Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Analysis of Essential Oil
2.3. Cell Lines
2.4. In Vitro Cytotoxic Activity
2.5. Media, Antibiotics, and Growth Conditions
2.6. Microorganisms Strain
2.7. Disk Diffusion Assay
2.8. Minimum Inhibitory Concentration
3. Results and Discussion
3.1. Chemical Composition of the Essential Oil from Z. monogynum Leaves
3.2. Citotoxic Activity
3.3. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
GC | gas chromatograph |
GC/MS | gas chromatograph/ mass spectrometry |
K.I. | Kovats Index |
R.T. | Retention Time |
OEZM | essential oil of Zanthoxylum monogynum |
MIC | Minimum Inhibitory Concentration |
IB-UFRJ | Institute of Biology—Federal University of Rio de Janeiro |
DMSO | dimethyl sulfoxide |
References
- Moccelini, S.K.; Silva, V.C.; Ndiaye, E.A.; Sousa, P.T., Jr.; Vieira, P.C. Estudo fitoquímico das cascas das raízes de Zanthoxylum rigidum Humb. & Bonpl.Ex Willd (Rutaceae). Quim. Nova 2009, 32, 131–133. [Google Scholar]
- Facundo, V.A.; Silveira, A.S.P.; Filho, R.B.; Pinto, A.C.; Rezende, C.M. Constituintes químicos de Zanthoxylum ekmanii (urb.) Alain. Quim. Nova 2005, 28, 224–225. [Google Scholar] [CrossRef]
- Tiwary, M.; Naik, S.N.; Tewary, D.K.; Mittal, P.K.; Yadav, S. Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J. Vector Borne Dis. 2007, 44, 198–204. [Google Scholar] [PubMed]
- Bastos, J.K.; Albuquerque, S.; Silva, M.L. Evaluation of the trypanocidal activity of lignans isolated from the leaves of Zanthoxylum naranjillo. Planta Med. 1999, 65, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L.; Xu, J.; Bai, G.; Zhang, H.; Liu, Y.; Xiang, J.F.; Tang, Y.L. Isolation of anti-tumor compounds from the stem bark of Zanthoxylum ailanthoides Sieb. & Zucc. by silica gel column and counter-current chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 929, 6–10. [Google Scholar]
- Li, K.; Zhou, R.; Wang, J.W.; Li, Z.; Li, J.; Zhang, P.; Xiao, T. Zanthoxylum bungeanum essential oil induces apoptosis of HaCaT human keratinocytes. J. Ethnopharmacol. 2016, 186, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.; Perazzo, F.F.; Tavares Carvalho, J.C.; Bastos, J.K. Anti-inflammatory and analgesic activities of the ethanolic extracts from Zanthoxylum riedelianum (Rutaceae) leaves and stem bark. J. Pharm. Pharmacol. 2007, 59, 1151–1158. [Google Scholar] [CrossRef] [PubMed]
- Tsunozaki, M.; Lennertz, R.C.; Vilceanu, D.; Katta, S.; Stucky, C.L.; Bautista, D.M. A 'toothache tree' alkylamide inhibits Aδ mechanonociceptors to alleviate mechanical pain. J. Physiol. 2013, 591, 3325–3340. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wan, J.; Mei, Z.; Yang, X. Acridone alkaloids with cytotoxic and antimalarial activities from Zanthoxylum simullans Hance. Pharmacogn. Mag. 2014, 10, 73–76. [Google Scholar] [PubMed]
- Bbosa, S.G.; Mwebaza, N.; Lubega, A.; Musisi, N.; Kyegombe, B.D.; Ntale, M. Antiplasmodial activity of leaf extracts of Zanthoxylum chalybeum. Br. J. Pharm. Res. 2014, 4, 705–713. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, W.; You, C.; Guo, S.; Geng, Z.; Fan, L.; Du, S.; Deng, Z.; Wang, Y. Insecticidal constituents of essential oil derived from Zanthoxylum armatum against two stored-product insects. J. Oleo Sci. 2015, 64, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Japheth, O.O.; Josphat, M.C.; John, V.M. Chemical composition and larvicidal activity of Zanthoxylum gilletti essential oil against Anopheles gambiae. Afr. J. Biotechnol. 2014, 13, 2175–2180. [Google Scholar]
- Guleria, S.; Tiku, A.K.; Koul, A.; Gupta, S.; Singh, G.; Razdan, V.K. Antioxidant and antimicrobial properties of the essential oil and extracts of Zanthoxylum alatum grown in North-Western Himalaya. Sci. World J. 2013, 2013, 790580. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Wang, W.X.; Dai, J.L.; Zhu, L. In vitro anthelmintic activity of Zanthoxylum simullans essential oil against Haemonchus contortus. Vet. Parasitol. 2015, 211, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Misra, L.N.; Vyry Wouatsa, N.A.; Kumar, S.; Kumar, R.V.; Tchoumbougnang, F. Antibacterial, cytotoxic activities and chemical composition of fruits of two Cameroonian Zanthoxylum species. J. Ethnopharmacol. 2013, 148, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.F.F.; Zickel, C.S. Os gêneros Zanthoxylum L. e Esenbeckia Kunth (Rutaceae) no estado de Pernambuco, Brasil. Acta Bot. Bras. 2004, 18, 73–90. [Google Scholar] [CrossRef]
- Maia, J.G.S.; Andrade, E.H.A. Leaf essential oil composition of Zanthoxylum monogynum St.-Hill. J. Essent. Oil Bear. Plants 2007, 10, 282–286. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing: Illinois, IL, USA, 2007. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Santos, N.O.; Mariane, B.; Lago, J.H.G.; Sartorelli, P.; Rosa, W.; Soares, M.G.; da Silva, A.M.; Lorenzi, H.; Vallim, M.A.; Pascon, R.C.; et al. Assessing the chemical composition and antimicrobial activity of essential oils from Brazilian plants—Eremanthus erythropappus (Asteraceae), Plectrantuns barbatus, and P. amboinicus (Lamiaceae). Molecules 2015, 20, 8440–8452. [Google Scholar] [CrossRef] [PubMed]
- Swamy, M.K.; Sinniah, U.R.; Akhtar, M.S. In Vitro Pharmacological Activities and GC-MS Analysis of Different Solvent Extracts of Lantana camara Leaves Collected from Tropical Region of Malaysia. Evid.-Based Complement. Altern. Med. 2015, 2015, 506413. [Google Scholar] [CrossRef] [PubMed]
- Setzer, W.N.; Schmidt, J.M.; Eiter, L.C.; Haber, W.A. The Leaf Oil Composition of Zanthoxylum fagara (L.) Sarg. From Monteverde, Costa Rica, and its Biological Activities. J. Essent. Oil Res. 2005, 17, 333–335. [Google Scholar] [CrossRef]
- Bayala, B.; Bassole, I.H.N.; Scifo, R.; Gnoula, C.; Morel, L.; Lobaccaro, J.A.; Simpore, J. Anticancer activity of essential oils and their chemical components—A review. Am. J. Cancer Res. 2014, 4, 591–607. [Google Scholar] [PubMed]
- Bou, D.D.; Lago, J.H.G.; Figueiredo, C.R.; Matsuo, A.L.; Guadagnin, R.C.; Soares, M.G.; Sartorelli, P. Cytotoxicity evaluation of essential oil, zingiberene and derivatives from leaves of Casearia sylvestris (Salicaceae). Molecules 2013, 18, 9477–9487. [Google Scholar] [CrossRef] [PubMed]
- Santos, N.O.; Pascon, R.C.; Vallim, M.A.; Figueiredo, C.R.; Soares, M.G.; Lago, J.H.G.; Sartorelli, P. Cytotoxic and antimicrobial constituents from the essential oil from Lippia alba (Verbenaceae). Medicines 2016, 3, 22–30. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review. Evid.-Based Complement. Altern. Med. 2016, 2016, 3012462. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.M.C.; Pereira, S.A., Jr.; Moraes, T.S.; Damasceno, J.L.; Mendes, S.A.; Dias, H.J.; Stefani, R.; Tavares, D.C.; Martins, C.H.G.; Crotti, A.E.M.; et al. Antifungal activity of plant—derived essential oils on Candida tropicalis plank tonic and biofilms cells. Med. Mycol. 2016, 54, 515–523. [Google Scholar] [CrossRef] [PubMed]
Species | Designation |
---|---|
Yeast | |
Candida dubliniensis | ATCC 7978 |
Candida tropicalis | ATCC 13803 |
Candida glabrata | ATCC 90030 |
Candida parapsilosis | Clinical isolate 68 |
Candida krusei | Clinical isolate 9602 |
Candida albicans | CBMAI 560 |
Cryptococcus grubii (A) | ATCC 208821 |
Cryptococcus gattii (B) | ATCC MYA-4563 |
Cryptococcus gattii (C) | ATCC MYA-4560 |
Cryptococcus neoformans (D) | ATCC MYA-4567 |
Saccharomyces cerevisiae | ATCC 201389 |
Bacteria | |
Escherichia coli | - |
Serratia marcescens | CBMAI 469 |
Pseudomonas aeruginosa | CBMAI 602 |
Staphylococcus epidermidis | CBMAI 604 |
Enterococcus faecalis | - |
KI | RT (min) | Compound | Molecular Weight | % |
---|---|---|---|---|
855 | 2.825 | 2-hexenal | 98 | 0.20 |
939 | 4.117 | α-pinene | 136 | 0.99 |
971 | 4.967 | β-tujeno | 136 | 0.41 |
979 | 5.100 | β-pinene | 136 | 2.02 |
990 | 5.350 | β-myrcene | 136 | 0.30 |
1002 | 5.817 | α-phellandrene | 136 | 0.17 |
1029 | 6.442 | D-limonene | 136 | 0.90 |
1037 | 6.950 | α-ocimene | 136 | 0.42 |
1082 | 8.708 | β-linalool | 154 | 0.52 |
1153 | 10.600 | citronellal | 154 | 9.57 |
1225 | 13.550 | citronellol | 156 | 43.03 |
1257 | 14.663 | methyl citronelate | 184 | 0.45 |
1338 | 17.467 | δ-elemene | 204 | 1.38 |
1352 | 18.258 | citronellol acetate | 198 | 0.25 |
1442 | 22.158 | (Z)-β-farnesene | 204 | 1.20 |
1481 | 22.975 | D-germacrene | 204 | 4.52 |
1436 | 25.775 | γ-elemene | 204 | 0.77 |
1743 | 31.717 | farnesol | 222 | 31.96 |
Total | 99.06 |
Cell Lines | IC50 (µg/mL) | ||
---|---|---|---|
Essential Oil | Cisplatin | Paclitaxel | |
B16F10 | 60.0 ± 8.9 | 52.8 ± 4.50 | - |
A2058 | 34.0 ± 8 | 43.1 ± 3.6 | - |
MCF-7 | 65.7 ± 2.8 | - | 171.5 ± 16.39 |
HeLa | 62 ± 5.9 | 20.3 ± 1.20 | - |
HL-60 | 11.0 ± 1 | 20.9 ± 1.50 | - |
T75 | 60 ± 4 | nd | nd |
Species | OEZM (mg/mL) | Fluconazol (mg/mL) |
---|---|---|
Candida albicans | 3.0 (99.44% ± 0.03) | 0.025 (98.41% ± 0.21) |
C. dubliniensis | 3.0 (95.65% ± 4.05) | 0.013 (99.47% ± 0.07) |
C. tropicalis | 3.0 (99.23% ± 0.16) | 0.05 (93.59% ± 0.46) |
C. glabrata | 6.0 (97.78% ± 0.59) | 0.05 (94.49% ± 8.22) |
C. parapsilosis | 6.0 (98.78% ± 0.21) | 0.025 (86.27% ± 3.27) |
C. krusei | 6.0 (98.84% ± 0.78) | 0.05 (85.34% ± 6.67) |
Cryptococcus neoformans var. grubii (sorotipo A) | 1.5 (92.12% ± 0.39) | 0.025 (92.82% ± 0.38) |
C. neoformans var. gattii (sorotipo B) | 1.5 (95.26% ± 0.67) | 0.013 (98.84% ± 0.05) |
C. neoformans var. gattii (sorotipo C) | 1.5 (92.47% ± 0.76) | 0.013 (98.05% ± 0.12)) |
C. neoformans var. neoformans (sorotipo D) | 1.5 (91.96% ± 0.62) | 0.025 (99.54% ± 0.65) |
Saccharomyces cerevisiae | 0.75 (94.54% ± 0.90) | 0.025 (91.94% ± 0.04) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, F.B.d.; Santos, N.O.d.; Pascon, R.C.; Vallim, M.A.; Figueiredo, C.R.; Martins, R.C.C.; Sartorelli, P. Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae). Medicines 2017, 4, 31. https://doi.org/10.3390/medicines4020031
Silva FBd, Santos NOd, Pascon RC, Vallim MA, Figueiredo CR, Martins RCC, Sartorelli P. Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae). Medicines. 2017; 4(2):31. https://doi.org/10.3390/medicines4020031
Chicago/Turabian StyleSilva, Fernanda B. da, Nara O. dos Santos, Renata C. Pascon, Marcelo A. Vallim, Carlos R. Figueiredo, Roberto C. Campos Martins, and Patricia Sartorelli. 2017. "Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae)" Medicines 4, no. 2: 31. https://doi.org/10.3390/medicines4020031
APA StyleSilva, F. B. d., Santos, N. O. d., Pascon, R. C., Vallim, M. A., Figueiredo, C. R., Martins, R. C. C., & Sartorelli, P. (2017). Chemical Composition and In Vitro Cytotoxic and Antimicrobial Activities of the Essential Oil from Leaves of Zanthoxylum monogynum St. Hill (Rutaceae). Medicines, 4(2), 31. https://doi.org/10.3390/medicines4020031