Dose-Dependent Effects of Green Tea or Maté Extracts on Lipid and Protein Oxidation in Brine-Injected Retail-Packed Pork Chops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Extracts and Chemicals
2.2. Total Phenolic Content in Extracts
2.3. Preparation and Storage of Injected Pork Loins
- (1)
- Phenol content in brine: 0.10% extract in brine correspond to 0.1 g/100 mL 23.8% = 0.238 mg/mL phenol in brine
- (2)
- Phenol in loin (2.02 kg) for a weight-gain of 229 g (mL): 229 mL 0.238 mg/mL phenol = 54.5 mg phenol
- (3)
- Phenol (ppm) in loin: 54.5 mg phenol/2.02 kg meat = 27.0 mg phenol/kg meat = 27 ppm.
2.4. Color Analysis
2.5. Lipid Oxidation by TBARS
2.6. Myofibrillar Protein Isolates (MPI)
2.7. Protein Thiol Concentration
2.8. Protein Radical Detection
2.9. Statistical Data Analysis
3. Results
3.1. Weight-Gain and Phenolic Content
3.2. Color Changes
3.3. Lipid Oxidation
3.4. Protein Oxidation
3.5. Dose-Dependent Effects of Green Tea or Maté Extracts
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- McMillin, K.W. Where is MAP Going? A review and future potential of modified atmosphere packaging for meat. Meat Sci. 2008, 80, 43–65. [Google Scholar] [CrossRef] [PubMed]
- Sheard, P.R.; Tali, A. Injection of salt, tripolyphosphate and bicarbonate marinade solutions to improve the yield and tenderness of cooked pork loin. Meat Sci. 2004, 68, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Crews, J. The 2007 national meat case study sheds new light on retail protein offerings. Meat Poult. 2007, 53, 42–52. [Google Scholar]
- Grobbel, J.P.; Dikeman, M.E.; Hunt, M.C.; Milliken, G.A. Effects of different packaging atmospheres and injection-enhancement on beef tenderness, sensory attributes, desmin degradation, and display color. J. Anim. Sci. 2008, 86, 2697–2710. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.P.; Hunt, M.C.; Nair, M.N.; Rentfrow, G. Improving beef color stability: Practical strategies and underlying mechanisms. Meat Sci. 2014, 98, 490–504. [Google Scholar] [CrossRef] [PubMed]
- Gravador, R.S.; Jongberg, S.; Andersen, M.L.; Luciano, G.; Priolo, A.; Lund, M.N. Dietary citrus pulp improves protein stability in lamb meat stored under aerobic conditions. Meat Sci. 2014, 97, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Racanicci, A.M.C.; Menten, J.F.M.; Alencar, S.M.; Buissa, R.S.; Skibsted, L.H. Mate (Ilex paraguariensis) as dietary additive for broilers: Performance and oxidative stability of meat. Eur. Food Res. Technol. 2011, 232, 655–661. [Google Scholar] [CrossRef]
- Mitsumoto, M.; O'Grad, M.N.; Kerry, J.P.; Buckley, D.J. Addition of tea catechins and vitamin C on sensory evaluation, colour and lipid stability during chilled storage in cooked or raw beef and chicken patties. Meat Sci. 2005, 69, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Skov, S.H.; Tørngren, M.A.; Skibsted, L.H.; Lund, M.N. Effect of white grape extract and modified atmosphere packaging on lipid and protein oxidation in chill stored beef patties. Food Chem. 2011, 128, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Jin, S.K.; Park, W.Y.; Kim, B.W.; Joo, S.T.; Yang, H.S. The effect of garlic or onion marinade on the lipid oxidation and meat quality of pork during cold storage. J. Food Qual. 2010, 33, 171–185. [Google Scholar] [CrossRef]
- Mielnik, M.B.; Sem, S.; Egelandsdal, B.; Skrede, G. By-products from herbs essential oil production as ingredient in marinade for turkey thighs. LWT Food Sci. Technol. 2008, 41, 93–100. [Google Scholar] [CrossRef]
- Estévez, M.; Ventanas, S.; Cava, R. Protein oxidation in frankfurters with increasing levels of added rosemary essential oil: Effect on color and texture deterioration. J. Food Sci. 2005, 70, C427–C432. [Google Scholar] [CrossRef]
- Estévez, M.; Cava, R.N. Effectiveness of rosemary essential oil as an inhibitor of lipid and protein oxidation: Contradictory effects in different types of frankfurters. Meat Sci. 2006, 72, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Terkelsen, L.D.; Miklos, R.; Lund, M.N. Green tea extract impairs meat emulsion properties by disturbing protein disulfide cross-linking. Meat Sci. 2015, 100, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Gislason, N.E.; Lund, M.N.; Skibsted, L.H.; Waterhouse, A.L. Thiol-quinone adduct formation in myofibrillar proteins detected by LC-MS. J. Agric. Food Chem. 2011, 59, 6900–6905. [Google Scholar] [CrossRef] [PubMed]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. F 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Heck, C.I.; De Mejia, E.G. Yerba Mate tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef] [PubMed]
- Racanicci, A.M.C.; Allesen-Holm, B.H.; Skibsted, L.H. Sensory evaluation of precooked chicken meat with mate (Ilex paraguariensis) added as antioxidant. Eur. Food Res. Technol. 2009, 229, 277–280. [Google Scholar] [CrossRef]
- De Zawadzki, A.; Arrivetti, L.O.R.; Vidal, M.P.; Catai, J.R.; Nassu, R.T.; Tullio, R.R.; Berndt, A.; Oliveira, C.R.; Ferreira, A.G.; Neves-Junior, L.F.; et al. Mate extract as feed additive for improvement of beef quality. Food Res. Int. 2017, 99, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Jongberg, S.; Lund, M.N.; Østdal, H.; Skibsted, L.H. Phenolic Antioxidant Scavenging of Myosin Radicals Generated by Hypervalent Myoglobin. J. Agric. Food Chem. 2012, 60, 12020–12028. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Bala, R. Digital Color Imagine Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Vyncke, W. Direct determination of the thio barbituric-acid value in trichloro acetic-acid extracts of fish as a measure of oxidative rancidity. Fett Wiss Technol. 1970, 72, 1084–1091. [Google Scholar]
- Sørensen, G.; Jørgensen, S.S. A critical examination of some experimental variables in the 2-thiobarbituric acid (TBA) test for lipid oxidation in meat products. Zeitschrift Für Lebensmittel-Untersuchung Und-Forschung 1996, 202, 205–210. [Google Scholar] [CrossRef]
- Jongberg, S.; Tørngren, M.A.; Gunvig, A.; Skibsted, L.H.; Lund, M.N. Effect of green tea or rosemary extract on protein oxidation in Bologna type sausages prepared from oxidatively stressed pork. Meat Sci. 2013, 93, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Xiong, Y.L.L.; Alderton, A.L. Concentration effects of hydroxyl radical oxidizing systems on biochemical properties of porcine muscle myofibrillar protein. Food Chem. 2007, 101, 1239–1246. [Google Scholar] [CrossRef]
- Koutina, G.; Jongberg, S.; Skibsted, L.H. Protein and lipid oxidation in Parma ham during production. J. Agric. Food Chem. 2012, 60, 9737–9745. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Jongberg, S.; Wen, J.; Tørngren, M.A.; Lund, M.N. Effect of high-oxygen atmosphere packaging on oxidative stability and sensory quality of two chicken muscles during chill storage. Food Pack. Shelf Life 2014, 1, 38–48. [Google Scholar] [CrossRef]
- Jongberg, S.; Lund, M.N.; Skibsted, L.H.; Davies, M.J. Competitive Reduction of Perferrylmyoglobin Radicals by Protein Thiols and Plant Phenols. J. Agric. Food Chem. 2014, 62, 11279–11288. [Google Scholar] [CrossRef] [PubMed]
- Jongberg, S.; Lund, M.N.; Waterhouse, A.L.; Skibsted, L.H. 4-Methyl catechol inhibits protein oxidation in meat but not disulfide formation. J. Agric. Food Chem. 2011, 59, 10329–10335. [Google Scholar] [CrossRef] [PubMed]
- Kroll, N.G.; Rawel, H.M.; Rohn, S. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds. Food Sci. Technol. Int. 2003, 9, 205–218. [Google Scholar] [CrossRef]
- Li, Y.; Jongberg, S.; Andersen, M.L.; Davies, M.J.; Lund, M.N. Quinone-induced protein modifications: Kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free Radic. Biol. Med. 2016, 97, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xiong, Y.L. Chlorogenic acid-mediated gel formation of oxidatively stressed myofibrillar protein. Food Chem. 2015, 180, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Wang, L.; Shao, J.; Liu, D.; Kong, B. Changes in the structural and gel properties of pork myofibrillar protein induced by catechin modification. Meat Sci. 2017, 127, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Chen, L.; Lei, N.; Wang, S.; Xu, X.; Zhou, G.; Li, Z. Emulsifying Properties of Oxidatively Stressed Myofibrillar Protein Emulsion Gels Prepared with (–)-Epigallocatechin-3-gallate and NaCl. J. Agric. Food Chem. 2017, 65, 2816–2826. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Elias, R.J. Investigating the hydrogen peroxide quenching capacity of proteins in polyphenol-rich foods. J. Agric. Food Chem. 2011, 59, 8915–8922. [Google Scholar] [CrossRef] [PubMed]
Treatment | [Extract]Aimed (~ ppm) | [Phenols]Aimed (~ ppm GAE *) | [Phenols]Calculated ** (ppm GAE) |
---|---|---|---|
Control | - | - | - |
GT1 | 100 | 25 | 29 ± 0 d |
GT2 | 350 | 80 | 68 ± 13 c |
GT3 | 700 | 160 | 105 ± 36 b |
M1 | 100 | 25 | 28 ± 4 d |
M2 | 350 | 80 | 83 ± 11 b,c |
M3 | 700 | 160 | 150 ± 33 a |
Treatment * | Color Parameter | ΔE | ||
---|---|---|---|---|
Lightness | b-Value | Chroma | ||
Control | 58.78 ± 1.65 a | 7.34 ± 0.18 a,b | 7.37 ± 0.18 a,b | 0.0 |
GT1 | 56.45 ± 0.49 b,c | 4.70 ± 0.01 b,c | 4.71 ± 0.01 c | 3.1 |
GT2 | 55.96 ± 1.30 c | 6.06 ± 0.95 b | 6.13 ± 0.96 b,c | 3.1 |
GT3 | 56.60 ± 0.51 b,c | 4.83 ± 0.62 c | 4.86 ± 0.65 c | 3.3 |
M1 | 57.98 ± 1.41 a,b,c | 6.34 ± 0.90 a,b | 6.43 ± 0.97 a,b | 1.3 |
M2 | 58.64 ± 1.36 a,b | 7.20 ± 0.28 a | 7.26 ± 0.29 a | 0.2 |
M3 | 56.21 ± 0.62 b,c | 6.46 ± 0.76 a,b | 6.48 ± 0.77 a,b | 2.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jongberg, S.; Tørngren, M.A.; Skibsted, L.H. Dose-Dependent Effects of Green Tea or Maté Extracts on Lipid and Protein Oxidation in Brine-Injected Retail-Packed Pork Chops. Medicines 2018, 5, 11. https://doi.org/10.3390/medicines5010011
Jongberg S, Tørngren MA, Skibsted LH. Dose-Dependent Effects of Green Tea or Maté Extracts on Lipid and Protein Oxidation in Brine-Injected Retail-Packed Pork Chops. Medicines. 2018; 5(1):11. https://doi.org/10.3390/medicines5010011
Chicago/Turabian StyleJongberg, Sisse, Mari Ann Tørngren, and Leif H. Skibsted. 2018. "Dose-Dependent Effects of Green Tea or Maté Extracts on Lipid and Protein Oxidation in Brine-Injected Retail-Packed Pork Chops" Medicines 5, no. 1: 11. https://doi.org/10.3390/medicines5010011
APA StyleJongberg, S., Tørngren, M. A., & Skibsted, L. H. (2018). Dose-Dependent Effects of Green Tea or Maté Extracts on Lipid and Protein Oxidation in Brine-Injected Retail-Packed Pork Chops. Medicines, 5(1), 11. https://doi.org/10.3390/medicines5010011