Choi S-J. Synthesis of Silver-Impregnated Magnetite Mesoporous Silica Composites for Removing Iodide in Aqueous Solution. Toxics. 2021; 9(8):175. https://doi.org/10.3390/toxics9080175
Chicago/Turabian StyleJo, Sang-Eun, Jung-Weon Choi, and Sang-June Choi. 2021. "Synthesis of Silver-Impregnated Magnetite Mesoporous Silica Composites for Removing Iodide in Aqueous Solution" Toxics 9, no. 8: 175. https://doi.org/10.3390/toxics9080175
APA StyleJo, S. -E., Choi, J. -W., & Choi, S. -J. (2021). Synthesis of Silver-Impregnated Magnetite Mesoporous Silica Composites for Removing Iodide in Aqueous Solution. Toxics, 9(8), 175. https://doi.org/10.3390/toxics9080175