Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts
Abstract
:1. Introduction
2. Experimental Section
2.1. Collection of Plant Materials
2.2. Yeasts Isolates and Reference Strain
2.3. Plant Extraction and Preliminary Screening of Antifungal Activity
2.4. Bio-Guided Fractionation of Selected Crude Extracts
2.5. Antifungal Activity of Combined Sub-Fractions
2.6. Time Kill Kinetic Assay of the Most Active Combinations
2.7. Phytochemical Screening of Selected Crude Extracts and Sub-Fractions
3. Results
3.1. Plant Extraction and Preliminary Screening of Antifungal Activity
Codes | Crude Extracts | a MIC (mg/mL) | |||||
Reference Strain | Isolates | ||||||
C. albicans NR-29450 | C. albicans | C. glabrata | C. parapsilosis | Cr. neoformans | |||
A1 | Te C L H2O | 0.31 | 2.50 | 0.63 | 2.50 | 0.63 | |
A2 | Te C L H2O/EthOH | 0.08 | 0.31 | 0.08 | 0.31 | 0.16 | |
A3 | Te C L EthOH | 0.31 | 0.16 | 0.08 | 0.31 | 0.31 | |
A4 | Te C Sb H2O | 0.16 | 0.63 | 0.31 | 0.31 | 0.63 | |
A5 | Te C Sb H2O/EthOH | 0.08 | 2.50 | 0.63 | 0.31 | 0.63 | |
A6 | Te C Sb EthOH | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | |
A7 | Te M L H2O | 0.31 | 2.50 | 0.31 | 0.31 | 0.16 | |
A8 | Te M L H2O/EthOH | 0.04 | 0.04 | 0.04 | 0.08 | 0.08 | |
A9 | Te M L EthOH | 0.04 | 0.08 | 0.08 | 0.16 | 0.16 | |
A10 | Te M Sb H2O | 0.08 | 0.08 | 0.08 | 0.08 | 0.08 | |
A11 | Te M Sb H2O/EthOH | 0.08 | 0.31 | 0.16 | 0.16 | 0.08 | |
A12 | Te M Sb EthOH | 0.08 | 0.16 | 0.16 | 0.08 | 0.04 | |
A13 | Mo T L H2O | 10.00 | 1.25 | 0.63 | 10.00 | 1.25 | |
A14 | Mo T L H2O/EthOH | 5.00 | 0.63 | 0.63 | 1.25 | 1.25 | |
A15 | Mo T L EthOH | 2.50 | 5.00 | 1.25 | 1.25 | 0.08 | |
A16 | Mo T Tw H2O | 20.00 | 10.00 | 5.00 | 5.00 | 2.50 | |
A17 | Mo T Br H2O | 10.00 | 5.00 | 5.00 | 2.50 | 5.00 | |
A18 | Mo T Pu H2O | 2.50 | 10.00 | 5.00 | 5.00 | 10.00 | |
A19 | Mo T Pu H2O/EthOH | 5.00 | 5.00 | 5.00 | 10.00 | 2.50 | |
A20 | Mo T Pu EthOH | 5.00 | 2.50 | 5.00 | 10.00 | 2.50 | |
A21 | Mo T Se H2O/EthOH | 40.00 | 10.00 | 10.00 | 40.00 | 40.00 | |
A22 | Mo T FrPe EthOH | 10.00 | 5.00 | 5.00 | 10.00 | 2.50 | |
A23 | Mo T PSe EthOH | 20.00 | 10.00 | 20.00 | 40.00 | 20.00 | |
Codes | Fractions | a MIC (mg/mL) | |||||
Reference Strain | Isolates | ||||||
C. albicans NR-29450 | C. albicans | C. glabrata | C. parapsilosis | Cr. neoformans | |||
B1 | Te C L H2O | Fr H2O | 1.25 | 1.25 | 5 | 0.63 | 0.16 |
B2 | Fr CH2Cl2 | 0.63 | 1.25 | 5 | 0.16 | 0.16 | |
B3 | Te C L H2O/EthOH | Fr H2O | 0.31 | 2.5 | 0.63 | 0.31 | 0.31 |
B4 | Fr CH2Cl2 | 0.31 | 5 | 0.63 | 0.31 | 0.31 | |
B5 | Te C L EthOH | Fr H2O | 0.63 | >5.000 | 0.63 | 0.31 | 0.16 |
B6 | Fr CH2Cl2 | 0.63 | 5 | 0.63 | 0.63 | 0.31 | |
B7 | Te C Sb H2O | Fr H2O | 1.25 | 2.5 | 2.5 | 0.63 | 0.31 |
B8 | Fr CH2Cl2 | 1.25 | 5 | 5 | 2.5 | 0.63 | |
B9 | Te C Sb H2O/EthOH | Fr H2O | 0.31 | 5 | 2.5 | 2.5 | 0.63 |
B10 | Fr CH2Cl2 | 0.16 | 0.63 | 1.25 | 1.25 | 0.63 | |
B11 | Te C Sb EthOH | Fr H2O | 0.16 | 0.63 | 2.5 | 1.25 | 0.63 |
B12 | Fr CH2Cl2 | 0.31 | >5.000 | 5 | 5 | 1.25 | |
B13 | Te M L H2O | Fr H2O | 2.5 | 1.25 | 0.31 | 0.31 | 0.16 |
B14 | Fr CH2Cl2 | 2.5 | 0.63 | 0.16 | 0.08 | 0.08 | |
B15 | Te M L H2O/EthOH | Fr H2O | 2.5 | 1.25 | 0.31 | 0.16 | 0.04 |
B16 | Fr CH2Cl2 | 2.5 | 0.16 | 0.31 | 0.16 | 0.08 | |
B17 | Te M L EthOH | Fr H2O | 2.5 | 0.63 | 0.63 | 0.31 | 0.31 |
B18 | Fr CH2Cl2 | 0.63 | 0.31 | 0.08 | 0.04 | 0.04 | |
B19 | Te M Sb H2O | Fr H2O | 1.25 | 0.63 | 0.16 | 0.08 | 0.08 |
B20 | Fr CH2Cl2 | 0.63 | 0.31 | 0.16 | 0.16 | 0.08 | |
B21 | Te M Sb H2O/EthOH | Fr H2O | 0.31 | 1.25 | 0.31 | 0.31 | 0.16 |
B22 | Fr CH2Cl2 | 0.63 | 1.25 | 0.63 | 0.31 | 0.31 | |
B23 | Te M Sb EthOH | Fr H2O | 0.63 | 1.25 | 0.31 | 0.16 | 0.16 |
B24 | Fr CH2Cl2 | 1.25 | 1.25 | 0.31 | 0.16 | 0.16 | |
B25 | Mo T L H2O | Fr H2O | 5 | 5 | 0.08 | >5.000 | >5.000 |
B26 | Fr CH2Cl2 | 2.5 | 2.5 | 0.63 | 2.5 | 2.5 | |
B27 | Mo T L H2O/EthOH | Fr H2O | 2.5 | 5 | 5 | 5 | 2.5 |
B28 | Fr CH2Cl2 | 2.5 | 2.5 | 1.25 | 0.63 | 0.31 | |
B29 | Mo T L EthOH | Fr H2O | 2.5 | >5.000 | 2.5 | 5 | 5 |
B30 | Fr CH2Cl2 | 2.5 | 2.5 | 0.63 | 0.63 | 0.63 | |
Codes | Sub-fractions | a MIC (mg/mL) | |||||
Reference Strain | Isolates | ||||||
C. albicans NR-29450 | C. albicans | C. glabrata | C. parapsilosis | Cr. neoformans | |||
C2 | Te C L H2O/EthOH Fr H2O | sFr CH3OH | 0.31 | 0.62 | 0.31 | 0.31 | 0.16 |
C4 | Te C L H2O/EthOH Fr CH2Cl2 | sFr CH3OH | 0.31 | 0.62 | 0.31 | 0.62 | 0.31 |
C5 | Te C L EthOH Fr CH2Cl2 | sFr C6H12 | 0.62 | 1.25 | 0.62 | 1.25 | 0.62 |
C6 | sFr CH3OH | 1.25 | 1.25 | 1.25 | >1.25 | 1.25 | |
C8 | Te C Sb H2O/EthOH Fr CH2Cl2 | sFr CH3OH | 0.16 | 1.25 | 0.31 | 0.62 | 0.08 |
C10 | Te M L H2O Fr H2O | sFr CH3OH | 0.16 | 0.62 | 0.31 | 0.31 | 0.16 |
C12 | Te M L H2O Fr CH2Cl2 | sFr CH3OH | 0.31 | 0.62 | 0.08 | 0.08 | 0.08 |
C14 | Te M L H2O/EthOH Fr H2O | sFr CH3OH | 0.31 | 0.62 | 0.16 | 0.16 | 0.16 |
C15 | Te M L H2O/EthOH FrCH2Cl2 | sFr C6H12 | 0.31 | 0.31 | 0.31 | 0.31 | 0.16 |
C16 | sFr CH3OH | 0.16 | 0.16 | 0.16 | 0.62 | 0.16 | |
C18 | Te M L EthOH Fr H2O | sFr CH3OH | 0.31 | 0.16 | 0.31 | 0.31 | 0.62 |
C20 | Te M L EthOH Fr CH2Cl2 | sFr CH3OH | 0.16 | 0.16 | 0.31 | 0.31 | 0.31 |
C22 | Te M Sb H2O Fr H2O | sFr CH3OH | 0.16 | 0.08 | 0.08 | 0.16 | 0.04 |
C24 | Te M Sb H2O Fr CH2Cl2 | sFr CH3OH | 0.16 | 0.08 | 0.08 | 0.16 | 0.04 |
C26 | Te M Sb H2O/EthOH Fr H2O | sFr CH3OH | 0.04 | 0.08 | 0.08 | 0.16 | 0.08 |
C28 | Te M Sb H2O/EthOH FrCH2Cl2 | sFr CH3OH | 0.31 | 1.25 | 1.25 | 1.25 | 0.62 |
C30 | Te M Sb EthOH Fr H2O | sFr CH3OH | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 |
C32 | Te M Sb EthOH Fr CH2Cl2 | sFr CH3OH | 0.16 | 0.08 | 0.08 | 0.16 | 0.08 |
C33 | Mo T L H2O/EthOH Fr CH2Cl2 | sFr C6H12 | >1.25 | >1.25 | >1.25 | >1.25 | >1.25 |
C34 | sFr CH3OH | 1.25 | 1.25 | 1.25 | 1.25 | >1.25 | |
C35 | Mo T L EthOH Fr CH2Cl2 | sFr C6H12 | 1.25 | >1.25 | >1.25 | >1.25 | 1.25 |
C36 | sFr CH3OH | 1.25 | 0.62 | 0.62 | >1.25 | 1.25 | |
Fluconazole (µg/mL) | 0.50 | 1.00 | 8.00 | 8.00 | 2.00 |
3.2. Activity of Bio-Guided Fractions
Combinations of sub-fractions | C. albicans NR-29450 | C. albicans | C. glabrata | C. parapsilosis | Cr. neoformans | |||||
---|---|---|---|---|---|---|---|---|---|---|
FICI | Int | FICI | Int | FICI | Int | FICI | Int | FICI | Int | |
C2/C12 | 1.06 | I | 1.06 | I | 1.06 | I | 1.00 | A | 0.62 | A |
C2/C22 | 0.75 | A | 0.50 | S | 0.75 | A | 0.62 | A | 0.31 | S |
C2/C24 | 0.56 | A | 0.75 | A | 0.75 | A | 0.53 | A | 0.31 | S |
C2/C26 | 0.62 | A | 0.75 | A | 0.75 | A | 1.12 | I | 0.62 | A |
C2/C32 | 0.56 | A | 1.12 | I | 0.75 | A | 1.00 | A | 0.37 | S |
C36/C2 | 0.50 | A | 0.62 | A | 0.50 | S | 0.50 | S | 0.50 | S |
C36/C12 | 0.37 | S | 0.62 | A | 0.56 | A | 0.37 | S | 0.25 | S |
C36/C22 | 0.53 | A | 0.62 | A | 0.75 | A | 0.75 | A | 0.37 | S |
C36/C24 | 1.00 | S | 1.12 | I | 0.50 | S | 0.75 | A | 0.50 | S |
C36/C26 | 0.75 | A | 0.75 | A | 0.62 | A | 0.56 | A | 0.25 | S |
C36/C32 | 0.62 | S | 0.50 | S | 0.75 | A | 0.56 | A | 0.62 | A |
3.3. Activity of Combined Sub-Fractions
3.4. Time Kill Kinetics of the Promising Sub-Fractions and Their Combinations
3.5. Phytochemical Screening of Crude Extracts and Selected Sub-Fractions
4. Discussion
5. Conclusions
Acknowledgment
Authors Contributions
Conflicts Interest
References
- Sganga, G. Fungal infections in immunocompromised patients: Diagnosis, Therapy and Prophylaxis of Fungal Diseases. Mycoses 2011, 54, 1–3. [Google Scholar] [CrossRef] [PubMed]
- David, W.D.; William, W. Hope Therapy for fungal diseases: Opportunities and priorities. Trends Microbiol. 2010, 18, 195–204. [Google Scholar]
- Pemán, J.; Cantón, E.; Gobernado, M.; Spanish ECMM Working Group on Candidaemia. Epidemiology and antifungal susceptibility of Candida species isolated from blood: Results of a 2-year multicentre study in Spain. Eur. J. Clin. Microbiol. Infect. Dis. 2005, 24, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus. J. Clin. Microbiol. 2004, 42, 4419–4431. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.V.; Padshetty, N.S.; Bai, K.Y.; Rao, M.S. Prevalence of Candida in the Oral Cavity of Diabetic Subjects. Iran J. Microbiol. 2011, 53, 599–602. [Google Scholar]
- Abu-Elteen, K.H.; Hamad, M.A.; Salah, S.A. Prevalence of Oral Candida Infections in Diabetic Patients. Bahr. Med. Bull. 2006, 28, 1–8. [Google Scholar]
- Mlinariæ-Missoni, E.; Kaleniæ, S.; Vukelic, M.; de Syo, D.; Belicza, M.; Vaziæ-Babiæ, V. Candida infections of diabetic foot ulcers. Diabetol. Croat. 2005, 34, 29–35. [Google Scholar]
- Park, B.J.; Wannemuehler, K.A.; Marston, B.J.; Govender, N.; Pappas, P.G.; Chiller, T.M. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009, 23, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.E. Current Concepts in Antifungal Pharmacology. Mayo Clin. Proc. 2011, 86, 805–817. [Google Scholar] [CrossRef] [PubMed]
- De Almeid, O.P.; Scully, C. Fungal infections of the mouth. Braz. J. Oral Sci. 2002, 1, 19–26. [Google Scholar]
- Laurent, M.; Gogly, B.; Tahmasebi, F.; Paillaud, E. Les candidoses oropharyngées des personnes âgées. Geriatr. Psychol. Neuropsychiatr. Vieil. 2011, 9, 21–28. [Google Scholar] [PubMed]
- Magryś, A.; Kozioł-Montewka, M.; Starosławska, E.; Gabczyńska, B. The Prognostic and Diagnostic Markers of Invasive Candidiasis in Patients during Chemotherapy. Pol. J. Microbiol. 2005, 54, 207–213. [Google Scholar]
- Fidel, P.L. History and update on host defence against vaginal candidiasis. Am. J. Reprod. Immunol. 2007, 57, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Nelesh, G. HIV-associated opportunistic fungal infections: A guide to using the clinical microbiology laboratory. South. Afr. J. HIV Med. 2007, 1, 18–23. [Google Scholar]
- Álvaro-Meca, A.; Jensen, J.; Micheloud, D.; Asunción, D.; Gurbindo, D.; Resino, S. Rate of candidiasis among HIV infected children in Spain in the era of highly active antiretroviral therapy (1997–2008). J. Infect. Dis 2013, 13, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Brissaud, O.; Guichoux, J.; Harambat, J.; Tandonnet, O.; Zaoutis, T. Invasive fungal disease in PICU: Epidemiology and risk factors. Ann. Intensive Care 2012, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.; Benjamin, D.K.; Calandra, T.F.; Edwards, J.E.; Filler, S.G.; Fisher, J.F.; Kullberg, B.-J.; Ostrosky-Zeichner, L.; et al. Clinical Practice Guidelines for the Management of Candidiasis: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 503–535. [Google Scholar] [CrossRef] [PubMed]
- Lass-Flörl, C.; Mayr, A.; Perkhofer, S.; Hinterberger, G.; Hausdorfer, J.; Speth, C.; Fille, M. Activities of Antifungal Agents against Yeasts and Filamentous Fungi: Assessment according to the Methodology of the European Committee on Antimicrobial Susceptibility Testing. Antimicrob. Agents Chemother. 2008, 52, 3637–3641. [Google Scholar] [CrossRef] [PubMed]
- Ruan, E.; Kock, J.L.F.; Pohl, C.H. Candida albicans or Candida dubliniensis? Mycoses 2009, 54, 1–16. [Google Scholar]
- Busari, O.; Adeyemi, A.; Agboola, S. Cryptococcal Meningitis in AIDS. Internet J. Infect. Dis. 2009, 7, 1. Available online: http://print.ispub.com/api/0/ispub-article/8148 (accessed on 18 August 2015). [Google Scholar]
- Maslin, J.; Morand, J.J.; Menard, G.; Camparo, P. Les Cryptococcoses. Med. Trop. 2002, 62, 480–484. [Google Scholar]
- Millogo, A.; Ki-Zerbo, G.A.; Andonaba, J.B.; Lankoandé, D.; Sawadogo, A.; Yaméogo, I.; Sawadogo, A.B. La cryptococcose neuroméningée au cours de l’infection par le VIH au Centre hospitalier de Bobo-Dioulasso (Burkina Faso). Bull. Soc. Pathol. Exot. 2004, 97, 119–121. [Google Scholar] [PubMed]
- Petrikkos, G.; Skiada, A. Recent advances in antifungal chemotherapy. Int. J. Antimicrob. Agents 2007, 30, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kanafani, Z.A.; Perfect, J.R. Antimicrobial resistance: Resistance to antifungal agents: Mechanisms and clinical impact. Clin. Infect. Dis. 2008, 46, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Tscherner, M.; Schwarzmüller, T.; Kuchler, K. Pathogenesis and Antifungal Drug Resistance of the Human Fungal Pathogen Candida glabrata. Pharmaceuticals 2011, 4, 169–186. [Google Scholar] [CrossRef]
- Neelavathi, P.; Venkatalakshmi, P.; Brindha, P. Antibacterial activities of aqueous and ethanolic extracts of Terminalia catappa leaves and bark against some pathogenic bacteria. Int. J. Pharm. Pharm. Sci. 2013, 5, 114–120. [Google Scholar]
- Neuwinger, H.D. African Traditional Medicine, A Dictionary of Plant Use and Applications; Medpharm Scientific: Stuttgart, Germany, 2000. [Google Scholar]
- Therese, K.L.; Bagyalakshmi, R.; Madhavan, H.N.; Deepa, P. In vitro susceptibility testing by agar dilution method to determine the minimum inhibitory concentrations of amphotericin B, fluconazole and ketoconazole against ocular fungal isolates. Ind. J. Med. Microbiol. 2006, 24, 273–279. [Google Scholar] [CrossRef]
- NCCLS. Reference Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; Approved guideline; NCCLS document M44-A2; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2004. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd ed.; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Iten, F.; Saller, R.; Abel, G.; Reichling, J. Additive antimicrobial effects of the active components of the essential oil of Thymus vulgaris-chemotype carvacrol. Planta Med. 2009, 75, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Berenbaum, M.C. A method for testing for synergy with any number of agents. J. Infect. Dis. 1978, 137, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, S.; Viljoen, A. Plant-Based Antimicrobial Studies Methods and Approaches to Study the Interaction between Natural Products. Planta Med. 2011, 77, 1168–1182. [Google Scholar] [CrossRef] [PubMed]
- Klepser, M.E.; Ernst, E.J.; Lewis, R.E.; Ernst, M.E.; Pfaller, M.A. Influence of test conditions on antifungal time-kill curve results: Proposal for standardized methods. Antimicrob. Agents Chemother. 1998, 42, 1207–1212. [Google Scholar] [PubMed]
- Aromedee, C.; Wichitchote, P.; Jantakun, N. Spectrophotometric Determination of Total Lactones in Andrographis paniculata Nees. Songklanakarin J. Sci Technol. 2005, 27, 1227–1231. [Google Scholar]
- Odebeyi, O.O.; Sofowara, F.H. Antimicrobial alkaloids from a Nigerian Chewing Stick (Fagara zanthoxyloides). Planta Med. 1978, 36, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Sofowara, A. Medicinal Plants and Traditional Medicine in Africa, 2nd ed.; Spectrum Books Limited: Ibadan, Nigeria, 1993. [Google Scholar]
- Trease, G.E.; Evans, W.C. Pharmacognosy, 13th ed.; Bailliere Tindall: London, UK, 1989. [Google Scholar]
- Ackah, J.A.B.; Kra, A.K.M.; Zirihi, G.N.; Guede-Guina, F. Évaluation et essais d’optimisations de l’activité anticandidosique de Terminalia catappa Linné (tekam3), un extrait de Combretaceae de la pharmacopée ivoirienne. Bull. Soc. R. Sci. Liège 2008, 77, 120–136. [Google Scholar]
- Yapi, G.Y.; Adou, K.M.; Ackah, J.A.B.; Djaman, A.J. Évaluation de l’activité antifongique et essai de purification des principes actifs des extraits de Terminalia mantaly (H Perrier), une eaCombretaceae, sur la croissance in vitro de Candida albicans. Bull. Soc. R. Sci. Liège 2011, 80, 953–964. [Google Scholar]
- Zirihi, G.N.; N’guessan, K.; Kassy, N.J.; Coulibaly, K.; Djaman, A.J. Evaluation and comparison of antifungal activities of Terminalia catappa and Terminalia mantaly (Combretaceae) on the in vitro growth of Aspergillus fumigatus. J. Med. Plant Res. 2012, 6, 2299–2308. [Google Scholar]
- Lewis, R.E.; Diekema, D.J.; Messer, S.A.; Pfaller, M.A.; Klepser, M.E. Comparison of E-test, chequerboard dilution and time-kill studies for the detection of synergy or antagonism between antifungal agents tested against Candida species. J. Antimicrob. Chemother. 2002, 49, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.T.; Labbe, R.G.; Shetty, K. Inhibition of Vibrio parahaemolyticus in seafood systems using oregano and cranberry phytochemical synergies and lactic acid. Innovat. Food Sci. Emerg. Technol. 2005, 6, 453–458. [Google Scholar] [CrossRef]
- Nwodo, U.U.; Ngene, A.A.; Iroegbu, C.U. Effects of Fractionation on Antibacterial Activity of Crude Extracts of Tamarindus indica. Afr. J. Biotechnol. 2010, 9, 7108–7113. [Google Scholar]
- Ncube, B.; Finnie, J.F.; van Staden, J. In vitro antimicrobial synergism within plant extracts combinations from three South African medicinal bulbs. J. Ethnopharmacol. 2012, 139, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Onyewu, C.; Blankenship, J.R.; del Poeta, M.; Heitman, J. Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob. Agents Chemother. 2003, 47, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T. Salivary proteins as a defence against dietary tannins. J. Chem. Ecol. 2006, 32, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Raquel, F.E. Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds. Biochim. Biophys. Acta 2007, 1768, 2500–2509. [Google Scholar]
- Ahsan, S.; Ejaz, A.; Abdul, M. Recurvosides A and B, Antifungal Novel Steroidal Glucosides from Haloxylon recurvum. Z. Naturforsch. B. 2006, 61(9), 1148–1152. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngouana, T.K.; Mbouna, C.D.J.; Kuipou, R.M.T.; Tchuenmogne, M.A.T.; Zeuko’o, E.M.; Ngouana, V.; Mallié, M.; Bertout, S.; Boyom, F.F. Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts. Medicines 2015, 2, 220-235. https://doi.org/10.3390/medicines2030220
Ngouana TK, Mbouna CDJ, Kuipou RMT, Tchuenmogne MAT, Zeuko’o EM, Ngouana V, Mallié M, Bertout S, Boyom FF. Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts. Medicines. 2015; 2(3):220-235. https://doi.org/10.3390/medicines2030220
Chicago/Turabian StyleNgouana, Thierry Kammalac, Cedric Derick Jiatsa Mbouna, Rufin Marie Toghueo Kuipou, Marthe Aimée Tchuente Tchuenmogne, Elisabeth Menkem Zeuko’o, Vincent Ngouana, Michèle Mallié, Sebastien Bertout, and Fabrice Fekam Boyom. 2015. "Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts" Medicines 2, no. 3: 220-235. https://doi.org/10.3390/medicines2030220
APA StyleNgouana, T. K., Mbouna, C. D. J., Kuipou, R. M. T., Tchuenmogne, M. A. T., Zeuko’o, E. M., Ngouana, V., Mallié, M., Bertout, S., & Boyom, F. F. (2015). Potent and Synergistic Extract Combinations from Terminalia Catappa, Terminalia Mantaly and Monodora tenuifolia Against Pathogenic Yeasts. Medicines, 2(3), 220-235. https://doi.org/10.3390/medicines2030220