Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts
Abstract
:1. Introduction
2. Microbial Toxins: Diversity, Structure and General Mechanisms of Action
2.1. Exotoxins
2.2. Endotoxins
3. Plant-Derived Antimicrobials
4. Studies Highlighting the Anti-Toxin Properties of Plant-Derived Antimicrobials
4.1. Effect of Plant Compounds on Gram-Positive Bacterial Toxins
4.1.1. Clostridium difficile
Microbe | Toxin(s) | Plant Compounds with Anti-Toxin Activity | Potential Mechanism of Action/Target Site | Reference(s) |
---|---|---|---|---|
Gram positive bacteria | ||||
Clostridium sp. | TcdA, TcdB | Carvacrol, trans-cinnamaldehyde, | Down-regulation of toxin production genes, modulation of transcriptional repressor | [49] |
Botulinum neurotoxin | Toosendanin | [66,67] | ||
Bacillus sp. | Labile enterotoxin | Carvacrol, | Modification of bacterial membranes. | [68,69,70,71] |
Anthrax lethal toxin | Celastrol, toosendanin | Inhibition of toxin entry to cell cytoplasm | [72,73] | |
Staphylococcus aureus | Hemolysin Enterotoxin A, B Toxic shock syndrome toxin | Essential oils from clove, cinnamon, oregano, Zataria multiflora, eugenol, 4-hydroxytyrosol | Reduced expression of toxin production genes, sea, seb, tst, hla | [53,74,75,76,77] |
Listeria monocytogenes | Listeriolysin O (LLO) | trans-Cinnamaldehyde, carvacrol, thymol, eugenol, oil of bay, clove, nutmeg, thyme | Down-regulation of hly and prfA genes coding for toxin production and transcriptional regulator | [47,78,79] |
Vibrio cholerae | Cholera toxin | Tea catechins, Dihydroisosteviol | Modulation of transmembrane regulators | [80,81] |
RG-tannin, apple phenols | Inhibition of ADP-ribosyltransferase activity | [82,83] | ||
Red chilli, sweet fennel, white pepper Red bayberry, thymol, carvacrol, eugenol | Modulation of toxin production genes ctxA, tcpA, toxT | [84,85,86,87] | ||
Toxin producing E. coli | ETEC toxin | Extracts from Galla Chinensis and Berberis aristata, leanolic acid, ursolic acid, and betulinic acid, essential oil from Cymbopogon martini, C. winterianus and Psidium guajava | Inhibiting intestinal secretion of ETEC enterotoxins Blocking the binding of heat labile enterotoxin to GM1 Reducing toxin binding and toxin mediated cellular pathology | [88,89,90,91,92,93,94,95,96,97] |
Verotoxin | Extracts from Limonium californicum (Boiss.) A. Heller, Cupressus lustianica Miller, Salvia urica Epling and Jusiaea peruviana L., eugenol, catechin, epigallocatechin, cinnamon bark oil, cinnamaldehyde, Curtisia dentata extract carvacrol, thymol, beta-resorcylic acid, grape seed and pomace extracts | Decrease in toxin production Reducing the transcription of stx1 and stx2 genes Reducing the expression of globotriaosylceramide (Gb3) receptor by mimicking toxin receptors | [98,99,100,101,102,103,104,105,106,107,108,109] | |
Aspergillus ochraceus Penicillium verrucosum | Ochratoxin A | Oregano, mint, basil, sage, and coriander | Inhibiting fungal growth | [110] |
Penicillium expansum | Patulin | Garlic, thyme, lavender oils, Azadirachta indica extracts. | Inhibiting fungal growth, mycelium formation and sporulation | [111,112] |
Fusarium graminearum | Zearalenone | Cinnamon, clove, oregano, palmarosa, and lemongrass oils | An aromatic nucleus and phenolic OH group of plant compounds disrupting fungal cell membrane | [113] |
Deoxynivalenol | Clove | [113] | ||
Fusarium proliferatum | Fumonisin B | Extracts from maize, garlic, and pea | Inhibiting primary and secondary metabolism of the fungal pathogens, decreasing biomass formation | [114] |
Aspergillus flavus Aspergillus parasiticus | Aflatoxins | Clove, cinnamon, Zataria multiflora, carvacrol, trans-cinnamaldehyde | Down-regulation of aflatoxin production genes including aflc, ver1, nor1 and norA genes | [51,115,116,117] |
4.1.2. Bacillus sp.
4.1.3. Staphylococcus aureus
4.1.4. Listeria monocytogenes
4.2. Effects of Plant-Derived Antimicrobials on Toxins Produced by Gram-Negative Microbes
4.2.1. Vibrio cholerae
4.2.2. Toxin Producing Escherichia coli
4.3. Efficacy of Plant-Derived Antimicrobials in Reducing Fungal Toxins
5. Conclusions and Future Directions
Conflicts of Interest
References
- Alwan, A. Global Status Report on Non-Communicable Diseases 2010; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Cantas, L.; Shah, S.Q.; Cavaco, L.M.; Manaia, C.M.; Walsh, F.; Popowska, M.; Sørum, H. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front Microbiol. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Galland, J.C.; Hyatt, D.R.; Crupper, S.S.; Acheson, D.W. Prevalence, antibiotic susceptibility, and diversity of Escherichia coli O157:H7 isolates from a longitudinal study of beef cattle feedlots. Appl. Environ. Microb. 2001, 67, 1619–1627. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; McDaniel, A.D.; Wolf, L.E.; Keusch, G.T.; Waldor, M.K.; Acheson, D.W. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 2000, 181, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Finlay, B.B.; Falkow, S. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 1997, 61, 136–169. [Google Scholar] [PubMed]
- Taylor, C.M.; Roberts, I.S. Capsular polysaccharides and their role in virulence. In Concepts in Bacterial Virulence; Karger Medical and Scientific Publishers: Basel, Switzerland, 2005; pp. 55–66. [Google Scholar]
- Wu, H.J.; Wang, A.H.; Jennings, M.P. Discovery of virulence factors of pathogenic bacteria. Curr. Opin. Chem. Boil. 2008, 12, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Rasko, D.A.; Sperandio, V. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 2010, 9, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.K.; Dwivedi, H.P.; Yan, X. Novel natural food antimicrobials. Annu. Rev. Food Tech. 2012, 3, 381–403. [Google Scholar] [CrossRef] [PubMed]
- Negi, P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012, 156, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbial. 2012, 7, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Henkel, J.S.; Baldwin, M.R.; Barbieri, J.T. Toxins from bacteria. Mol. Environ. Toxic 2010, 100, 1–29. [Google Scholar]
- Schmitt, C.K.; Meysick, K.C.; O’Brien, A.D. Bacterial toxins: Friends or foes? Emerg. Infect. Dis. 1999, 5, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Hardegree, M.C.; Tu, A.T. Handbook of Natural Toxins: Bacterial Toxins; CRC Press: New York, NY, USA, 1988; Volume 4. [Google Scholar]
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Lupski, J.R.; Feigin, R.D. Molecular evolution of pathogenic Escherichia coli. J. Infect. Dis. 1988, 157, 1120–1123. [Google Scholar] [CrossRef] [PubMed]
- Gyles, C.; Boerlin, P. Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. Vet. Pathol. 2014, 51, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Skarin, H.; Segerman, B. Horizontal gene transfer of toxin genes in Clostridium botulinum: Involvement of mobile elements and plasmids. Mob. Genet. Elements 2011, 1, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Popoff, M.R.; Bouvet, P. Clostridial toxins. Future Microbial. 2009, 4, 1021–1064. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Scorzeto, M.; Megighian, A.; Montecucco, C. Tetanus neurotoxin. Toxicon 2013, 66, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Priatkin, R.G.; Kuzmenko, O.M. Secreted proteins of Staphylococcus aureus. Zh Mikrobiol Epidemiol. Immunobiol. 2010, 4, 118–124. [Google Scholar] [PubMed]
- Vandenesch, F.; Lina, G.; Henry, T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: A redundant arsenal of membrane-damaging virulence factors? Front Cell Infect. Microbiol. 2012, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Los, F.C.; Randis, T.M.; Aroian, R.V.; Ratner, A.J. Role of pore-forming toxins in bacterial infectious diseases. Microbiol. Mol. Biol. Rev. 2013, 77, 173–207. [Google Scholar] [CrossRef] [PubMed]
- Nair, G.B.; Takeda, Y. The heat-stable enterotoxins. Microb. Pathog. 1998, 24, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Bergan, J.; Dyve Lingelem, A.B.; Simm, R.; Skotland, T.; Sandvig, K. Shiga toxins. Toxicon 2012, 60, 1085–1107. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Barbieri, J.T. Molecular mechanisms of the cytotoxicity of ADP-ribosylating toxins. Annu. Rev. Microbiol. 2008, 62, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Kuehne, S.A.; Cartman, S.T.; Minton, N.P. Both, toxin A and toxin B, are important in Clostridium difficile infection. Gut Microbes 2011, 2, 252–255. [Google Scholar] [CrossRef] [PubMed]
- McCormick, J.K.; Yarwood, J.M.; Schlievert, P.M. Toxic shock syndrome and bacterial superantigens: An update. Annu. Rev. Microbiol. 2001, 55, 77–104. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. Virulence 2014, 5, 213–218. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, R.D.; Osei-Ampofo, M. Sepsis and septic shock. Air Med. J. 2015, 34, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Carter, G.P.; Cheung, J.K.; Larcombe, S.; Lyras, D. Regulation of toxin production in the pathogenic clostridia. Mol. Microbiol. 2014, 91, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Solecki, R.; Shanidar, I.V. A Neanderthal flower burial in northern Iraq. Science 1975, 190, 880–881. [Google Scholar] [CrossRef]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Persp. 2001, 109, 69. [Google Scholar] [CrossRef]
- Verpoorte, R. Pharmacognosy in the new millennium: leadfinding and biotechnology. J. Pharm. Pharmacol. 2000, 52, 253–262. [Google Scholar]
- Holley, R.A.; Patel, D. Improvement in shelf-life and safety of perishable foods by plant essential oils and smoke antimicrobials. Food Microbiol. 2005, 22, 273–292. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Combating pathogenic microorganisms using plant-derived antimicrobials: A Minireview of the mechanistic basis. Biomed. Res. Int. 2014, 2014, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Dixon, R.A. Natural products and plant disease resistance. Nature 2001, 411, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Reichling, J. Plant-Microbe Interactions and Secondary Metabolites with Antibacterial, Antifungal and Antiviral Properties. Ann. Plant. Rev. 2010, 39, 214–347. [Google Scholar]
- Jones, J.D.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Stamp, N. Out of the quagmire of plant defense hypotheses. Q. Rev. Biol. 2003, 78, 23–55. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, S.R.; Davoodi, H. Herbal plants as new immuno-stimulator in poultry industry: A review. Asian J. Anim. Vet Adv. 2012, 7, 105–116. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Iinuma, M. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua. Phytomedicine 2000, 7, 161–165. [Google Scholar] [CrossRef]
- Upadhyay, A.; Johny, A.K.; Amalaradjou, M.A.R.; Baskaran, S.A.; Kim, K.S.; Venkitanarayanan, K. Plant-derived antimicrobials reduce Listeria monocytogenes virulence factors in vitro, and down-regulate expression of virulence genes. Int. J. Food Microbiol. 2012, 157, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A.; Upadhyaya, I.; Kollanoor-Johny, A.; Venkitanarayanan, K. Antibiofilm effect of plant derived antimicrobials on Listeria monocytogenes. Food Microbiol. 2013, 36, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Mooyottu, S.; Kollanoor-Johny, A.; Flock, G.; Bouillaut, L.; Upadhyay, A.; Sonenshein, A.L.; Venkitanarayanan, K. Carvacrol and trans-cinnamaldehyde reduce Clostridium difficile toxin production and cytotoxicity in vitro. Int. J. Mol. Sci. 2014, 15, 4415–4430. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, I.; Upadhyay, A.; Kollanoor-Johny, A.; Darre, M.J.; Venkitanarayanan, K. Effect of plant derived antimicrobials on Salmonella Enteritidis adhesion to and invasion of primary chicken oviduct epithelial cells in vitro and virulence gene expression. Int. J. Mol. Sci. 2013, 14, 10608–10625. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Chen, C.; Kollanoor-Johny, A.; Darre, M.J.; Venkitanarayanan, K. Controlling Aspergillus flavus and Aspergillus parasiticus growth and aflatoxin production in poultry feed using carvacrol and trans-cinnamaldehyde. Poul. Sci. 2015, in press. [Google Scholar] [CrossRef]
- Goh, E.B.; Yim, G.; Tsui, W.; McClure, J.; Surette, M.G.; Davies, J. Transcriptional modulation of bacterial gene expression by sub-inhibitory concentrations of antibiotics. Proc. Natl. Acad. Sci. USA 2002, 99, 17025–17030. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Feng, H.; Lu, J.; Xiang, H.; Wang, D.; Dong, J.; Deng, X. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Appl. Environ. Microb. 2010, 76, 5846–5851. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.L.; Sam, C.K.; Yin, W.F.; Tan, L.Y.; Krishnan, T.; Chong, Y.M.; Chan, K.G. Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors 2013, 13, 6217–6228. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Viljoen, A.M.; Chenia, H.Y. The impact of plant volatiles on bacterial quorum sensing. Lett. Appl. Microbial. 2015, 60, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.G. Historical perspectives on studies of Clostridium difficile and C. difficile infection. Clin. Infect. Dis. 2008, 46, S4–S11. [Google Scholar] [CrossRef] [PubMed]
- Beaugerie, L.; Flahault, A.; Barbut, F.; Atlan, P.; Lalande, V.; Cousin, P.; Petit, J.C. Antibiotic-associated diarrhoea and Clostridium difficile in the community. Aliment Pharm. Therap. 2003, 17, 905–912. [Google Scholar] [CrossRef]
- Nanwa, N.; Kendzerska, T.; Krahn, M.; Kwong, J.C.; Daneman, N.; Witteman, W.; Sander, B. The economic impact of Clostridium difficile infection: A systematic review. Am. J. Gastroenterol. 2015, 110, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Hookman, P.; Barkin, J.S. Clostridium difficile associated infection, diarrhea and colitis. World J. Gastroenterol. 2009, 15, 1554. [Google Scholar] [CrossRef] [PubMed]
- Lucado, J.; Gould, C.; Elixhauser, A. Clostridium difficile infections (CDI) in hospital stays, 2009. HCUP Statistical Brief #124; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2012. Available online: http://www.hcup-us.ahrq.gov/reports/statbriefs/sb124.pdf (accessed on 30 July 2015). [Google Scholar]
- Sunenshine, R.H.; McDonald, L.C. Clostridium difficile-associated disease: New challenges from an established pathogen. Clev. Clin. J. Med. 2006, 73, 187. [Google Scholar] [CrossRef]
- Matamouros, S.; England, P.; Dupuy, B. Clostridium difficile toxin expression is inhibited by the novel regulator TcdC. Mol. Microbiol. 2007, 64, 1274–1288. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.C.; Killgore, G.E.; Thompson, A.; Owens, R.C., Jr.; Kazakova, S.V.; Sambol, S.P.; Johnson, S.; Gerding, D.N. An epidemic, toxin gene–variant strain of Clostridium difficile. N. Engl. J. Med. 2005, 353, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Dineen, S.S.; McBride, S.M.; Sonenshein, A.L. Integration of metabolism and virulence by Clostridium difficile CodY. J. Bacterial. 2010, 192, 5350–5362. [Google Scholar] [CrossRef] [PubMed]
- Lindbäck, T.; Mols, M.; Basset, C.; Granum, P.E.; Kuipers, O.P.; Kovács, Á.T. CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in Bacillus cereus. Environ. Microbiol. 2012, 14, 2233–2246. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Nakai, Y.; Eubanks, L.M.; Clancy, C.M.; Tepp, W.H.; Pellett, S.; Dickerson, T.J.; Johnson, E.A.; Janda, K.D.; Montal, M. Bimodal modulation of the botulinum neurotoxin protein- conducting channel. Proc. Natl. Acad. Sci. USA 2009, 106, 1330–1335. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.L.; Hsu, K. Anti-botulismic effect of toosendanin and its facilitatory action on miniature end-plate potentials. Jpn. J. Physiol. 1983, 33, 677–680. [Google Scholar] [PubMed]
- Ultee, A.; Gorris, L.G.M.; Smid, E.J. Bactericidal activity of carvacrol towards the foodborne pathogen. Bacillus cereus 1998, 85, 21. [Google Scholar]
- Ultee, A.; Kets, E.P.; Alberda, M.; Hoekstra, F.A.; Smid, E.J. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Arch. Microbiol. 2000, 174, 233–238. [Google Scholar] [CrossRef]
- Ultee, A.; Smid, E.J. Influence of carvacrol on growth and toxin production by Bacillus cereus. Int. J. Food Microbiol. 2001, 64, 373–378. [Google Scholar] [CrossRef]
- Ultee, A.; Slump, R.A.; Steging, G.; Smid, E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J. Food Protect. 2000, 63, 620–624. [Google Scholar]
- Chapelsky, S.; Batty, S.; Frost, M.; Mogridge, J. Inhibition of Anthrax Lethal Toxin-Induced Cytolysis of RAW264.7 Cells by Celastrol. PLoS ONE 2008, 3, e1421. [Google Scholar] [CrossRef] [PubMed]
- Slater, L.H.; Hett, E.C.; Mark, K.; Chumbler, N.M.; Patel, D.; Lacy, D.B.; Hung, D.T. Identification of novel host-targeted compounds that protect from anthrax lethal toxin-induced cell death. ACS Chem. Boil. 2013, 8, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Influence of subinhibitory concentrations of plant essential oils on the production of enterotoxins A and B and α-toxin by Staphylococcus aureus. J. Med. Microbiol. 2004, 53, 1023–1027. [Google Scholar] [CrossRef] [PubMed]
- De Souza, E.L.; de Barros, J.C.; de Oliveira, C.E.V.; da Conceição, M.L. Influence of Origanum vulgare L. essential oil on enterotoxin production, membrane permeability and surface characteristics of Staphylococcus aureus. Int. J. Food Microbiol. 2010, 137, 308–311. [Google Scholar] [PubMed]
- Parsaeimehr, M.; Basti, A.A.; Radmehr, B.; Misaghi, A.; Abbasifar, A.; Karim, G.; Khanjari, A. Effect of Zataria multiflora boiss. Essential oil, nisin, and their combination on the production of enterotoxin C and α-hemolysin by Staphylococcus aureus. Foodborne Pathog. Dis. 2010, 7, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Rasooly, R. Review of the inhibition of biological activities of food-related selected toxins by natural compounds. Toxins 2013, 5, 743–775. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, C.T.; Vanetti, M.C.D. Effect of eugenol on growth and listeriolysin O production by Listeria monocytogenes. Br. Arch. Biol. Tech. 2006, 49, 405–409. [Google Scholar] [CrossRef]
- Smith-Palmer, A.; Stewart, J.; Fyfe, L. Inhibition of listeriolysin O and phosphatidylcholine-specific production in Listeria monocytogenes by subinhibitory concentrations of plant essential oils. J. Med. Microbiol. 2002, 51, 567–608. [Google Scholar] [PubMed]
- Toda, M.; Okubo, S.; Ikigai, H.; Suzuki, T.; Suzuki, Y.; Hara, Y.; Shimamura, T. The protective activity of tea catechins against experimental infection by Vibrio cholerae O1. Microbiol. Immunol. 1992, 36, 999–1001. [Google Scholar] [CrossRef] [PubMed]
- Pariwat, P.; Homvisasevongsa, S.; Muanprasat, C.; Chatsudthipong, V. A natural plant-derived dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion. J. Pharmacol. Exp. Ther. 2008, 324, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Miyake, M.; Toba, M.; Okamatsu, H.; Shimizu, S.; Noda, M. Inhibition by Apple Polyphenols of ADP-Ribosyltransferase Activity of Cholera Toxin and Toxin-Induced Fluid Accumulation in Mice. Microbiol. Immunol. 2002, 46, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Morinaga, N.; Iwamaru, Y.; Yahiro, K.; Tagashira, M.; Moss, J.; Noda, M. Differential activities of plant polyphenols on the binding and internalization of cholera toxin in vero cells. J. Biol. Chem. 2005, 280, 23303–23309. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, S.; Asakura, M.; Neogi, S.B.; Hinenoya, A.; Iwaoka, E.; Aoki, S. Inhibition of virulence potential of Vibrio cholerae by natural compounds. Indian J. Med. Res. 2011, 133, 232. [Google Scholar] [PubMed]
- Chatterjee, S.; Asakura, M.; Chowdhury, N.; Neogi, S.B.; Sugimoto, N.; Haldar, S.; Yamasaki, S. Capsaicin, a potential inhibitor of cholera toxin production in Vibrio cholerae. FEMS Microbiol. Lett. 2010, 306, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Z.; Yu, X.; Zhu, J. Red bayberry extract inhibits growth and virulence gene expression of the human pathogen Vibrio cholerae. J. Antimicrob. Chemother. 2008, 61, 753–754. [Google Scholar] [CrossRef] [PubMed]
- Bhattaram, V.; Upadhyay, A.; Moyoottu, S.; Kollanoor-Johny, A.; Venkitanarayanan, K. Plant molecules inhibit toxin production, motility and hemolysis in Vibrio cholerae in vitro, and down-regulate virulence gene expression. In Proceedings of the IFT Annual Meeting, Chicago, IL, USA, 12–13 July 2013.
- Pharmacopoeia Commission of People’s Republic of China (ChPC). Pharmacopoeia of People’s Republic of China (ChP); Chemical Industry Press: Beijing, China, 2000; Volume 1, pp. 49–50. [Google Scholar]
- Sack, R.B.; Froehlich, J.L. Berberine inhibits intestinal secretory response of Vibrio cholerae and Escherichia coli enterotoxins. Infect. Immun. 1982, 35, 471–475. [Google Scholar] [PubMed]
- Chen, J.; Ho, T.; Chang, Y.; Wu, S.; Hsiang, C. Anti-diarrheal effect of Galla chinensis on the Escherichia coli heat-labile enterotoxin and ganglioside interaction. J. Ethnopharmacol. 2006, 103, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, L.; Wu, S.; Kuo, S.; Ho, T.; Hsiang, C. Ginger and its bioactive component inhibit Enterotoxigenic Escherichia coli heat-labile enterotoxin-induced diarrhea in mice. J. Agric. Food Chem. 2007, 55, 8390–8397. [Google Scholar] [CrossRef] [PubMed]
- Dubreuil, J.D. Antibacterial and antidiarrheal activities of plant products against Enterotoxinogenic Escherichia coli. Toxins 2013, 5, 2009–2041. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chang, Y.; Wu, S.; Chao, D.; Chang, C.; Li, C.; Hsiang, C. Inhibition of Escherichia coli heat-labile enterotoxin-induced diarrhea by Chaenomeles speciosa. J. Ethnopharmacol. 2007, 113, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Berthiaume, F.; Mourez, M.; Dubreuil, J.D. Escherichia coli STb toxin binding to sulfatide and its inhibition by carragenan. Fems Microbiol. Lett. 2008, 281, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.C.T.; Leme, E.E.; Delarmelina, C.; Soares, A.A.; Figueira, G.M.; Sartoratto, A. Activity of essential oils from Brazilian medicinal plants on Escherichia coli. J. Ethnopharmacol. 2007, 111, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Birdi, T.; Daswani, P.; Brijesh, S.; Tetali, P.; Natu, A.; Antia, N. Newer insights into the mechanism of action of Psidium guajava L. leaves in infectious diarrhoea. BMC Compl. Altern. M. 2010, 10, 33. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, R.N.; Dunn, J.A.; Guerrant, R.L. Reduction of the secretory response to Escherichia coli heat-stable enterotoxin by thiol and disulfide compounds. Infect. Immun. 1983, 41, 174–180. [Google Scholar] [PubMed]
- Sakagami, Y.; Murata, H.; Nakanishi, T.; Inatomi, Y.; Watabe, K.; Iinuma, M.; Lang, F.A. Inhibitory effect of plant extracts on production of verotoxin by enterohemorrhagic Escherichia coli O157:H7. J. Health Sci. 2001, 47, 473–477. [Google Scholar] [CrossRef]
- Takemasa, N.; Ohnishi, S.; Tsuji, M.; Shikata, T.; Yokoigawa, K. Screening and analysis of spices with ability to suppress verocytotoxin production by Escherichia coli O157. J. Food Sci. 2009, 74, M461–M466. [Google Scholar] [CrossRef] [PubMed]
- Okubo, S.; Sasaki, T.; Hara, Y.; Mori, F.; Shimamura, T. Bactericidal and anti-toxin activities of catechin on enterohemorrhagic Escherichia coli. Kansenshogaku Zasshi 1988, 72, 211–217. [Google Scholar] [CrossRef]
- Sugita-Konishi, Y.; Hara-Kudo, Y.; Amano, F.; Okubo, T.; Aoi, N.; Iwaki, M.; Kumagai, S. Epigallocatechin gallate and gallocatechin gallate in green tea catechins inhibit extracellular release of Vero toxin from enterohemorrhagic Escherichia coli O157:H7. Biochim. Biophys. Acta (BBA)-Gener. Subj. 1999, 1472, 42–50. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Kim, S.; Baek, K.; Lee, J. Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int. J. Food Microbiol. 2015, 195, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Kim, W.; Lim, J.; Nam, S.; Youn, M.; Nam, S.; Park, S. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7. J. Food Prot. 2009, 72, 325–331. [Google Scholar] [PubMed]
- Doughari, J.H.; Ndakidemi, P.A.; Human, I.S.; Benade, S. Antioxidant, antimicrobial and antiverotoxic potentials of extracts of Curtisia dentata. J. Ethnopharmacol. 2012, 141, 1041–1050. [Google Scholar] [CrossRef] [PubMed]
- Baskaran, S.A. Investigating the Potential of Plant-Derived Antimicrobials for Controlling Enterohemorrhagic Escherichia coli O157:H7. Doctoral Dissertation, University of Connecticut, Storrs, CT, USA, 2012. [Google Scholar]
- Quiñones, B.; Massey, S.; Friedman, M.; Swimley, M.S.; Teter, K. Novel cell-based method to detect Shiga toxin 2 from Escherichia coli O157:H7 and inhibitors of toxin activity. Appl. Environ. Microbiol. 2009, 75, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.A.; Fuller, C.; Korman, H.; Weiss, A.A.; Iyer, S.S. Glycan encapsulated gold nanoparticles selectively inhibit shiga toxins 1 and 2. Bioconjug. Chem. 2010, 21, 1486–1493. [Google Scholar] [CrossRef] [PubMed]
- Kitov, P.I.; Sadowska, J.M.; Mulvey, G.; Armstrong, G.D.; Ling, H.; Pannu, N.S.; Bundle, D.R. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 2000, 403, 669–672. [Google Scholar]
- Nishikawa, K.; Watanabe, M.; Kita, E.; Igai, K.; Omata, K.; Yaffe, M.B.; Natori, Y. A multivalent peptide library approach identifies a novel Shiga toxin inhibitor that induces aberrant cellular transport of the toxin. FASEB J. 2006, 20, 2597–2599. [Google Scholar] [CrossRef] [PubMed]
- Basilico, M.Z.; Basilico, J.C. Inhibitory effects of some spice essential oils on Aspergillus ochraceus NRRL 3174 growth and ochratoxin A production. Lett. Appl. Microbiol. 1999, 29, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Ikeura, H.; Somsak, N.; Kobayashi, F.; Kanlayanarat, S.; Hayata, Y. Application of selected plant extracts to inhibit growth of Penicillium expansum on apple fruits. Plant Pathol. J. 2011, 10, 79–84. [Google Scholar] [CrossRef]
- Mossini, S.A.G.; Carla, C.; Kemmelmeier, C. Effect of neem leaf extract and Neem oil on Penicillium growth, sporulation, morphology and ochratoxin A production. Toxins 2009, 1, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Marı́, S.; Velluti, A.; Ramos, A.J.; Sanchis, V. Effect of essential oils on zearalenone and deoxynivalenol production by Fusarium graminearum in non-sterilized maize grain. Food Microbiol. 2004, 21, 313–318. [Google Scholar] [CrossRef]
- Stępień, Ł.; Waśkiewicz, A.; Wilman, K. Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. Int. J. Food Microbiol. 2015, 193, 74–81. [Google Scholar]
- Sinha, K.K.; Sinha, A.K.; Prasad, G. The effect of clove and cinnamon oils on growth of and aflatoxin production by Aspergillus flavus. Lett. Appl. Microbiol. 1993, 16, 114–117. [Google Scholar] [CrossRef]
- Gandomi, H.; Misaghi, A.; Basti, A.A.; Bokaei, S.; Khosravi, A.; Abbasifar, A.; Javan, A.J. Effect of Zataria multiflora Boiss. essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese. Food Chem. Toxicol. 2009, 47, 2397–2400. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi-Abyaneh, M.; Shams-Ghahfarokhi, M.; Yoshinari, T.; Rezaee, M.B.; Jaimand, K.; Nagasawa, H.; Sakuda, S. Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int. J. Food Microl. 2008, 123, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Stenfors Arnesen, L.P.; Fagerlund, A.; Granum, P.E. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. 2008, 32, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Logan, N.A. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 2012, 112, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Tewari, A.; Abdullah, S. Bacillus cereus food poisoning: international and Indian perspective. J. Food Sci. Tech. 2015, 52, 2500–2511. [Google Scholar] [CrossRef] [PubMed]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, C.; Gaillard, J.L.; Alouf, J.E.; Berche, P. Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect. Immun. 1987, 55, 1641–1646. [Google Scholar] [PubMed]
- Gill, D.M. Multiple roles of erythrocyte supernatant in the activation of adenylate cyclase by Vibrio cholerae toxin in vitro. J. Infect. Dis. 1976, 133, S55–S63. [Google Scholar] [CrossRef]
- Mekalanos, J.J.; Collier, R.J.; Romig, W.R. Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J. Biol. Chem. 1979, 254, 5855–5861. [Google Scholar] [PubMed]
- Cassel, D.; Selinger, Z. Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. USA 1977, 74, 3307–3311. [Google Scholar] [CrossRef] [PubMed]
- Cassel, D.; Pfeuffer, T. Mechanism of cholera toxin action: Covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc. Natl. Acad. Sci. USA 1978, 75, 2669–2673. [Google Scholar] [CrossRef] [PubMed]
- Galloway, T.S.; van Heyningen, S. Binding of NAD+ by cholera toxin. Biochem. J. 1987, 244, 225–230. [Google Scholar] [PubMed]
- Law, D. Virulence factors of enteropathogenic escherichia coli. J. Med. Microbiol. 1988, 26, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States 1982–2002. Emerg. Infect. Dis. 2005, 11. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.M. Escherichia coli that cause diarrhea: Enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J. Infect. Dis. 1987, 155, 377–389. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, A.D.; Holmes, R.K. Shiga and shiga-like toxins. Microbiol. Rev. 1987, 51, 206–220. [Google Scholar] [PubMed]
- Welinder-Olsson, C.; Kaijser, B. Enterohemorrhagic Escherichia coli (EHEC). Scand. J. Infect. Dis. 2005, 37, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Henderson, I.R.; Hicks, S.; Navarro-Garcia, F.; Elias, W.P.; Philips, A.D.; Nataro, J.P. Involvement of the enteroaggregative Escherichia coli plasmid-encoded toxin in causing human intestinal damage. Infect. Immun. 1999, 67, 5338–5344. [Google Scholar] [PubMed]
- Eslava, C.; Navarro-Garcia, F.; Czeczulin, J.R.; Henderson, I.R.; Cravioto, A.; Nataro, J.P. Pet, an autotransporter enterotoxin from Enteroaggregative Escherichia coli. Infect. Immun. 1998, 66, 3155–3163. [Google Scholar] [PubMed]
- Levine, M.M.; Edelman, R. Enteropathogenic Escherichia coli of classic serotypes associated with infant diarrhea: Epidemiology and pathogenesis. Epidemiol. Rev. 1984, 6, 31–51. [Google Scholar] [PubMed]
- Bennett, J.W. Mycotoxins, mycotoxicoses, mycotoxicology and Mycopathologia. Mycopathology 1987, 100, 3–5. [Google Scholar] [CrossRef]
- Calvo, A.M.; Wilson, R.A.; Bok, J.W.; Keller, N.P. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 2002, 66, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Chang, P.K.; Ehrlich, K.C.; Cary, J.W.; Bhatnagar, D.; Cleveland, T.E.; Bennett, J.W. Clustered pathway genes in aflatoxin biosynthesis. Appl. Environ. Microbiol. 2004, 70, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Kabak, B. The fate of mycotoxins during thermal food processing. J. Sci. Food Agric. 2009, 89, 549–554. [Google Scholar] [CrossRef]
- Da Cruz Cabral, L.; Pinto, V.F.; Patriarca, A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int. J. Food Microbiol. 2013, 166, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Abarca, M.L.; Bragulat, M.R.; Castella, G.; Cabanes, F.J. Ochratoxin A production by strains of Aspergillus niger var. niger. Appl. Environ. Microbiol. 1994, 60, 2650–2652. [Google Scholar] [PubMed]
- Robens, J.; Cardwell, K. The costs of mycotoxin management to the USA: Management of aflatoxins in the United States. Toxin Rev. 2003, 22, 139–152. [Google Scholar] [CrossRef]
- Peraica, M.; Radic, B.; Lucic, A.; Pavlovic, M. Toxic effects of mycotoxins in humans. Bull World Health Organ 1999, 77, 754–766. [Google Scholar] [PubMed]
- Lang, G.; Buchbauer, G. A review on recent research results (2008–2010) on essential oils as antimicrobials and antifungals. A review. Flavour Fragr. J. 2010, 27, 13–39. [Google Scholar] [CrossRef]
- Martinez, J.; Patkaniowska, A.; Urlaub, H.; Lührmann, R.; Tuschl, T. Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 2002, 110, 563–574. [Google Scholar] [CrossRef]
- Sivakumar, D.; Bautista-Banos, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
- Höhler, D. Ochratoxin A in food and feed: Occurrence, legislation and mode of action. Z Ernahrungswiss 1998, 37, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.F.; Phillips, T.D.; Kubena, L.F.; Harvey, R.B. Renal tubular secretion and reabsorption as factors in ochratoxicosis: Effects of probenecid on nephrotoxicity. J. Toxicol. Environ. Health Part A Curr. Issues 1985, 16, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Richard, J.L.; Plattner, R.D.; May, J.; Liska, S.L. The occurrence of ochratoxin A in dust collected from a problem household. Mycopathology 1999, 146, 99–103. [Google Scholar] [CrossRef]
- Roll, R.; Matthiaschk, G.; Korte, A. Embryotoxicity and mutagenicity of mycotoxins. J. Environ. Pathol. Toxicol. Oncol. 1989, 10, 1–7. [Google Scholar]
- Hopkins, J. The toxicological hazards of patulin. Food Chem. Toxicol. 1993, 31, 455–456. [Google Scholar]
- Sharma, R.P. Immunotoxicity of mycotoxins. J. Dairy Sci. 1993, 76, 892–897. [Google Scholar] [CrossRef]
- Selmanoglu, G.; Koçkaya, E.A. Investigation of the effects of patulin on thyroid and testis, and hormone levels in growing male rats. Food Chem. Toxicol. 2004, 42, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Mirocha, C.J.; Christensen, C.M.; Nelson, G.H. F-2 (zearalenone) estrogenic mycotoxin from Fusarium. Microb. Toxins 2013, 7, 107–138. [Google Scholar]
- Blaney, B.J.; Moore, C.J.; Tyler, A.L. Mycotoxins and fungal damage in maize harvested during 1982 in Far North Queensland. Crop Pasture Sci. 1982, 35, 463–471. [Google Scholar] [CrossRef]
- Kordic, B.; Simic, M.; Lazarevic, D. Effect of low doses of the mycotoxin zearalenone on reproductive characteristics of pigs. Vet Glas (Yugoslavia) 1990, 44, 1. [Google Scholar]
- Pestka, J.J.; Smolinski, A.T. Deoxynivalenol: Toxicology and potential effects on humans. J. Toxicol. Environ. Health Sci. 2005, 8, 39–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zanardi, S.; Powers, S.; Suman, M. Development and practical application in the cereal food industry of a rapid and quantitative lateral flow immunoassay for deoxynivalenol. Food Cont. 2012, 26, 88–91. [Google Scholar] [CrossRef]
- Rheeder, J.P.; Marasas, W.F.; Vismer, H.F. Production of fumonisin analogs by Fusarium species. Appl. Environ. Microbiol. 2002, 68, 2101–2105. [Google Scholar] [CrossRef] [PubMed]
- Desjardins, A.E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology; American Phytopathological Society (APS Press): St Paul, MN, USA, 2006. [Google Scholar]
- Stępień, Ł.; Koczyk, G.; Waśkiewicz, A. Genetic and phenotypic variation of Fusarium proliferatum isolates from different host species. J. Appl. Genet. 2011, 52, 487–496. [Google Scholar]
- Bargen, S.V.; Martinez, O.; Schadock, I.; Eisold, A.M.; Gossmann, M.; Büttner, C. Genetic variability of phytopathogenic Fusarium proliferatum associated with crown rot in Asparagus officinalis. J. Phytopathol. 2009, 157, 446–456. [Google Scholar] [CrossRef]
- Stępień, Ł.; Koczyk, G.; Waśkiewicz, A. Diversity of Fusarium species and mycotoxins contaminating pineapple. J. Appl. Genet. 2013, 54, 367–380. [Google Scholar]
- Stankovic, S.; Levic, J.; Petrovic, T.; Logrieco, A.; Moretti, A. Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia. Eur. J. Plant Pathol. 2007, 118, 165–172. [Google Scholar] [CrossRef]
- Gong, Y.; Hounsa, A.; Egal, S.; Turner, P.C.; Sutcliffe, A.E.; Hall, A.J.; Wild, C.P. Postweaning exposure to aflatoxin results in impaired child growth: A longitudinal study in Benin, West Africa. Environ. Health Perspect. 2004, 112, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.A.; Brake, J.; Hamilton, P.B.; Hagler, W.M.; Nesheim, S. Dietary exposure of broiler breeders to aflatoxin results in immune dysfunction in progeny chicks. Poul. Sci. 1998, 77, 812–819. [Google Scholar] [CrossRef]
- Tessari, E.N.C.; Oliveira, C.A.F.; Cardoso, A.L.S.P.; Ledoux, D.R.; Rottinghaus, G.E. Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks. Br. Poul. Sci. 2006, 47, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Oguz, H. A review from experimental trials on detoxification of aflatoxin in poultry feed. Euras. J. Vet. Sci. 2011, 27, 1–12. [Google Scholar]
- Hussain, Z.; Khan, M.Z.; Khan, A.; Javed, I.; Saleemi, M.K.; Mahmood, S.; Asi, M.R. Residues of aflatoxin B1 in broiler meat: Effect of age and dietary aflatoxin B1 levels. Food Chem. Toxicol. 2010, 48, 3304–3307. [Google Scholar] [CrossRef] [PubMed]
- IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Traditional Herbal Medicines, Some Mycotoxins, Napthalene and Styrene. IARC press: Lyon, France, 2002. [Google Scholar]
- Yunus, A.W.; Razzazi-Fazeli, E.; Bohm, J. Aflatoxin B1 in affecting broiler’s performance, immunity, and gastrointestinal tract: A review of history and contemporary issues. Toxins 2011, 3, 566–590. [Google Scholar] [CrossRef] [PubMed]
- Kew, M.C. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int. 2003, 23, 405–409. [Google Scholar] [CrossRef] [PubMed]
- FDA. Section 683.100 Action Levels for Aflatoxins in Animal Feeds (CPG 7126.33). Available online: http://www.abvt.org/public/docs/Aflatoxin_In_Animal_Feed.pdf (accessed on 27 July 2015).
- Yin, H.; Chen, C.; Upadhyaya, I.; Upadhyay, A.; Fancher, S.; Li, J.; Nair, M.S.; Mooyottu, S.; Khan, M.I.; Darre, M.J.; Venkitanarayanan, K. Efficacy of in-feed supplementation of plant-derived antimicrobials in reducing aflatoxicosis in chickens. In Proceeding of the Annual meeting of the Poultry Science Association (PSA), Louisville, KY, USA, 27–30 July 2015.
- Rasooli, I.; Abyaneh, M.R. Inhibitory effects of Thyme oils on growth and aflatoxin production by Aspergillus parasiticus. Food Cont. 2004, 15, 479–483. [Google Scholar] [CrossRef]
- Kohiyama, C.Y.; Ribeiro, M.M.Y.; Mossini, S.A.G.; Bando, E.; da Silva Bomfim, N.; Nerilo, S.B.; Machinski, M. Antifungal properties and inhibitory effects upon aflatoxin production of Thymus vulgaris L. by Aspergillus flavus Link. Food Chem. 2015, 173, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Soliman, K.M.; Badeaa, R.I. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem. Toxicol. 2002, 40, 1669–1675. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Upadhyay, A.; Mooyottu, S.; Yin, H.; Nair, M.S.; Bhattaram, V.; Venkitanarayanan, K. Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts. Medicines 2015, 2, 186-211. https://doi.org/10.3390/medicines2030186
Upadhyay A, Mooyottu S, Yin H, Nair MS, Bhattaram V, Venkitanarayanan K. Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts. Medicines. 2015; 2(3):186-211. https://doi.org/10.3390/medicines2030186
Chicago/Turabian StyleUpadhyay, Abhinav, Shankumar Mooyottu, Hsinbai Yin, Meera Surendran Nair, Varunkumar Bhattaram, and Kumar Venkitanarayanan. 2015. "Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts" Medicines 2, no. 3: 186-211. https://doi.org/10.3390/medicines2030186
APA StyleUpadhyay, A., Mooyottu, S., Yin, H., Nair, M. S., Bhattaram, V., & Venkitanarayanan, K. (2015). Inhibiting Microbial Toxins Using Plant-Derived Compounds and Plant Extracts. Medicines, 2(3), 186-211. https://doi.org/10.3390/medicines2030186