Commonly Used Dietary Supplements on Coagulation Function during Surgery
Abstract
:Abstract
Background
Methods
Results
Conclusions
1. Introduction
2. Methods
2.1. Database and Search Strategies
2.2. Fundamental CAM Information from Two Surveys in the U.S.
2.3. Selection of Monographs of Natural Products in this Review
3. Results
3.1. Preoperative Management for Using of Dietary Supplements
3.2. Commonly Used Herbal Medicines
3.2.1. Echinacea
3.2.2. Ephedra
3.2.3. Garlic
3.2.4. Ginger
3.2.5. Ginkgo
3.2.6. Ginseng
3.2.7. Green Tea
3.2.8. Kava
3.2.9. Saw Palmetto
3.2.10. St John’s Wort
3.2.11. Valerian
3.2.12. Other Herbal Medicines
3.3. Other Commonly Used Dietary Supplements
3.3.1. Coenzyme Q10
3.3.2. Glucosamine and Chondroitin Sulfate
3.3.3. Fish Oil
3.3.4. Vitamins
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CAM | Complementary and Alternative Medicine |
OA | Osteoarthritis |
EPA | Eicosapentaenoic Acid |
DHA | Docosahexaenoic Acid |
RDA | Recommended Dietary Allowance |
MSM | Methysulfonylmethane |
References
- Shekelle, P.G.; Morton, S.C.; Suttorp, M.J.; Buscemi, N.; Friesen, C. Challenges in systematic reviews of complementary and alternative medicine topics. Ann. Intern. Med. 2005, 142, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Miller, F.G.; Emanuel, E.J.; Rosenstein, D.L.; Straus, S.E. Ethical issues concerning research in complementary and alternative medicine. JAMA 2004, 291, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Bega, D.; Gonzalez-Latapi, P.; Zadikoff, C.; Simuni, T. A review of the clinical evidence for complementary and alternative therapies in Parkinson’s disease. Curr. Treat. Opt. Neurol. 2014, 16, 314. [Google Scholar] [CrossRef] [PubMed]
- Grant, S.J.; Yu, S.B.; Kiat, H.; Chang, D. The use of complementary and alternative medicine by people with cardiovascular disease: A systematic review. BMC Public Health 2012, 12, 299. [Google Scholar] [CrossRef] [PubMed]
- Medagama, A.B.; Bandara, R. The use of complementary and alternative medicines (CAMs) in the treatment of diabetes mellitus: Is continued use safe and effective? Nutr. J. 2014, 13, 102. [Google Scholar] [CrossRef] [PubMed]
- Fouladbakhsh, J. Complementary and alternative modalities to relieve osteoarthritis symptoms: A review of the evidence on several therapies often used for osteoarthritis management. Orthop. Nurs. 2012, 31, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Miyahara, E.; Hihara, J. Efficacy and safety of orally administered Lentinula edodes mycelia extract for patients undergoing cancer chemotherapy: A pilot study. Am. J. Chin. Med. 2011, 39, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Geller, S.E.; Studee, L. Botanical and dietary supplements for mood and anxiety in menopausal women. Menopause 2007, 14, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, Y.; Ni, C.; Zhang, H.; Li, L.; Wang, Q. Cognition research and constitutional classification in Chinese medicine. Am. J. Chin. Med. 2011, 39, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.K.; Grossman, L.; Rogers, G.S. Common complementary and alternative therapies with potential use in dermatologic surgery: Risks and benefits. J. Am. Acad. Dermatol. 2011, 68, e127–e135. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.C.; Peckham, J.C.; Malarkey, D.E.; Kissling, G.E.; Travlos, G.S.; Fu, P.P. Two-year toxicity and carcinogenicity studies of Panax ginseng in Fischer 344 rats and B6C3F1 mice. Am. J. Chin. Med. 2011, 39, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T.; Koch, E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug Targets 2011, 12, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Du, G.J.; Wang, C.Z.; Yuan, C.S. Letter to the editor: Panaxadiol’s anticancer activity is enhanced by epicatechin. Am. J. Chin. Med. 2010, 38, 1233–1235. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.H.; Eisenberg, D.M. Potential physician malpractice liability associated with complementary and integrative medical therapies. Ann. Intern. Med. 2002, 136, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Ashar, B.H.; Rice, T.N.; Sisson, S.D. Physicians’ understanding of the regulation of dietary supplements. Arch. Intern. Med. 2007, 167, 966–969. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Mehendale, S.R.; Calway, T.; Yuan, C.S. Botanical flavonoids on coronary heart disease. Am. J. Chin. Med. 2011, 39, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.W.; Wang, C.Z.; Yuan, C.S. Isolation and analysis of ginseng: Advances and challenges. Nat. Prod. Rep. 2011, 28, 467–495. [Google Scholar] [CrossRef] [PubMed]
- Tsen, L.C.; Segal, S.; Pothier, M.; Bader, A.M. Alternative medicine use in presurgical patients. Anesthesiology 2000, 93, 148–151. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Clarke, R.C.; Sabar, R.; Vig, S.; Dhawan, K.P.; Hofbauer, R.; Kaye, A.M. Herbal medicines: Current trends in anesthesiology practice—A hospital survey. J. Clin. Anesth. 2000, 12, 468–471. [Google Scholar] [CrossRef]
- King, A.R.; Russett, F.S.; Generali, J.A.; Grauer, D.W. Evaluation and implications of natural product use in preoperative patients: A retrospective review. BMC Complement. Altern. Med. 2009, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Childress, L.; Gay, A.; Zargar, A.; Ito, M.K. Review of red yeast rice content and current Food and Drug Administration oversight. J. Clin. Lipidol. 2013, 7, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Bhalerao, S.; Deshpande, T.; Thatte, U. Prakriti (Ayurvedic concept of constitution) and variations in platelet aggregation. BMC Complement. Altern. Med. 2012, 12, 248. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.J.; Kim, T.; Cho, W.K.; Ma, J.Y. Antithrombotic and antiplatelet activities of Soshiho-tang extract. BMC Complement. Altern. Med. 2013, 13, 137. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Kim, D.W.; Park, S.E.; Choi, B.S.; Sapkota, K.; Kim, S.; Kim, S.J. Novel thrombolytic protease from edible and medicinal plant Aster yomena (Kitam.) Honda with anticoagulant activity: Purification and partial characterization. J. Biosci. Bioeng. 2014, 118, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Ang-Lee, M.K.; Moss, J.; Yuan, C.S. Herbal medicines and perioperative care. JAMA 2001, 286, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Calway, T.; Yuan, C.S. Herbal medicines as adjuvants for cancer therapeutics. Am. J. Chin. Med. 2012, 40, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Butterweck, V.; Derendorf, H. Potential of pharmacokinetic profiling for detecting herbal interactions with drugs. Clin. Pharmacokinet. 2008, 47, 383–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, H.; Pan, S.L. Pharmacokinetics of laetispicine and its brain distribution in rats. Am. J. Chin. Med. 2010, 38, 895–907. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D. Toxicological risks of Chinese herbs. Planta Med. 2010, 76, 2012–2018. [Google Scholar] [CrossRef] [PubMed]
- Dog, T.L.; Marles, R.; Mahady, G.; Gardiner, P.; Ko, R.; Barnes, J.; Chavez, M.L.; Griffiths, J.; Giancaspro, G.; Sarma, N.D. Assessing safety of herbal products for menopausal complaints: An international perspective. Maturitas 2010, 66, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Cordier, W.; Steenkamp, V. Herbal remedies affecting coagulation: A review. Pharm. Biol. 2012, 50, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.M.; Powell-Griner, E.; McFann, K.; Nahin, R.L. Complementary and alternative medicine use among adults: United States, 2002. Adv. Data 2004, 343, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Barnes, P.M.; Bloom, B.; Nahin, R.L. Complementary and alternative medicine use among adults and children: United States, 2007. Natl. Health Stat. Rep. 2008, 12, 1–23. [Google Scholar]
- Blumenthal, M.; Lindstrom, A.; Lynch, M.E.; Rea, P. Herb sales continue growth—Up 3.3% in 2010. HerbalGram 2010, 90, 64–67. [Google Scholar]
- McKenzie, A.G.; Simpson, K.R. Current management of patients taking herbal medicines: A survey of anaesthetic practice in the UK. Eur. J. Anaesthesiol. 2005, 22, 597–602. [Google Scholar] [CrossRef] [PubMed]
- Skinner, C.M.; Rangasami, J. Preoperative use of herbal medicines: A patient survey. Br. J. Anaesth. 2002, 89, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Cirigliano, M.; Sun, A. Advising patients about herbal therapies. JAMA 1998, 280, 1565–1566. [Google Scholar] [CrossRef] [PubMed]
- Rowe, D.J.; Baker, A.C. Perioperative risks and benefits of herbal supplements in aesthetic surgery. Aesthet. Surg. J. 2009, 29, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Stohs, S.J.; Dudrick, S.J. Nutritional supplements in the surgical patient. Surg. Clin. North Am. 2011, 91, 933–944. [Google Scholar] [CrossRef] [PubMed]
- Moss, J.; Yuan, C.S. Herbal medicines and perioperative care. Anesthesiology 2006, 105, 441–442. [Google Scholar] [CrossRef] [PubMed]
- Whinney, C. Perioperative medication management: General principles and practical applications. Cleve. Clin. J. Med. 2009, 76 (Suppl. 4), S126–S132. [Google Scholar] [CrossRef] [PubMed]
- Turner, R.B.; Bauer, R.; Woelkart, K.; Hulsey, T.C.; Gangemi, J.D. An evaluation of Echinacea angustifolia in experimental rhinovirus infections. N. Engl. J. Med. 2005, 353, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.A.; Sander, S.; White, C.M.; Rinaldi, M.; Coleman, C.I. Evaluation of echinacea for the prevention and treatment of the common cold: A meta-analysis. Lancet Infect. Dis. 2007, 7, 473–480. [Google Scholar] [CrossRef]
- Barnes, J.; Anderson, L.A.; Gibbons, S.; Phillipson, J.D. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): A review of their chemistry, pharmacology and clinical properties. J. Pharm. Pharmacol. 2005, 57, 929–954. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.N.; Werth, V.P. Activation of autoimmunity following use of immunostimulatory herbal supplements. Arch. Dermatol. 2004, 140, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Boullata, J.I.; Nace, A.M. Safety issues with herbal medicine. Pharmacotherapy 2000, 20, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Dong, G.C.; Chuang, P.H.; Chang, K.C.; Jan, P.S.; Hwang, P.I.; Wu, H.B.; Yi, M.; Zhou, H.X.; Chen, H.M. Blocking effect of an immuno-suppressive agent, cynarin, on CD28 of T-cell receptor. Pharm. Res. 2009, 26, 375–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, J.M.; Pokorny, A.J.; Rhule, A.; Wenner, C.A.; Kandhi, V.; Cech, N.B.; Shepherd, D.M. Echinacea purpurea extracts modulate murine dendritic cell fate and function. Food Chem. Toxicol. 2010, 48, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Mullins, R.J. Echinacea-associated anaphylaxis. Med. J. Aust. 1998, 168, 170–171. [Google Scholar] [PubMed]
- Huntley, A.L.; Thompson Coon, J.; Ernst, E. The safety of herbal medicinal products derived from Echinacea species: A systematic review. Drug Saf. 2005, 28, 387–400. [Google Scholar] [CrossRef] [PubMed]
- Toselli, F.; Matthias, A.; Gillam, E.M. Echinacea metabolism and drug interactions: The case for standardization of a complementary medicine. Life Sci. 2009, 85, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Abdul, M.I.; Jiang, X.; Williams, K.M.; Day, R.O.; Roufogalis, B.D.; Liauw, W.S.; Xu, H.; Matthias, A.; Lehmann, R.P.; McLachlan, A.J. Pharmacokinetic and pharmacodynamic interactions of echinacea and policosanol with warfarin in healthy subjects. Br. J. Clin. Pharmacol. 2010, 69, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Coates, P.M.; Betz, J.M.; Blackman, M.R.; Cragg, G.M.; Levine, M.; Moss, J.; White, J.D. Encyclopedia of Dietary Supplements, 2nd ed.; Informa Healthcare: London, UK, 2010. [Google Scholar]
- Vukovich, M.D.; Schoorman, R.; Heilman, C.; Jacob, P., 3rd; Benowitz, N.L. Caffeine-herbal ephedra combination increases resting energy expenditure, heart rate and blood pressure. Clin. Exp. Pharmacol. Physiol. 2005, 32, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, S.L. From the Food and Drug Administration. JAMA 1997, 278, 15. [Google Scholar] [CrossRef] [PubMed]
- Haller, C.A.; Benowitz, N.L. Adverse cardiovascular and central nervous system events associated with dietary supplements containing ephedra alkaloids. N. Engl. J. Med. 2000, 343, 1833–1838. [Google Scholar] [CrossRef] [PubMed]
- Soni, M.G.; Carabin, I.G.; Griffiths, J.C.; Burdock, G.A. Safety of ephedra: Lessons learned. Toxicol. Lett. 2004, 150, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Gurley, B.J.; Gardner, S.F.; White, L.M.; Wang, P.L. Ephedrine pharmacokinetics after the ingestion of nutritional supplements containing Ephedra sinica (ma huang). Ther. Drug Monit. 1998, 20, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Stevinson, C.; Pittler, M.H.; Ernst, E. Garlic for treating hypercholesterolemia. A meta-analysis of randomized clinical trials. Ann. Intern. Med. 2000, 133, 420–429. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.E.; Calvey, E.M.; Harnly, J.M. Quantitative determination of allicin in garlic: Supercritical fluid extraction and standard addition of alliin. J. Agric. Food Chem. 2004, 52, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.; Yin, M.C.; Chao, W.J. Effect of diallyl trisulfide-rich garlic oil on blood coagulation and plasma activity of anticoagulation factors in rats. Food Chem. Toxicol. 2007, 45, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Fukao, H.; Yoshida, H.; Tazawa, Y.; Hada, T. Antithrombotic effects of odorless garlic powder both in vitro and in vivo. Biosci. Biotechnol. Biochem. 2007, 71, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Rahman, K. Effects of garlic on platelet biochemistry and physiology. Mol. Nutr. Food Res. 2007, 51, 1335–1344. [Google Scholar] [CrossRef] [PubMed]
- Scharbert, G.; Kalb Madeleine, L.; Duris, M.; Marschalek, C.; Kozek-Langenecker Sibylle, A. Garlic at dietary doses does not impair platelet function. Anesth. Analg. 2007, 105, 1214–1218, table of contents. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, F.; Capasso, R.; Izzo, A.A. Garlic (Allium sativum L.): Adverse effects and drug interactions in humans. Mol. Nutr. Food Res. 2007, 51, 1386–1397. [Google Scholar] [CrossRef] [PubMed]
- Sunter, W.H. Warfarin and garlic. Pharm. J. 1991, 246, 722. [Google Scholar]
- Reinhart, K.M.; Coleman, C.I.; Teevan, C.; Vachhani, P.; White, C.M. Effects of garlic on blood pressure in patients with and without systolic hypertension: A meta-analysis. Ann. Pharmacother. 2008, 42, 1766–1771. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, G.; Lorenz, D.; Radeck, W.; Steiper, M. The pharmacokinetics of the S35 labeled labeled garlic constituents alliin, allicin and vinyldithiine. Arzneim. Forsch. 1994, 44, 734–743. [Google Scholar]
- Gurley, B.J.; Gardner, S.F.; Hubbard, M.A.; Williams, D.K.; Gentry, W.B.; Cui, Y.; Ang, C.Y. Cytochrome P450 phenotypic ratios for predicting herb-drug interactions in humans. Clin. Pharmacol. Ther. 2002, 72, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Klotz, U. Drug interactions with herbal medicines. Clin. Pharmacokinet. 2012, 51, 77–104. [Google Scholar] [CrossRef] [PubMed]
- Berginc, K.; Kristl, A. The effect of garlic supplements and phytochemicals on the ADMET properties of drugs. Expert Opin. Drug Metab. Toxicol. 2012, 8, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.F.; Yang, R.S.; Liu, S.H.; Hsieh, P.C.; Lin-Shiau, S.Y. Evidence for improved neuropharmacological efficacy and decreased neurotoxicity in mice with traditional processing of Rhizoma Arisaematis. Am. J. Chin. Med. 2011, 39, 981–998. [Google Scholar] [CrossRef] [PubMed]
- Al-Suhaimi, E.A.; Al-Riziza, N.A.; Al-Essa, R.A. Physiological and therapeutical roles of ginger and turmeric on endocrine functions. Am. J. Chin. Med. 2011, 39, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Saenghong, N.; Wattanathorn, J.; Muchimapura, S.; Tongun, T.; Piyavhatkul, N.; Banchonglikitkul, C.; Kajsongkram, T. Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women. Evid. Based Complement. Alternat. Med. 2012, 2012, 383062. [Google Scholar] [CrossRef] [PubMed]
- Ali, B.H.; Blunden, G.; Tanira, M.O.; Nemmar, A. Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): A review of recent research. Food Chem. Toxicol. 2008, 46, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Koo, K.L.; Ammit, A.J.; Tran, V.H.; Duke, C.C.; Roufogalis, B.D. Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation. Thromb. Res. 2001, 103, 387–397. [Google Scholar] [CrossRef]
- Pongrojpaw, D.; Chiamchanya, C. The efficacy of ginger in prevention of post-operative nausea and vomiting after outpatient gynecological laparoscopy. J. Med. Assoc. Thai. 2003, 86, 244–250. [Google Scholar] [PubMed]
- Nurtjahja-Tjendraputra, E.; Ammit, A.J.; Roufogalis, B.D.; Tran, V.H.; Duke, C.C. Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb. Res. 2003, 111, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Kruth, P.; Brosi, E.; Fux, R.; Morike, K.; Gleiter, C.H. Ginger-associated overanticoagulation by phenprocoumon. Ann. Pharmacother. 2004, 38, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Young, H.Y.; Liao, J.C.; Chang, Y.S.; Luo, Y.L.; Lu, M.C.; Peng, W.H. Synergistic effect of ginger and nifedipine on human platelet aggregation: A study in hypertensive patients and normal volunteers. Am. J. Chin. Med. 2006, 34, 545–551. [Google Scholar] [CrossRef] [PubMed]
- van Beek, T.A.; Montoro, P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 2009, 1216, 2002–2032. [Google Scholar] [CrossRef] [PubMed]
- Koh, P.O. Identification of proteins differentially expressed in cerebral cortexes of Ginkgo biloba extract (EGb761)-treated rats in a middle cerebral artery occlusion model—A proteomics approach. Am. J. Chin. Med. 2011, 39, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Koh, P.O. Gingko biloba extract (EGb 761) attenuates the focal cerebral ischemic injury-induced decrease in astrocytic phosphoprotein PEA-15 levels. Am. J. Chin. Med. 2011, 39, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Koh, P.O. Gingko biloba extract (EGb 761) prevents cerebral ischemia-induced p70S6 kinase and S6 phosphorylation. Am. J. Chin. Med. 2010, 38, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Fransen, H.P.; Pelgrom, S.M.; Stewart-Knox, B.; de Kaste, D.; Verhagen, H. Assessment of health claims, content, and safety of herbal supplements containing Ginkgo biloba. Food Nutr. Res. 2010, 54. [Google Scholar] [CrossRef]
- Le Bars, P.L.; Katz, M.M.; Berman, N.; Itil, T.M.; Freedman, A.M.; Schatzberg, A.F. A placebo-controlled, double-blind, randomized trial of an extract of Ginkgo biloba for dementia. North American EGb Study Group. JAMA 1997, 278, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Solomon, P.R.; Adams, F.; Silver, A.; Zimmer, J.; deVeaux, R. Ginkgo for memory enhancement: A randomized controlled trial. JAMA 2002, 288, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Ude, C.; Paulke, A.; Noldner, M.; Schubert-Zsilavecz, M.; Wurglics, M. Plasma and brain levels of terpene trilactones in rats after an oral single dose of standardized Ginkgo biloba extract EGb 761(R). Planta Med. 2011, 77, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Pyo, M.K.; Park, K.M.; Park, P.H.; Hahn, B.S.; Wu, S.J.; Yun-Choi, H.S. Antiplatelet and antithrombotic effects of a combination of ticlopidine and ginkgo biloba ext (EGb 761). Thromb. Res. 1998, 91, 33–38. [Google Scholar] [CrossRef]
- Sasaki, Y.; Noguchi, T.; Yamamoto, E.; Giddings, J.C.; Ikeda, K.; Yamori, Y.; Yamamoto, J. Effects of Ginkgo biloba extract (EGb 761) on cerebral thrombosis and blood pressure in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2002, 29, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Guinot, P.; Caffrey, E.; Lambe, R.; Darragh, A. Tanakan inhibits platelet-activating-factor-induced platelet aggregation in healthy male volunteers. Haemostasis 1989, 19, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Kohler, S.; Funk, P.; Kieser, M. Influence of a 7-day treatment with Ginkgo biloba special extract EGb 761 on bleeding time and coagulation: A randomized, placebo-controlled, double-blind study in healthy volunteers. Blood Coagul. Fibrinolysis 2004, 15, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Beckert, B.W.; Concannon, M.J.; Henry, S.L.; Smith, D.S.; Puckett, C.L. The effect of herbal medicines on platelet function: An in vivo experiment and review of the literature. Plast. Reconstr. Surg. 2007, 120, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
- Pedroso, J.L.; Henriques Aquino, C.C.; Escorcio Bezerra, M.L.; Baiense, R.F.; Suarez, M.M.; Dutra, L.A.; Braga-Neto, P.; Povoas Barsottini, O.G. Ginkgo biloba and cerebral bleeding: A case report and critical review. Neurologist 2011, 17, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, M.; Mindel, J. Spontaneous hyphema associated with ingestion of Ginkgo biloba extract. N. Engl. J. Med. 1997, 336, 1108. [Google Scholar] [CrossRef] [PubMed]
- Fessenden, J.M.; Wittenborn, W.; Clarke, L. Gingko biloba: A case report of herbal medicine and bleeding postoperatively from a laparoscopic cholecystectomy. Am. Surg. 2001, 67, 33–35. [Google Scholar] [PubMed]
- Drago, F.; Floriddia, M.L.; Cro, M.; Giuffrida, S. Pharmacokinetics and bioavailability of a Ginkgo biloba extract. J. Ocul. Pharmacol. Ther. 2002, 18, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Nagappan, A.; Karunanithi, N.; Sentrayaperumal, S.; Park, K.I.; Park, H.S.; Lee do, H.; Kang, S.R.; Kim, J.A.; Senthil, K.; Natesan, S.; et al. Comparative root protein profiles of Korean ginseng (Panax ginseng) and Indian ginseng (Withania somnifera). Am. J. Chin. Med. 2012, 40, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Attele, A.S.; Wu, J.A.; Yuan, C.S. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 1999, 58, 1685–1693. [Google Scholar] [CrossRef]
- Hwang, J.W.; Oh, J.H.; Yoo, H.S.; Lee, Y.W.; Cho, C.K.; Kwon, K.R.; Yoon, J.H.; Park, J.; Her, S.; Lee, Z.W.; et al. Mountain ginseng extract exhibits anti-lung cancer activity by inhibiting the nuclear translocation of NF-kappaB. Am. J. Chin. Med. 2012, 40, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Shergis, J.L.; Zhang, A.L.; Zhou, W.; Xue, C.C. Quality and risk of bias in Panax ginseng randomized controlled trials: A review. Am. J. Chin. Med. 2013, 41, 231–252. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.M.; Li, S.L.; Zhang, H.; Wang, Y.; Zhao, Z.L.; Chen, S.L.; Xu, H.X. Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach. J. Pharm. Biomed. Anal. 2012, 62, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Sievenpiper, J.L.; Arnason, J.T.; Leiter, L.A.; Vuksan, V. Null and opposing effects of Asian ginseng (Panax ginseng C.A. Meyer) on acute glycemia: Results of two acute dose escalation studies. J. Am. Coll. Nutr. 2003, 22, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Toh, S.A.; Sellers, L.A.; Skepper, J.N.; Koolwijk, P.; Leung, H.W.; Yeung, H.W.; Wong, R.N.; Sasisekharan, R.; Fan, T.P. Modulating angiogenesis: The yin and the yang in ginseng. Circulation 2004, 110, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Attele, A.S.; Zhou, Y.P.; Xie, J.T.; Wu, J.A.; Zhang, L.; Dey, L.; Pugh, W.; Rue, P.A.; Polonsky, K.S.; Yuan, C.S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component. Diabetes 2002, 51, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.T.; Wang, C.Z.; Ni, M.; Wu, J.A.; Mehendale, S.R.; Aung, H.H.; Foo, A.; Yuan, C.S. American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice. J. Food Sci. 2007, 72, S590–S594. [Google Scholar] [CrossRef] [PubMed]
- Torbey, E.; Abi Rafeh, N.; Khoueiry, G.; Kowalski, M.; Bekheit, S. Ginseng: A potential cause of long QT. J. Electrocardiol. 2011, 44, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.M.; Kuo, S.C.; Ko, F.N.; Lee, J.C.; Lee, L.G.; Chen, S.C.; Huang, T.F. Antiplatelet actions of panaxynol and ginsenosides isolated from ginseng. Biochim. Biophys. Acta 1989, 990, 315–320. [Google Scholar] [CrossRef]
- Lee, W.M.; Kim, S.D.; Park, M.H.; Cho, J.Y.; Park, H.J.; Seo, G.S.; Rhee, M.H. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: Critical roles of ERK2 and cAMP. J. Pharm. Pharmacol. 2008, 60, 1531–1536. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Lee, Y.Y.; Kim, S.Y.; Pyo, J.S.; Yun-Choi, H.S.; Park, J.H. Platelet antiaggregating activity of ginsenosides isolated from processed ginseng. Pharmazie 2009, 64, 602–604. [Google Scholar] [PubMed]
- Jin, Y.R.; Yu, J.Y.; Lee, J.J.; You, S.H.; Chung, J.H.; Noh, J.Y.; Im, J.H.; Han, X.H.; Kim, T.J.; Shin, K.S.; et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin. Pharmacol. Toxicol. 2007, 100, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Endale, M.; Lee, W.; Kamruzzaman, S.; Kim, S.; Park, J.; Park, M.; Park, T.; Park, H.; Cho, J.; Rhee, M. Ginsenoside-Rp1 inhibits platelet activation and thrombus formation via impaired GPVI signaling pathway tyrosine phosphorylation and MAPK activation. Br. J. Pharmacol. 2012, 167, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Janetzky, K.; Morreale, A.P. Probable interaction between warfarin and ginseng. Am. J. Health. Syst. Pharm. 1997, 54, 692–693. [Google Scholar] [PubMed]
- Yuan, C.S.; Wei, G.; Dey, L.; Karrison, T.; Nahlik, L.; Maleckar, S.; Kasza, K.; Ang-Lee, M.; Moss, J. Brief communication: American ginseng reduces warfarin’s effect in healthy patients: A randomized, controlled Trial. Ann. Intern. Med. 2004, 141, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Blair, E.Y.; McLachlan, A.J. Investigation of the effects of herbal medicines on warfarin response in healthy subjects: A population pharmacokinetic-pharmacodynamic modeling approach. J. Clin. Pharmacol. 2006, 46, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, J.; Wang, G.; Hao, H.; Liang, Y.; Zheng, Y.; Yan, B.; Sheng, L. Simultaneous determination of panax notoginsenoside R1, ginsenoside Rg1, Rd, Re and Rb1 in rat plasma by HPLC/ESI/MS: Platform for the pharmacokinetic evaluation of total panax notoginsenoside, a typical kind of multiple constituent traditional Chinese medicine. Biomed. Chromatogr. 2007, 21, 735–746. [Google Scholar] [PubMed]
- Munekage, M.; Kitagawa, H.; Ichikawa, K.; Watanabe, J.; Aoki, K.; Kono, T.; Hanazaki, K. Pharmacokinetics of daikenchuto, a traditional Japanese medicine (kampo) after single oral administration to healthy Japanese volunteers. Drug Metab. Dispos. 2011, 39, 1784–1788. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Z.; Kim, K.E.; Du, G.J.; Qi, L.W.; Wen, X.D.; Li, P.; Bauer, B.A.; Bissonnette, M.B.; Musch, M.W.; Chang, E.B.; et al. Ultra-performance liquid chromatography and time-of-flight mass spectrometry analysis of ginsenoside metabolites in human plasma. Am. J. Chin. Med. 2011, 39, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Stote, K.S.; Baer, D.J. Tea consumption may improve biomarkers of insulin sensitivity and risk factors for diabetes. J. Nutr. 2008, 138, 1584S–1588S. [Google Scholar] [PubMed]
- Wang, C.Z.; Mehendale, S.R.; Yuan, C.S. Commonly used antioxidant botanicals: Active constituents and their potential role in cardiovascular illness. Am. J. Chin. Med. 2007, 35, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.S.; Lim, I.H.; Yuk, D.Y.; Chung, K.H.; Park, J.B.; Yoo, H.S.; Yun, Y.P. Antithrombotic activities of green tea catechins and (−)-epigallocatechin gallate. Thromb. Res. 1999, 96, 229–237. [Google Scholar] [CrossRef]
- Son, D.J.; Cho, M.R.; Jin, Y.R.; Kim, S.Y.; Park, Y.H.; Lee, S.H.; Akiba, S.; Sato, T.; Yun, Y.P. Antiplatelet effect of green tea catechins: A possible mechanism through arachidonic acid pathway. Prostaglandins Leukot. Essent. Fatty Acids 2004, 71, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.R.; Im, J.H.; Park, E.S.; Cho, M.R.; Han, X.H.; Lee, J.J.; Lim, Y.; Kim, T.J.; Yun, Y.P. Antiplatelet activity of epigallocatechin gallate is mediated by the inhibition of PLCgamma2 phosphorylation, elevation of PGD2 production, and maintaining calcium-ATPase activity. J. Cardiovasc. Pharmacol. 2008, 51, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Liatsos, G.D.; Moulakakis, A.; Ketikoglou, I.; Klonari, S. Possible green tea-induced thrombotic thrombocytopenic purpura. Am. J. Health Syst. Pharm. 2010, 67, 531–534. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.R.; Wilt, V.M. Probable antagonism of warfarin by green tea. Ann. Pharmacother. 1999, 33, 426–428. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, U.; Haller, J.; Decourt, J.P.; Girault, N.; Girault, J.; Richard-Caudron, A.S.; Pineau, B.; Weber, P. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J. Int. Med. Res. 2003, 31, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Gawande, S.; Kale, A.; Kotwal, S. Effect of nutrient mixture and black grapes on the pharmacokinetics of orally administered (−)epigallocatechin-3-gallate from green tea extract: A human study. Phytother. Res. 2008, 22, 802–808. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.N.; Singh, N.N. Therapeutic potential of kava in the treatment of anxiety disorders. CNS Drugs 2002, 16, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.E.; Hermanson, D.; Wang, L.; Kassie, F.; Upadhyaya, P.; O’Sullivan, M.G.; Hecht, S.S.; Lu, J.; Xing, C. Lung tumorigenesis suppressing effects of a commercial kava extract and its selected compounds in A/J mice. Am. J. Chin. Med. 2011, 39, 727–742. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.S.; Dey, L.; Wang, A.; Mehendale, S.; Xie, J.T.; Aung, H.H.; Ang-Lee, M.K. Kavalactones and dihydrokavain modulate GABAergic activity in a rat gastric-brainstem preparation. Planta Med. 2002, 68, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, D.D.; Duffield, P.H.; Cheng, D.; Duffield, A.M. Comparison of the central nervous system activity of the aqueous and lipid extract of kava (Piper methysticum). Arch. Int. Pharmacodyn. Ther. 1989, 301, 66–80. [Google Scholar] [PubMed]
- Almeida, J.C.; Grimsley, E.W. Coma from the health food store: Interaction between kava and alprazolam. Ann. Intern. Med. 1996, 125, 940–941. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.C.; Onopa, J.; Holck, P.; Kaufusi, P.; Kabasawa, D.; Craig, W.J.; Dragull, K.; Levine, A.M.; Baker, J.D. Traditional kava beverage consumption and liver function tests in a predominantly Tongan population in Hawaii. Clin. Toxicol. (Phila) 2007, 45, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Teschke, R.; Schulze, J. Risk of kava hepatotoxicity and the FDA consumer advisory. JAMA 2010, 304, 2174–2175. [Google Scholar] [CrossRef] [PubMed]
- Gounder, R. Kava consumption and its health effects. Pac. Health Dialog. 2006, 13, 131–135. [Google Scholar] [PubMed]
- Gleitz, J.; Beile, A.; Wilkens, P.; Ameri, A.; Peters, T. Antithrombotic action of the kava pyrone (+)-kavain prepared from Piper methysticum on human platelets. Planta Med. 1997, 63, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Mathews, J.D.; Riley, M.D.; Fejo, L.; Munoz, E.; Milns, N.R.; Gardner, I.D.; Powers, J.R.; Ganygulpa, E.; Gununuwawuy, B.J. Effects of the heavy usage of kava on physical health: Summary of a pilot survey in an aboriginal community. Med. J. Aust. 1988, 148, 548–555. [Google Scholar] [PubMed]
- Pepping, J. Kava: Piper methysticum. Am. J. Health. Syst. Pharm. 1999, 56, 957–958, 960. [Google Scholar] [PubMed]
- Raduege, K.M.; Kleshinski, J.F.; Ryckman, J.V.; Tetzlaff, J.E. Anesthetic considerations of the herbal, kava. J. Clin. Anesth. 2004, 16, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Russmann, S.; Lauterburg, B.H.; Helbling, A. Kava hepatotoxicity. Ann. Intern. Med. 2001, 135, 68–69. [Google Scholar] [CrossRef] [PubMed]
- Escher, M.; Desmeules, J.; Giostra, E.; Mentha, G. Hepatitis associated with Kava, a herbal remedy for anxiety. BMJ 2001, 322, 139. [Google Scholar] [CrossRef] [PubMed]
- Mathews, J.M.; Etheridge, A.S.; Valentine, J.L.; Black, S.R.; Coleman, D.P.; Patel, P.; So, J.; Burka, L.T. Pharmacokinetics and disposition of the kavalactone kawain: Interaction with kava extract and kavalactones in vivo and in vitro. Drug Metab. Dispos. 2005, 33, 1555–1563. [Google Scholar]
- Bent, S.; Kane, C.; Shinohara, K.; Neuhaus, J.; Hudes, E.S.; Goldberg, H.; Avins, A.L. Saw palmetto for benign prostatic hyperplasia. N. Engl. J. Med. 2006, 354, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Geavlete, P.; Multescu, R.; Geavlete, B. Serenoa repens extract in the treatment of benign prostatic hyperplasia. Ther. Adv. Urol. 2011, 3, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Suzuki, M.; Nishioka, Y.; Yasuda, A.; Umegaki, K.; Yamada, S. Effects of saw palmetto extract on micturition reflex of rats and its autonomic receptor binding activity. J. Urol. 2005, 173, 1395–1399. [Google Scholar] [CrossRef] [PubMed]
- Cheema, P.; el-Mefty, O.; Jazieh, A.R. Intraoperative haemorrhage associated with the use of extract of Saw Palmetto herb: A case report and review of literature. J. Intern. Med. 2001, 250, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, S.; Gonzalez, J. Coagulopathy induced by saw palmetto: A case report. Boletin 2009, 101, 48–50. [Google Scholar] [PubMed]
- Freeman, M.P.; Fava, M.; Lake, J.; Trivedi, M.H.; Wisner, K.L.; Mischoulon, D. Complementary and alternative medicine in major depressive disorder: The American Psychiatric Association Task Force report. J. Clin. Psychiatry 2010, 71, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Karioti, A.; Bilia, A.R. Hypericins as potential leads for new therapeutics. Int. J. Mol. Sci. 2010, 11, 562–594. [Google Scholar] [CrossRef] [PubMed]
- Lawvere, S.; Mahoney, M.C. St. John’s wort. Am. Fam. Physician 2005, 72, 2249–2254. [Google Scholar] [PubMed]
- Zanoli, P. Role of hyperforin in the pharmacological activities of St. John’s Wort. CNS Drug Rev. 2004, 10, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Izzo, A.A. Drug interactions with St. John’s Wort (Hypericum perforatum): A review of the clinical evidence. Int. J. Clin. Pharmacol. Ther. 2004, 42, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Yoshitake, T.; Iizuka, R.; Yoshitake, S.; Weikop, P.; Muller, W.E.; Ogren, S.O.; Kehr, J. Hypericum perforatum L (St John’s wort) preferentially increases extracellular dopamine levels in the rat prefrontal cortex. Br. J. Pharmacol. 2004, 142, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Schellander, R.; Donnerer, J. Antidepressants: Clinically relevant drug interactions to be considered. Pharmacology 2010, 86, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E. Second thoughts about safety of St John’s wort. Lancet 1999, 354, 2014–2016. [Google Scholar] [CrossRef]
- Pal, D.; Mitra, A.K. MDR- and CYP3A4-mediated drug-herbal interactions. Life Sci. 2006, 78, 2131–2145. [Google Scholar] [CrossRef] [PubMed]
- Piscitelli, S.C.; Burstein, A.H.; Chaitt, D.; Alfaro, R.M.; Falloon, J. Indinavir concentrations and St John’s wort. Lancet 2000, 355, 547–548. [Google Scholar] [CrossRef]
- Yue, Q.Y.; Bergquist, C.; Gerden, B. Safety of St John’s wort (Hypericum perforatum). Lancet 2000, 355, 576–577. [Google Scholar] [CrossRef]
- Ruschitzka, F.; Meier, P.J.; Turina, M.; Luscher, T.F.; Noll, G. Acute heart transplant rejection due to Saint John’s wort. Lancet 2000, 355, 548–549. [Google Scholar] [CrossRef]
- Breidenbach, T.; Hoffmann, M.W.; Becker, T.; Schlitt, H.; Klempnauer, J. Drug interaction of St John’s wort with cyclosporin. Lancet 2000, 355, 1912. [Google Scholar] [CrossRef]
- Dasgupta, A. Herbal supplements and therapeutic drug monitoring: Focus on digoxin immunoassays and interactions with St. John’s wort. Ther. Drug Monit. 2008, 30, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.P.; Yang, X.X.; Chen, X.; Cao, J.; Chan, E.; Duan, W.; Huang, M.; Yu, X.Q.; Wen, J.Y.; Zhou, S.F. A mechanistic study on altered pharmacokinetics of irinotecan by St. John’s wort. Curr. Drug Metab. 2007, 8, 157–171. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.D.; Wang, Z.; Huang, S.M.; Hamman, M.A.; Vasavada, N.; Adigun, A.Q.; Hilligoss, J.K.; Miller, M.; Gorski, J.C. The interaction between St John’s wort and an oral contraceptive. Clin. Pharmacol. Ther. 2003, 74, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P.A.; Kern, S.E.; Stanczyk, F.Z.; Westhoff, C.L. Interaction of St. John’s Wort with oral contraceptives: Effects on the pharmacokinetics of norethindrone and ethinyl estradiol, ovarian activity and breakthrough bleeding. Contraception 2005, 71, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Crampsey, D.P.; Douglas, C.M.; Cooke, L.D. Nasal insertion of St John’s wort: An unusual cause of epistaxis. J. Laryngol. Otol. 2007, 121, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Wurglics, M.; Schubert-Zsilavecz, M. Hypericum perforatum: A “modern” herbal antidepressant: Pharmacokinetics of active ingredients. Clin. Pharmacokinet. 2006, 45, 449–468. [Google Scholar] [CrossRef] [PubMed]
- Salter, S.; Brownie, S. Treating primary insomnia—The efficacy of valerian and hops. Aust. Fam. Physician 2010, 39, 433–437. [Google Scholar] [PubMed]
- Ortiz, J.G.; Rassi, N.; Maldonado, P.M.; Gonzalez-Cabrera, S.; Ramos, I. Commercial valerian interactions with [3H]Flunitrazepam and [3H]MK-801 binding to rat synaptic membranes. Phytother. Res. 2006, 20, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, D. Medicinal plants for insomnia: A review of their pharmacology, efficacy and tolerability. J. Psychopharmacol. 2005, 19, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.S.; Mehendale, S.; Xiao, Y.; Aung, H.H.; Xie, J.T.; Ang-Lee, M.K. The gamma-aminobutyric acidergic effects of valerian and valerenic acid on rat brainstem neuronal activity. Anesth. Analg. 2004, 98, 353–358, table of contents. [Google Scholar] [CrossRef] [PubMed]
- Leuschner, J.; Muller, J.; Rudmann, M. Characterisation of the central nervous depressant activity of a commercially available valerian root extract. Arzneim. Forsch. 1993, 43, 638–641. [Google Scholar]
- Gooneratne, N.S. Complementary and alternative medicine for sleep disturbances in older adults. Clin. Geriatr. Med. 2008, 24, 121–138, viii. [Google Scholar] [CrossRef] [PubMed]
- Taavoni, S.; Ekbatani, N.; Kashaniyan, M.; Haghani, H. Effect of valerian on sleep quality in postmenopausal women: A randomized placebo-controlled clinical trial. Menopause 2011, 18, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Taibi, D.M.; Landis, C.A.; Petry, H.; Vitiello, M.V. A systematic review of valerian as a sleep aid: Safe but not effective. Sleep Med. Rev. 2007, 11, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Garges, H.P.; Varia, I.; Doraiswamy, P.M. Cardiac complications and delirium associated with valerian root withdrawal. JAMA 1998, 280, 1566–1567. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.D.; Elmer, G.W.; Kantor, E.D.; Templeton, I.E.; Vitiello, M.V. Pharmacokinetics of valerenic acid after administration of valerian in healthy subjects. Phytother. Res. 2005, 19, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.D.; Elmer, G.W.; Taibi, D.M.; Vitiello, M.V.; Kantor, E.; Kalhorn, T.F.; Howald, W.N.; Barsness, S.; Landis, C.A. Pharmacokinetics of valerenic acid after single and multiple doses of valerian in older women. Phytother. Res. 2010, 24, 1442–1446. [Google Scholar] [CrossRef] [PubMed]
- Cohen, D.L.; del Toro, Y. A case of valerian-associated hepatotoxicity. J. Clin. Gastroenterol. 2008, 42, 961–962. [Google Scholar] [CrossRef] [PubMed]
- Basila, D.; Yuan, C.S. Effects of dietary supplements on coagulation and platelet function. Thromb. Res. 2005, 117, 49–53, discussion 65–47. [Google Scholar] [CrossRef] [PubMed]
- Ling, S.; Dai, A.; Guo, Z.; Yan, X.; Komesaroff, P.A. Effects of a Chinese herbal preparation on vascular cells in culture: Mechanisms of cardiovascular protection. Clin. Exp. Pharm. Physiol. 2005, 32, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.Y.; Xu, H.; Shi, D.Z.; Wen, C.; Liu, B.Y. Analysis on outcome of 5284 patients with coronary artery disease: The role of integrative medicine. J. Ethnopharmacol. 2012, 141, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.C.; Liu, W.; Yuan, H.T.; Tang, Y.S. Salvia Miltiorrhiza reduces plasma levels of asymmetric ADMA in patients with non-ST elevation myocardial infarction undergoing percutaneous coronary intervention. Zhongguo Zhong Xi Yi Jie He Za Zhi 2014, 34, 1436–1439. [Google Scholar] [PubMed]
- Chen, J.; Lv, Q.; Yu, M.; Zhang, X.; Gou, J. Randomized clinical trial of Chinese herbal medications to reduce wound complications after mastectomy for breast carcinoma. Br. J. Surg. 2010, 97, 1798–1804. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.W.; Hu, X.J.; Wang, N.; Ji, J. Platelet aggregation inhibitors from Salvia miltiorrhiza Bunge. Yao Xue Xue Bao 1988, 23, 830–834. [Google Scholar] [PubMed]
- Maione, F.; de Feo, V.; Caiazzo, E.; de Martino, L.; Cicala, C.; Mascolo, N. Tanshinone IIA, a major component of Salvia milthorriza Bunge, inhibits platelet activation via Erk-2 signaling pathway. J. Ethnopharmacol. 2014, 155, 1236–1242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maione, F.; Cantone, V.; Chini, M.G.; de Feo, V.; Mascolo, N.; Bifulco, G. Molecular mechanism of tanshinone IIA and cryptotanshinone in platelet anti-aggregating effects: An integrated study of pharmacology and computational analysis. Fitoterapia 2015, 100, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chan, E. Effect of ubidecarenone on warfarin anticoagulation and pharmacokinetics of warfarin enantiomers in rats. Drug Metab. Drug Interact. 2001, 18, 99–122. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, S.; Chan, E. Effect of coenzyme Q10 on warfarin hydroxylation in rat and human liver microsomes. Curr. Drug Metab. 2005, 6, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Spigset, O. Reduced effect of warfarin caused by ubidecarenone. Lancet 1994, 344, 1372–1373. [Google Scholar] [CrossRef]
- Engelsen, J.; Nielsen, J.D.; Hansen, K.F. Effect of Coenzyme Q10 and Ginkgo biloba on warfarin dosage in patients on long-term warfarin treatment. A randomized, double-blind, placebo-controlled cross-over trial. Ugeskr. Laeger 2003, 165, 1868–1871. [Google Scholar] [PubMed]
- Shalansky, S.; Lynd, L.; Richardson, K.; Ingaszewski, A.; Kerr, C. Risk of warfarin-related bleeding events and supratherapeutic international normalized ratios associated with complementary and alternative medicine: A longitudinal analysis. Pharmacotherapy 2007, 27, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Sharma, P.; Guthrie, N. A randomized, double-blind, crossover study on the pharmacokinetics of a novel formulation of CoQ(1)(0) with pyridoxal 5ʹ-phosphate and phosphatidyl choline. J. Diet Suppl. 2010, 7, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Huskisson, E.C. Glucosamine and chondroitin for osteoarthritis. J. Int. Med. Res. 2008, 36, 1161–1179. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.L.; Clegg, D.O. Glucosamine and chondroitin sulfate. Rheum. Dis. Clin. North Am. 2011, 37, 103–118. [Google Scholar] [CrossRef] [PubMed]
- Clegg, D.O.; Reda, D.J.; Harris, C.L.; Klein, M.A.; O’Dell, J.R.; Hooper, M.M.; Bradley, J.D.; Bingham, C.O., 3rd; Weisman, M.H.; Jackson, C.G.; et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N. Engl. J. Med. 2006, 354, 795–808. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Neidigh, J.L.; Cooksey, R.C.; McClain, D.A. Transgenic mice with increased hexosamine flux specifically targeted to beta-cells exhibit hyperinsulinemia and peripheral insulin resistance. Diabetes 2000, 49, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Scroggie, D.A.; Albright, A.; Harris, M.D. The effect of glucosamine-chondroitin supplementation on glycosylated hemoglobin levels in patients with type 2 diabetes mellitus: A placebo-controlled, double-blinded, randomized clinical trial. Arch. Intern. Med. 2003, 163, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, J.F.; Sokol, G.H. Potential glucosamine-warfarin interaction resulting in increased international normalized ratio: Case report and review of the literature and MedWatch database. Pharmacotherapy 2008, 28, 540–548. [Google Scholar] [CrossRef] [PubMed]
- Setnikar, I.; Rovati, L.C. Absorption, distribution, metabolism and excretion of glucosamine sulfate. A review. Arzneim. Forsch. 2001, 51, 699–725. [Google Scholar]
- Persiani, S.; Rotini, R.; Trisolino, G.; Rovati, L.C.; Locatelli, M.; Paganini, D.; Antonioli, D.; Roda, A. Synovial and plasma glucosamine concentrations in osteoarthritic patients following oral crystalline glucosamine sulphate at therapeutic dose. Osteoarthr. Cartil. 2007, 15, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Volpi, N. Oral absorption and bioavailability of ichthyic origin chondroitin sulfate in healthy male volunteers. Osteoarthr. Cartil. 2003, 11, 433–441. [Google Scholar] [CrossRef]
- Wall, R.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C. Fatty acids from fish: The anti-inflammatory potential of long-chain omega-3 fatty acids. Nutr. Rev. 2010, 68, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Bosch, J.; Gerstein, H.C.; Dagenais, G.R.; Diaz, R.; Dyal, L.; Jung, H.; Maggiono, A.P.; Probstfield, J.; Ramachandran, A.; Riddle, M.C.; et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 2012, 367, 309–318. [Google Scholar] [PubMed]
- Dyerberg, J. Platelet—Vessel wall interaction: Influence of diet. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1981, 294, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, S.A.; Garg, M.L. The effects of tomato extract (TE) and omega-3 fatty acids on platelet cAMP levels and inositol triphosphate (IP(3)) release. Asia Pac. J. Clin. Nutr. 2003, 12, S20. [Google Scholar]
- Sarris, G.E.; Fann, J.I.; Sokoloff, M.H.; Smith, D.L.; Loveday, M.; Kosek, J.C.; Stephens, R.J.; Cooper, A.D.; May, K.; Willis, A.L.; et al. Mechanisms responsible for inhibition of vein-graft arteriosclerosis by fish oil. Circulation 1989, 80, I109–1123. [Google Scholar] [PubMed]
- Thorwest, M.; Balling, E.; Kristensen, S.D.; Aagaard, S.; Hakami, A.; Husted, S.E.; Marqversen, J.; Hjortdal, V.E. Dietary fish oil reduces microvascular thrombosis in a porcine experimental model. Thromb. Res. 2000, 99, 203–208. [Google Scholar] [CrossRef]
- Phang, M.; Sinclair, A.J.; Lincz, L.F.; Garg, M.L. Gender-specific inhibition of platelet aggregation following omega-3 fatty acid supplementation. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S. Expert opinion: Omega-3 fatty acids and bleeding-cause for concern? Am. J. Cardiol. 2007, 99, S44–S46. [Google Scholar] [CrossRef] [PubMed]
- Salisbury, A.C.; Harris, W.S.; Amin, A.P.; Reid, K.J.; O’Keefe, J.H., Jr.; Spertus, J.A. Relation between red blood cell omega-3 fatty acid index and bleeding during acute myocardial infarction. Am. J. Cardiol. 2012, 109, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Stanger, M.J.; Thompson, L.A.; Young, A.J.; Lieberman, H.R. Anticoagulant activity of select dietary supplements. Nutr. Rev. 2012, 70, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Jalili, M.; Dehpour, A.R. Extremely prolonged INR associated with warfarin in combination with both trazodone and omega-3 fatty acids. Arch. Med. Res. 2007, 38, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Buckley, M.S.; Goff, A.D.; Knapp, W.E. Fish oil interaction with warfarin. Ann. Pharmacother. 2004, 38, 50–52. [Google Scholar] [CrossRef] [PubMed]
- McClaskey, E.M.; Michalets, E.L. Subdural hematoma after a fall in an elderly patient taking high-dose omega-3 fatty acids with warfarin and aspirin: Case report and review of the literature. Pharmacotherapy 2007, 27, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Broughton, G., 2nd; Crosby, M.A.; Coleman, J.; Rohrich, R.J. Use of herbal supplements and vitamins in plastic surgery: A practical review. Plast. Reconstr. Surg. 2007, 119, 48e–66e. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.B.; Singhal, S.B.; Mehta, B.C. Ascorbic-acid-induced haemolysis in G-6-PD deficiency. Lancet 1990, 336, 944. [Google Scholar] [CrossRef]
- Rosenthal, G. Interaction of ascorbic acid and warfarin. JAMA 1971, 215, 1671. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, M.; Griner, P.F. Warfarin and ascorbic acid: Lack of evidence for a drug interaction. Toxicol. Appl. Pharmacol. 1974, 28, 53–56. [Google Scholar] [CrossRef]
- Feetam, C.L.; Leach, R.H.; Meynell, M.J. Lack of a clinically important interaction between warfarin and ascorbic acid. Toxicol. Appl. Pharmacol. 1975, 31, 544–547. [Google Scholar] [CrossRef]
- Food and Nutrition Board; Institute of Medicine. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar]
- Shuster, L.T.; Thielen, J. Evidence-based use of vitamin supplements. In Textbook of Complementary and Alternative Medicine, 2nd ed.; Yuan, C.S., Bieber, E.J., Bauer, B.A., Eds.; Informa Healthcare: Abingdon, UK, 2006; pp. 99–108. [Google Scholar]
- Cox, A.C.; Rao, G.H.; Gerrard, J.M.; White, J.G. The influence of vitamin E quinone on platelet structure, function, and biochemistry. Blood 1980, 55, 907–914. [Google Scholar] [PubMed]
- Szuwart, T.; Brzoska, T.; Luger, T.A.; Filler, T.; Peuker, E.; Dierichs, R. Vitamin E reduces platelet adhesion to human endothelial cells in vitro. Am. J. Hematol. 2000, 65, 1–4. [Google Scholar] [CrossRef]
- Corrigan, J.J., Jr.; Ulfers, L.L. Effect of vitamin E on prothrombin levels in warfarin-induced vitamin K deficiency. Am. J. Clin. Nutr. 1981, 34, 1701–1705. [Google Scholar] [PubMed]
- Kim, J.M.; White, R.H. Effect of vitamin E on the anticoagulant response to warfarin. Am. J. Cardiol. 1996, 77, 545–546. [Google Scholar] [CrossRef]
- Booth, S.L.; Golly, I.; Sacheck, J.M.; Roubenoff, R.; Dallal, G.E.; Hamada, K.; Blumberg, J.B. Effect of vitamin E supplementation on vitamin K status in adults with normal coagulation status. Am. J. Clin. Nutr. 2004, 80, 143–148. [Google Scholar] [PubMed]
- Steiner, M.; Glantz, M.; Lekos, A. Vitamin E plus aspirin compared with aspirin alone in patients with transient ischemic attacks. Am. J. Clin. Nutr. 1995, 62, 1381S–1384S. [Google Scholar] [PubMed]
- Dereska, N.H.; McLemore, E.C.; Tessier, D.J.; Bash, D.S.; Brophy, C.M. Short-term, moderate dosage Vitamin E supplementation may have no effect on platelet aggregation, coagulation profile, and bleeding time in healthy individuals. J. Surg. Res. 2006, 132, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Kucera, I.; Sabar, R. Perioperative anesthesia clinical considerations of alternative medicines. Anesthesiol. Clin. North Am. 2004, 22, 125–139. [Google Scholar] [CrossRef]
- Reddy, V.Y.; Sievert, H.; Halperin, J.; Doshi, S.K.; Buchbinder, M.; Neuzil, P.; Huber, K.; Whisenant, B.; Kar, S.; Swarup, V.; et al. Percutaneous left atrial appendage closure vs. warfarin for atrial fibrillation: A randomized clinical trial. JAMA 2014, 312, 1988–1998. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-Z.; Moss, J.; Yuan, C.-S. Commonly Used Dietary Supplements on Coagulation Function during Surgery. Medicines 2015, 2, 157-185. https://doi.org/10.3390/medicines2030157
Wang C-Z, Moss J, Yuan C-S. Commonly Used Dietary Supplements on Coagulation Function during Surgery. Medicines. 2015; 2(3):157-185. https://doi.org/10.3390/medicines2030157
Chicago/Turabian StyleWang, Chong-Zhi, Jonathan Moss, and Chun-Su Yuan. 2015. "Commonly Used Dietary Supplements on Coagulation Function during Surgery" Medicines 2, no. 3: 157-185. https://doi.org/10.3390/medicines2030157
APA StyleWang, C. -Z., Moss, J., & Yuan, C. -S. (2015). Commonly Used Dietary Supplements on Coagulation Function during Surgery. Medicines, 2(3), 157-185. https://doi.org/10.3390/medicines2030157