Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity’s Metabolic Consequences
Abstract
:1. Introduction
2. Recent Data about The Possible Effect of Specific Functional Foods and Their Bioactive Compounds on Weight Control and Obesity’s Metabolic Consequences
2.1. Coffee and Green Coffee
2.1.1. Bioactive Compounds of Coffee and Green Coffee
2.1.2. Possible Effect of Coffee and Green Coffee on Human Health
2.1.3. Possible Effect of Coffee and Green Coffee on Weight Control
2.2. Tea and Green Tea
2.2.1. Bioactive Compounds of Green Tea
2.2.2. Possible Effects of Tea on Weight Control: Possible Mechanisms
2.3. Berries
2.3.1. Bioactive Compounds of Berries
2.3.2. Possible Effects of Berries on Weight Management and Obesity’s Metabolic Consequences
2.4. Pomegranate
2.5. Nuts and Seeds
2.5.1. Bioactive Compounds of Nuts
2.5.2. Possible Effects of Nuts on Weight Control: Possible Mechanisms
2.6. Olive Oil
Possible Effects of Olive Oil on Weight Control and Obesity’s Metabolic Consequences
2.7. Avocado
Possible Effects of Avocado on Weight Control and Health Promotion
2.8. Ginger
Possible Effects of Ginger on Weight Control: Possible Mechanisms
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Materko, W.; Roberto, P.; Carvalho, A.; Nadal, J.; Santos, E.L. Accuracy of the WHO’s body mass index cut-off points to measure gender- and age-specific obesity in middle-aged adults living in the city of Rio de Janeiro, Brazil. JPHR 2017, 6, 904. [Google Scholar] [CrossRef]
- Farajian, P.; Risvas, G.; Karasouli, K.; Pounis, G.D.; Kastorini, C.M.; Panagiotakos, D.B.; Zampelas, A. Very high childhood obesity prevalence and low adherence rates to the Mediterranean diet in Greek children: The GRECO study. Atherosclerosis 2011, 217, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Rolls, B.J. What is the role of portion control in weight management. Int. J. Obes. 2014, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Poudyal, H.; Panchal, S.K. Functional foods as potential therapeutic options for metabolic syndrome. Obes. Rev. 2015, 16, 914–941. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Caligiuri, S.; Brown, D.; Pierce, G. Clinical trials using functional foods provide unique challenges. J. Funct. Foods 2018, 45, 233–238. [Google Scholar] [CrossRef]
- Martirosyan, D.; Singh, J. A new definition of functional food by FFC: What makes a new definition unique? Functional Foods in Health and Disease. FFHD 2015, 5, 209–223. [Google Scholar] [CrossRef]
- Ntrigiou, V.; Ntrigios, I.; Rigopoulos, N.; Dimou, C.; Koutelidakis, A. Functional food consumption correlates with anthropometric characteristics and body composition in healthy adults. Curr. Top. Nutraceut. Res. 2019, 18, 279–288. [Google Scholar]
- Elmaliklis, I.N.; Liveri, A.; Ntelis, B.; Paraskeva, K.; Goulis, I.; Koutelidakis, A. Increased Functional Foods’ Consumption and Mediterranean Diet Adherence May Have a Protective Effect in the Appearance of Gastrointestinal Diseases: A Case–Control Study. Medicines 2019, 6, 50. [Google Scholar] [CrossRef]
- Koutelidakis, A.; Dimou, C. The effects of functional food and bioactive compounds on biomarkers of cardiovascular diseases. In Functional Foods Text Book, 1st ed.; Martirosyan, D., Ed.; Functional Food Center: Dallas, TX, USA, 2016; pp. 89–117. Available online: https://www.amazon.com/Functional-Foods-Chronic-Diseases-Textbook/dp/1536919438 (accessed on 15 February 2019).
- Karasawa, M.G.; Chakravarthi, M. Fruits as Prospective Reserves of bioactive Compounds: A Review. Nat. Prod. Bioprospect. 2018, 8, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Cianciosia, D.; Valera-Lopez, A.; Forbes-Hermandez, T.Y.; Gasparrini, M.; Afrin, S.; Reboredo-Rodrigueza, P.; Zhang, J.; Quiles, J.L.; Nabav, S.F.; Battino, M.; et al. Targeting Molecular Pathways in Cancer Stem Cells by Natural Bioactive Compounds. Pharmacol. Res. 2018, 135, 150–165. [Google Scholar] [CrossRef]
- Masheb, R.M.; Ruser, C.; Min, K.M.; Bullock, A.J.; Dorflinger, L. Does food addiction contribute to excess weight among clinic patients seeking weight reduction? Examination of the Modified Yale Food Addiction Survey. Compr. Psychiatry 2018, 84, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, J.L. The Obesity Epidemic and Food Addiction: Clinical Similarities to Drug Dependence. J. Psychoact. Drugs 2012, 44, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Panchal, S.K.; Poudyal, H.; Waanders, J.; Brown, L. Coffee Extract Attenuates Changes in Cardiovascular and Hepatic Structure and Function without Decreasing Obesity in High-Carbohydrate, High-Fat Diet-Fed Male Rats. J. Nutr. 2012, 142, 690–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, M.H.; Tung, Y.C.; Yang, G.; Li, S.; Ho, C.T. Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food Funct. 2016, 7, 4481–4491. [Google Scholar] [CrossRef] [PubMed]
- Nekooeian, A.A.; Khalili, A.; Khosravi, M.B. Oleuropein offers cardioprotection in rats with simultaneous type 2 diabetes and renal hypertension. Indian J. Pharmacol. 2014, 46. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Mah, X.J.; Garcia, M.C.; Antonypillai, C.; van der Poorten, D. Oily fish, coffee and walnuts: Dietary treatment for nonalcoholic fatty liver disease. World J. Gastroenterol. 2015, 21, 10621–10635. [Google Scholar] [CrossRef]
- Abdulrazaq, N.B.; Cho, M.; Win, N.; Zaman, R.; Rahman, M.T. Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. Br. J. Nutr. 2011, 108, 1194–1201. [Google Scholar] [CrossRef]
- Nohara, C.; Yokoyama, D.; Tanaka, W.; Sogon, T.; Sakono, M.; Sakakibara, H. Daily Consumption of Bilberry (Vacciniummyrtillus L.) Extracts Increases the Absorption Rate of Anthocyanins in Rats. J. Agric. Food Chem. 2018, 66, 7958–7964. [Google Scholar] [CrossRef]
- Martin, D.A.; Smyth, J.A.; Liu, Z.; Bolling, B.W. Aronia berry (Aroniamitschurinii‘Viking’) inhibits colitis in mice and inhibits T cell tumour necrosis factor-α secretion. J. Functional. Foods 2018, 44, 48–57. [Google Scholar] [CrossRef]
- Onwuli, D.O.; Brown, H.; Ozoani, H.A. Antihyperglycaemic Effect of TetracarpidiumConophorum Nuts in Alloxan Induced Diabetic Female Albino Rats. ISRN Endocrinol. 2014, 1–4. [Google Scholar] [CrossRef]
- Jose, T.; Pattanaik, A.K.; Jadhav, S.E.; Dutta, N.; Sharma, S. Nutrient digestibility, hindgut metabolites and antioxidant status of dogs supplemented with pomegranate peel extract. J. Nutr. Sci. 2017, 36, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.H.; Park, J.H.; Im, S.; Song, D.K. Coffee and health. Integr. Med. Res. 2014, 3, 189–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarriá, B.; Martínez-López, S.; Sierra-Cinos, J.L.; García-Diz, L.; Mateos, R.; Bravo-Clemente, L. Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. Eur. J. Nutr. 2016, 57, 269–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuhu, A.A. Bioactive Micronutrients in Coffee: Recent Analytical Approaches for Characterization and Quantification. ISRN 2014. [Google Scholar] [CrossRef] [PubMed]
- Tamara, B.; Boehm, N.; Janzowski, C.; Lang, R.; Hofmann, T.; Stockis, J.P.; Albert, F.W.; Stiebitz, H.; Bytof, G.; Lantz, I.; et al. Antioxidant-rich coffee reduces DNA damage, elevates glutathione status and contributes to weight control: Results from an intervention study. Mol. Nutr. Food Res. 2011, 55, 793–797. [Google Scholar] [CrossRef]
- Burwell, H.; Vilsack, H. Dietary Guidelines Advisory Committee USDA. DGAC 2015, Chapter 1–7. Available online: https://health.gov/dietaryguidelines/2015-scientific-report/pdfs/scientific-report-of-the-2015-dietary-guidelines-advisory-committee.pdf (accessed on 15 February 2019).
- Beaudoin, M.S.; Robinson, L.E.; Graham, T.E. An Oral Lipid Challenge and Acute Intake of Caffeinated Coffee Additively Decrease Glucose Tolerance in Healthy Men. J. Nutr. 2011, 141, 574–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuchinali, P.; Souza, G.C.; Pimentel, M.; Chemello, D.; Zimerman, A.; Giaretta, V.; Salamoni, J.; Fracasso, B.; Zimerman, L.I.; Rohde, L.E. Short-term Effects of High-Dose Caffeine on Cardiac Arrhythmias in Patients With Heart Failure: A Randomized Clinical Trial. JAMA Intern. Med. 2016, 176, 1752–1759. [Google Scholar] [CrossRef]
- Martinez-Saez, N.; Ullate, M.; Martin-Cabrejas, M.A.; Martorell, P.; Genovis, S.; Ramon, D.; Castillo, M.D. A novel antioxidant beverage for body weight control based on coffee Silverskin. Food Chem. 2014, 150, 227–234. [Google Scholar] [CrossRef]
- Onakpoya, I.; Terry, R.; Ernst, E. The Use of Green Coffee Extract as a Weight Loss Supplement: A Systematic Review and Meta-Analysis of Randomised Clinical Trials. Gastroenterol. Res. Pract. 2011, 1–6. [Google Scholar] [CrossRef]
- Laurence, G.; Wallman, K.G. Effects of caffeine on time trial performance in sedentary men. J. Sports Sci. 2012, 30, 1235–1240. [Google Scholar] [CrossRef]
- Moisey, L.L.; Robinson, L.E.; Graham, T.E. Consumption of caffeinated coffee and a high carbohydrate meal affects postprandial metabolism of a subsequent oral glucose tolerance test in young, healthy males. Br. J. Nutr. 2010, 103, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.M.; Irwin, C.; Seay, R.F.; Clarke, H.E.; Allegro, D.; Desbrow, B. Caffeine, coffee, and appetite control: A review. Int. J. Food Sci. Nutr. 2017, 68, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Renouf, M.; Guy, P.; Marmet, C.; Longet, K.; Fraering, A.L.; Moulin, J.; Barron, D.; Dionisi, F.; Cavin, C.; Steiling, H.; et al. Plasma appearance and correlation between coffee and green tea metabolites in human subjects. Br. J. Nutr. 2010, 104, 1635–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Webster, D.; Cao, J.; Shao, A. The safety of green tea and green tea extract consumption in adults Results of a systematic review. Regul. Toxicol. Pharmacol. 2018, 95, 412–433. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.Q.; Yan, Z.; BaoLu, Z. Green tea catechins prevent obesity through modulation of peroxisome proliferator-activated receptors. Sci. China Life 2013, 56, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Kongpichitchoke, T.; Chiu, M.T.; Huang, T.C.; Hsu, J.L. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKC_ Activation: In Vitro and in Silico Studies. Molecules 2016, 21, 1346. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Pervin, M.; Goto, S.; Isemura, M.; Nakamura, Y. Beneficial Effects of Tea and the Green Tea Catechin Epigallocatechin-3-gallate on Obesity. Molecules 2016, 21, 1305. [Google Scholar] [CrossRef] [PubMed]
- Macedo Mendes, R. Quantification of catechins and caffeine from green tea (Camellia sinensis) infusions, extract, and ready-to-drink beverages-Quantificação de catequinas e cafeína do cháverde (Camellia sinensis) infusão, extrato e bebidaprontο. Ciênc. Tecnol. Aliment. 2010, 32, 163–166. [Google Scholar] [CrossRef]
- Koutelidakis, A.; Kapsokefalou, M. Holistic approaches of tea bioactivity: Interactions of tea and meal components studied in vitro and in vivo. In Tea in Health and Disease Prevention; Preedy, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 36–42. [Google Scholar]
- Yang, C.S.; Zhang, J.; Zhang, L.; Huang, J.; Wang, Y. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Mol. Nutr. Food Res. 2016, 60, 160–174. [Google Scholar] [CrossRef]
- Gosselin, C.; Haman, F. Effects of green tea extracts on non shivering thermogenesis during mild cold exposure in young men. Br. J. Nutr. 2013, 110, 282–288. [Google Scholar] [CrossRef]
- Yoneshiro, T.; Aita, S.; Kawai, Y.; Iwanaga, T.; Saito, M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am. J. Clin. Nutr. 2012, 95, 845–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, S.F.; Nakamura, K. Central neural pathways for thermoregulation. Front. Biosci. 2011, 16, 74–104. [Google Scholar] [CrossRef] [Green Version]
- Janssens, P.; Hursel, R.; Westerterp-Plantenga, M.S. Nutraceuticals for body-weight management: The role of green tea catechins. Physiol. Behav. 2016, 162, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Toolsee, N.A.; Aruoma, O.I.; Gunness, T.K.; Kowlessur, S.; Dambala, V.; Murad, F.; Googoolye, K.; Daus, D.; Indelicato, J.; Rondeau, P.; et al. Effectiveness of Green Tea in a Randomized Human Cohort: Relevance to Diabetes and Its Complications. BioMed Res. Int. 2013, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.J.; Chia-Yu, L.; Jung-Peng, C.; Chung-Hua, H. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. 2016, 35, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Sanchez, K.; Leyva, M.J.; Wu, M.; Betts, N.M.; Aston, C.E.; Lyons, T.J. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J. Am. Coll. Nutr. 2010, 29, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Egert, S.; Tereszczuk, J.; Wein, S.; Muller, M.J.; Frank, J.; Rimbach, G.; Wolffram, S. Simultaneous ingestion of dietary proteins reduces the bioavailability of galloylatedcatechins from green tea in humans. Eur. J. Nutr. 2012, 52, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Mahler, A.; Steiniger, J.; Bock, M.; Klug, L.; Parreidt, N.; Lorenz, M.; Zimmermann, B.F.; Krannich, A.; Paul, F.; Boschmann, M. Metabolic response to epigallocatechin-3-gallate in relapsing-remitting multiple sclerosis: A randomized clinical trial. Am. J. Clin. Nutr. 2015, 101, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Koutelidakis, A.; Rallidis, L.; Koniari, K.; Panagiotakos, D.; Komaitis, M.; Zampelas, A.; Anastasiou-Nana, M.; Kapsokefalou, M. Effect of green tea on postprandial antioxidant capacity, serum lipids, C-reactive protein and glucose levels in patients with coronary artery disease. Eur. J. Nutr. 2013, 1–8. [Google Scholar] [CrossRef]
- Basu, A.; Du, M.; Sanchez, K.; Leyva, M.J.; Betts, N.M.; Blevins, S.; Wu, M.; Aston, C.E.; Lyons, T.J. Green tea minimally affects biomarkers of inflammation in obese subjects with metabolic syndrome. Nutrition 2011, 27, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, Y.; Wang, L.; Wang, L.; Tanaka, Y.; Zhang, T.; Ashida, H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct. 2014, 5, 2420–2429. [Google Scholar] [CrossRef] [PubMed]
- Perez-Jimenez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Olejnik, A. Current evidence on the health-beneficial effects of berry fruits in the prevention and treatment of metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Salo, I.; Plaza, M.; Bjorck, I. Effects of a mixed berry beverage on cognitive functions and cardiometabolic risk markers; A randomized cross-over study in healthy older adults. PLoS ONE 2017, 12, e0188173. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Kim, S.; Kim, M.J.; Kim, M.S.; Kim, J.; Park, C.W.; Seo, D.; Shin, S.S.; Sang, W.O. Efficacy and safety of Panax ginseng berry extract on glycemic control: A 12-wk randomized, double-blind, and placebo-controlled clinical trial. J. Ginseng Res. 2017, 42, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.M.; Suomela, J.P.; Tahvonen, R.; Vaarno, J.; Venojarvi, M.; Viikari, J.; Kallio, J. Berry meals and risk factors associated with metabolic syndrome. Eur. J. Clin. Nutr. 2010, 64, 614–621. [Google Scholar] [CrossRef]
- Batista, Â.G.; Soares, E.S.; Mendonça, M.; Silva, J.K.; Dionísio, A.P.; Sartori, C.R.; Cruz-Höfling, M.A.; MarósticaJúnior, M.R. Jaboticaba berry peel intake prevents insulin resistance-induced tau phosphorylation in mice. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef]
- Solverson, P.; Rumpler, W.; Leger, J.; Redan, B.; Ferruzzi, M.; Baer, D.; Castonguay, T.; Novotny, J. Blackberry Feeding Increases Fat Oxidation and Improves Insulin Sensitivity in Overweight and Obese Males. Nutrients 2018, 10, 1048. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punicagranatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MSn. Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef]
- Zhao, X.; Yuan, Z.; Fang, Y.; Yin, Y.; Feng, L. Flavonols and Flavones Changes in Pomegranate (Punicagranatum L.) Fruit Peel during Fruit Development. J. Agric. Sci. Technol. 2014, 16, 1649–1659. [Google Scholar]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punicagranatum L.) peel: A review. Food Chem. 2018, 261, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Arun, K.B.; Jayamurthy, P.; Anusha, C.V.; Mahesh, S.K.; Nisha, P. Studies on activity guided fractionation of pomegranate peel extracts and its effect on antidiabetic and cardiovascular protection properties. J. Food Process. Preserv. 2016, 1745–4549. [Google Scholar] [CrossRef]
- Ambigaipalan, P.; de Camargo, A.C.; Shahidi, F. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESIMS. Food Chem. 2016, 221, 1883–1894. [Google Scholar] [CrossRef] [PubMed]
- Medjakovic, S.; Jungbauer, A. Pomegranate: A fruit that ameliorates metabolic syndrome. Food Funct. 2013, 4, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Lehtonen, H.M.; Suomela, J.P.; Tahvonen, R.; Yang, B.; Venojarvi, M.; Viikari, J.; Kallio, H. Different berries and berry fractions have various but slightly positive effects on the associated variables of metabolic diseases on overweight and obese women. Eur. J. Clin. Nutr. 2011, 65, 394–401. [Google Scholar] [CrossRef] [Green Version]
- Ros, E.; Tapsell, L.C.; Sabaté, J. Nuts and Berries for Heart Health. Curr. Atheroscler. Rep. 2010, 12, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Kalogeropoulos, N.; Chiou, A.; Ioannou, M.S.; Karathanos, V.T. Nutritional evaluation and health promoting activities of nuts and seeds cultivated in Greece. Int. J. Food Sci. Nutr. 2013, 64, 757–767. [Google Scholar] [CrossRef]
- Hu, F.B.; Manson, J.E. Omega-3 fatty acids and secondary prevention of cardiovascular disease—Is it just a fish tale? Comment on “Efficacy of omega-3 fatty acid supplements (eicosapentaenoic acid and docosahexaenoic acid) in the secondary prevention of cardiovascular disease. Arch. Intern. Med. 2012, 172, 694–696. [Google Scholar]
- Sánchez-González, C.; Izquierdo-Pulido, M. Health Benefits of Walnut Polyphenols: An Exploration beyond Their Lipid Profile. Crit. Rev. Food Sci. Nutr. 2015, 1–42. [Google Scholar] [CrossRef]
- Coates, A.M.; Howe, P.R.C. Edible nuts and metabolic health. Curr. Opin. Lipidol. 2007, 18, 25–30. [Google Scholar] [CrossRef]
- Kranz, S.; Hill, A.M.; Fleming, J.A.; Hartman, T.J.; West, S.J.; Kris-Etherton, P.M. Nutrient displacement associated with walnut supplementation in men. J. Hum. Nutr. Diet 2013, 27, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Casas-Agustench, P.; Lo´pez-Uriarte, P.; Bullo, M.; Ros, E.; Cabre´-Vila, J.J.; Salas-Salvado, J. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Mohan, V.; Gayathri, R.; Jaacks, L.M.; Lakshmipriya, N.; Mohan, A.R.; Spiegelman, D.; Jeevan, R.G.; Balasubramaniam, K.; Shobana, S.; Jayanthan, M.; et al. Cashew Nut Consumption Increases HDL Cholesterol and Reduces Systolic Blood Pressure in Asian Indians with Type 2 Diabetes: A 12-Week Randomized Controlled Trial. J. Nutr. 2018, 148, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, D.L.; Davidhi, A.; Yingying, M.; Kavak, Y.; Bifulco, L.; YanchouNjike, V. Effects of Walnuts on Endothelial Function in Overweight Adults with Visceral Obesity: A Randomized, Controlled, Crossover Trial Yale University Prevention Research Center, Griffin Hospital, Derby, A Randomized, Controlled, Crossover Trial. J. Am. Coll. Nutr. 2013, 31, 415–423. [Google Scholar] [CrossRef]
- Tan, S.Y.; Mattes, R.D. Appetitive, dietary and health effects of almonds consumed with meals or as snacks: A randomized, controlled trial. Eur. J. Clin. Nutr. 2013, 67, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Martin-Pelaez, S.; Covas, M.I.; Fito, M.; Kusar, A.; Pravs, I. Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Mol. Nutr. Food Res. 2013, 57, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, M.T.; Buntinx, F.; Kellen, E.; Van Dongen, M.; Dagnelie, P.C.; Muls, E.; Zeegers, M.P. Consumption of animal products, olive oil and dietary fat and results from the Belgian case–control study on bladder cancer risk. Eur. J. Cancer 2011, 47, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Psaltopoulou, T.; Kosti, R.I.; Haidopoulos, D.; Dimopoulos, M.; Panagiotakos, D.B. Olive oil intake is inversely related to cancer prevalence: A systematic review and a metaanalysis of 13.800 patients and 23.340 controls in 19 observational studies. Lipids Health Dis. 2011, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Muzzalupo, I.; Stefanizzi, F.; Perri, E.; Chiappetta, A. Transcript levels of CHL P gene, antioxidants and chlorophylls contents in olive oleaeuropaea pericarps: A comparative study on eleven olive cultivars harvested in two ripening stages. Plant Foods Hum. Nutr. 2011, 66, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.; Akhlaghi, M.; Sasani, M.R.; Boldaji, R. Olive oil improved fatty liver severity independent of cardiometabolic correction in patients with 2 non-alcoholic fatty liver disease, a randomized clinical trial. Nutrition 2018, 57, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Camargo, A.; Ruano, J.; Fernandez, J.M.; Parnell, L.D.; Jimenez, A.; Santos-Gonzalez, M.; Marin, C.; Perez-Martinez, P.; Uceda, M.; Lopez-Miranda, J.; et al. Gene expression changes in mononuclear cells in patients with metabolic syndrome after acute intake of phenol-rich virgin olive oil. BMC Genom. 2010, 11, 253. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Luna, R.; Muñoz-Hernandez, R.; Miranda, M.L.; Costa, A.L.; Jimenez-Jimenez, L.; Vallejo-Vaz, A.J.; Muriana, F.; Villar, J.; Stiefel, P. Olive Oil Polyphenols Decrease Blood Pressure and Improve Endothelial Function in Young Women with Mild Hypertension. Am. J. Hypertens. 2012, 25, 1299–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigam, P.; Bhatt, S.; Misra, A.; Chadha, D.S.; Vaidya, M.; Dasgupta, J.; Pasha, Q. Effect of a 6-Month Intervention with Cooking Oils Containing a High Concentration of Monounsaturated Fatty Acids (Olive and Canola Oils) Compared with Control Oil in Male Asian Indians with Nonalcoholic Fatty Liver Disease. Diabetes Technol. Ther. 2014, 16. [Google Scholar] [CrossRef] [PubMed]
- Kopec, R.E.; Cooperstone, J.L.; Schweiggert, R.M.; Young, G.; Harrison, E.; Francis, D.; Clinton, S.; Schwartz, S. Avocado Consumption Enhances Human Postprandial Provitamin A Absorption and Conversion from a Novel High–b-Carotene Tomato Sauce and from Carrots. The Journal of Nutrition. J. Nutr. 2015, 144, 1158–1166. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.M.; Rasmussen, H.M.; Chen, O.; Johnson, E.J. Avocado Consumption Increases Macular PigmentDensity in Older Adults: A Randomized Controlled Trial. Nutrients 2017, 9, 919. [Google Scholar] [CrossRef] [PubMed]
- USDA (US. Department of Agriculture). Avocado, Almond, Pistachio and Walnut Composition. Nutrient Data Laboratory; USDA National Nutrient Database for Standard Reference, Release 24; Department of Agriculture: Washington, DC, USA, 2011.
- Pahua-Ramos, M.E.; Garduño-Siciliano, L.; Dorantes-Alvarez, L.; Chamorro-Cevallos, G.; Herrera-Martínez, J.; Osorio-Esquivel, O.; Ortiz-Moreno, A. Reduced-calorie Avocado Paste Attenuates Metabolic Factors Associated with a Hypercholesterolemic-high Fructose Diet in Rats. Plant Foods Hum. Nutr. 2014, 69, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Wien, M.; Haddad, E.; Oda, K.; Sabate, J. A randomized 3 × 3 crossover study to evaluate the effect of Hass avocado intake on post-ingestive satiety, glucose and insulin levels, and subsequent energy intake in overweight adults. Nutr. J. 2013, 12, 155. [Google Scholar] [CrossRef]
- Dreher, M.L.; Davenport, A.J. Hass Avocado Composition and Potential Health Effects. Crit. Rev. Food Sci. Nutr. 2013, 53, 738–750. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Sanchez, D.G.; Flores-García, M.; Silva-Platas, C.; Rizzo, S.; Torre-Amione, G.; De la Peña-Diaz, A.; Hernández-Brenes, C.; García-Rivas, G. Isolation and chemical identification of lipid derivatives from avocado (Perseaamericana) pulp with antiplatelet and antithrombotic activities. RSC Adv. 2015, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Bordi, P.L.; Fleming, J.A.; Hill, A.M.; Kris-Etherton, P.M. Effect of a Moderate Fat Diet with and Without Avocados on Lipoprotein Particle Number, Size and Subclasses in Overweight and Obese Adults: A Randomized Controlled Trial. J. Am. Heart Assoc. 2015, 4, 1355. [Google Scholar] [CrossRef]
- Mahmoud, R.H.; Elnour, W.A. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. European Review for Medical and Pharmacological Sciences. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 75–83. [Google Scholar] [PubMed]
- Mansour, M.S.; Yu-Ming, N.; Roberts, A.M.; Kelleman, M.; RoyChoudhury, A.; St-Onge, M.P. Ginger consumption enhances the thermic effect of food and promotes feelings of satiety without affecting metabolic and hormonal parameters in overweight men: A pilot study. Metabolism 2012, 61, 1347–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumura, M.D.; Gerald, S.; Zavorsky, G.S.; Smoliga, J.M. The Effects of Pre-Exercise Ginger Supplementation on Muscle Damage and Delayed Onset Muscle Soreness. Phytother. Res. 2015, 29, 887–893. [Google Scholar] [CrossRef] [PubMed]
- Black, C.D.; O’Connor, P.J. Acute effects of dietary ginger on muscle pain induced by eccentric exercise. Phytother. Res. 2010, 24, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Black, C.D.; Herring, M.P.; Hurley, D.J.; O’Connor, P.J. Ginger (Zingiber officinale) reduces muscle pain caused by eccentric exercise. J. Pain 2010, 11, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Attari, V.E.; Mahdavi, A.M.; Javadivala, Z.; Mahluji, S.; Vahed, S.Z.; Ostadrahimi, A. A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber officinale Roscoe) and its mechanisms of action. Phytother. Res. 2017, 32, 1–9. [Google Scholar] [CrossRef]
- Ahn, E.K.; Oh, J.S. Inhibitory effect of Galanolactone isolated from Zingiber officinale Roscoe extract on adipogenesis in 3T3-L1 cells. J. Korean Soc. Appl. Biol. Chem. 2012, 55, 63–68. [Google Scholar] [CrossRef]
- Misawa, K.; Hashizume, K.; Yamamoto, M.; Minegishi, Y.; Hase, T.; Shimotoyodome, A. Ginger extract prevents high-fat dietinduced obesity in mice via activation of the peroxisome proliferator activated receptor δ pathway. J. Nutr. Biochem. 2015, 26, 1058–1067. [Google Scholar] [CrossRef]
- Okamoto, M.; Irii, H.; Tahara, Y.; Ishii, H.; Hirao, A.; Udagawa, H.; Shimizu, I. Synthesis of a new [6]-gingerol analogue and its protective effect with respect to the development of metabolic syndrome in mice fed a high-fat diet. J. Med. Chem. 2011, 54, 6295–6304. [Google Scholar] [CrossRef]
- Abd Allah, E.S.; Makboul, R.; Mohamed, A.O. Role of serotonin and nuclear factor-kappa B in the ameliorative effect of ginger on acetic acid-induced colitis. Pathophysiology 2016, 23, 35–42. [Google Scholar] [CrossRef]
- Tzeng, T.F.; Liu, I.M. 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells. Phytomedicine 2013, 20, 481–487. [Google Scholar] [CrossRef] [PubMed]
- De lasHeras, N.; Valero-Muñoz, M.; Martín-Fernández, B.; Ballesteros, S.; López-Farré, A.; Ruiz-Roso, B.; Lahera, V. Molecular factors involved in the hypolipidemic-and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet. Appl. Physiol. Nutr. Metab. 2017, 42, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Palatty, P.L.; Haniadka, R.; Valder, B.; Arora, R.; Baliga, M.S. Ginger in the prevention of nausea and vomiting: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.L.; Rayner, C.K.; Wu, K.L.; Chuah, S.K.; Tai, W.C.; Chou, Y.P.; Chiu, Y.C.; Chiu, K.W.; Hu, T.H. Effect of ginger on gastric motility and symptoms of functional dyspepsia. World J. Gastroenterol. 2011, 17, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Lee, G.; Kim, S.; Park, C.S.; Park, Y.S.; Jin, Y.H. Ginger and its pungent constituents non-competitively inhibit serotonin currents on visceral afferent neurons. Korean J. Physiol. Pharmacol. 2014, 18, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Lua, P.L.; Salihah, N.; Mazlan, N. Effects of inhaled ginger aromatherapy on chemotherapy-induced nausea and vomiting and healthrelated quality of life in women with breast cancer. Complementary Therapies in Medicine. Complement. Ther. Med. 2015, 23, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Neveen, I. Protective effects of aqueous extracts of cinnamon and ginger herbs against obesity and diabetes in obese diabetic rat. World J. Dairy Food Sci. 2014, 9, 145–153. [Google Scholar] [CrossRef]
- Saravanan, G.; Ponmurugan, P.; Deepa, M.A.; Senthilkumar, B. Anti-obesity action of gingerol: Effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. J. Sci. Food Agric. 2014, 94, 2972–2977. [Google Scholar] [CrossRef]
- Wadikar, D.D.; Premavalli, K.S. Appetizer administration stimulates food consumption, weight gain and leptin levels in male Wistar rats. Appetite 2011, 57, 131–133. [Google Scholar] [CrossRef]
Study Type (Animals Used) | Number and Characteristics of Animals | Functional Food/Dose/Duration | Summary of Key Results | Study Reference |
---|---|---|---|---|
Rats | n = 10 Male rats per 4 groups with obesity | Green tea 100 mg capsules or powder (catechins) 30 days | Reduced body weight gain | Pan et al. 2016 [15] |
Rats | n = 35 male rats with high cholesterol, body weight, blood glucose, serum lipids | Avocado 2 g avocado pulp 7 weeks | Increased cholesterol Reduced body weight Reduced blood glucose Reduced BMI Reduced serum lipids | Gupta et al. 2015 [17] |
Rats | n = 40 male rats with metabolic syndrome, cardiovascular, and hepatic structure | Green coffee 68.3 mg/kg caffeine 8–9 weeks | Increased cardiovascular diseases | Pauchal et al. 2012 [14] |
Rats | n = 80 rats (2 groups) with chronic diseases | Berries 500 mg powder (anthocyanins) 7 weeks | Reduced chronic diseases | Nohara et al. 2018 [19] |
Mice acute | n = 8–9 per group | 149 g powdered berry Colitis and T cell tumournecrosis, factor-α secretion | Inhibited colitis in mice and T cell tumor necrosis factor-α secretion | Martin et al. 2018 [20] |
Rats | n = 40 male rats per 5 groups with diabetes mellitus | Nuts (walnuts) 85.2 g 2 weeks | Reduced blood glucose levels | Onwuli, et al. 2014 [21] |
Rats | n = 8 male rats per 5 groups with Type 2 diabetes mellitus, increased blood pressure | Olive (oleuropein) 20–60 mg/day powder RCT 4 weeks, acute | Increased blood pressure, glucose | Nekooeian et al. 2014 [16] |
Dogs | n = 6 dogs with gut health | Pomegranate 50 mg powder | Positive impact on gut health | Jose et al. 2017 [22] |
Rats | 5 groups | Ginger 500 mg/kg, 30 days Type 1 Diabetes mellitus | Increased liver weight Decreased of plasma glucose levels | Abdulrazaq et al. 2011 [18] |
Study Type/Duration | Participants/Intervention | Functional Food Dose | Summary of Key Results | Study Reference |
---|---|---|---|---|
RCT 1 4 weeks | n = 142 participants | Green coffee 180 mg | Weight loss | Onakpoya et al., 2011 [31] |
Acute | Women | 1 cup, powder coffee Caffeine, 0.83 and 1.37 g/100 g of silverskin 300 mg powder | Prevented fat accumulation and excess weight | Martinez–Saez et al., 2014 [30] |
RCT 1 3 weeks | n = 25 male, 95 female with obesity | 3–5 cups coffee/day | No obesity, decreased body weight, BMI, and body fat content, helping in weight control, increased number of Bifidobacterium spp. | Pan et al., 2016 [15] |
RCT 1 | n = 306 patients n = 782 adults with increased insulin (diabetes) | 6 cups/day coffee | Reduced BMI Low levels of insulin | Gupta et al., 2015 [17] |
RCT 1 | n = 10 women and 12 men | caffeine 6 mg | Increased body mass | Laurence et al., 2012. [32] |
RCT 1 | n = 10 Males, 18–50 years old, with Type II diabetes mellitus | 3–4 cups coffee per day acute | Glucose control improved | Moisey et al., 2009 [33] |
RCBT 2 acute | n = 10 men | Caffeine 80 mg | Appetite control | Schubert et al., 2017 [34] |
RCBT 2 acute | n = 10 Men with increased glucose, insulin | 5 mg caffeine | Decreased glucose, insulin | Beaudoin et al., 2011 [28] |
RCT 1 acute | 15% women with osteoporosis and 51% with low bone mass 4% men with osteoporosis and 35% with low bone mass | Caffeine 400 mg Capsule or powder | No association with increased risk of chronic diseases in healthy adults (premature death, cardiovascular diseases, and cancer) | US Dietary Guidelines Advisory Committee (DGAC), 2015 [27] |
RCBT 2 acute 2 months RCT 1 acute | n = 137 Patients with Arrhythmic episodes | Caffeine 500 mg capsules or powder Caffeine 35 mg capsules or powder Decaffeinated coffee 100 mL or 4 cups/day capsules or powder | No arrhythmic episodes | Zuchinali et al., 2016 [29] |
RCT 1 | n = 9 healthy participants | 1–5 cups/day coffee | Limited plasma appearance of bioactives and metabolites of coffee | Renouf et al., 2010 [35] |
Study Type/Duration | Participants/Intervention | Functional Food Dose | Summary of Key Results | Study Reference |
---|---|---|---|---|
RCBT 2 12 weeks acute | n = 115 obese women | Catechins 491 mg capsules | Weight reduction | Chen et al., 2016 [48] |
RCT 1 acute | n = 8821 adults with obesity and increased diastolic blood pressure n = 35 obese people | 3 cups/day capsules green tea 4 cups/day capsules green tea | Lower BMI Higher diastolic blood pressure BMI decreased | Basu, et al., 2010 [49] |
RCT 1 acute | n = 24 participants women 23–32 years old | 4–5 cups capsules green tea | BMI normal levels | Egert et al., 2012 [50] |
RCT 1 acute | n = 159 human (adults) with hypatotoxicity risk, thyroid toxicity | 3 cups/day capsules green tea catechins 304 mg | Subchronic-toxicity carcinogenicity thyroid toxicity | Hu et al., 2018 [36] |
RCBT 2 14 days 14 weeks acute | n = 40 male n = 37 female with liver problems fasting plasma glucose, hepatotoxicity | Catechins 704 mg 1 cup green tea | No adverse effects on liver no affect fasting plasma glucose No hepatotoxic effect | Toolsee et al., 2013 [47] |
RCT 1 | n = 8 young men | Catechins (EGCG) epigallocachin-3 gallate 90 mg capsules caffeine 50 mg capsules | Stimulate thermogenesis | Gosselin et al., 2012 [43] |
RCBT 2 | n = 18 patients (men) with muscle metabolism | Catechins epigallocachin-3 gallate (EGCG) 600 mg capsules | Improved muscle metabolism | Mähler, et al., 2015 [51] |
RCT 1 acute 6 months | n = 43 patients with coronary artery disease | 4.5 g green tea | Did not affect coronary artery disease decreased postprandial triglycerides increase | Koutelidakis et al., 2013 [52] |
RCT 1 acute | n = 5 female, n = 4 male with obesity, metabolic syndrome | 4 cups/day capsules green tea | Not significantly affected features of metabolic syndrome | Basu et al., 2011 [53] |
RCBT 2 7 days | 90 obese people 30 overweight people | Retroperitoneal, epididymal, mesenteric adipose tissues | Reduced retroperitoneal, epididymal, mesenteric adipose tissues | Pan et al., 2016 [15] |
RCBT 2 7 days | 90 obese people 30 overweigh people | Catechins 68.99 mg capsules or powder | Reduced retroperitoneal, epididymal, mesenteric adipose tissues | Yamashita et al., 2014 [54] |
Study Type/Duration | Participants/Intervention | Functional Food Dose | Summary of Key Results | Study Reference |
---|---|---|---|---|
RCT 1 One week | n = 27 overweight or obese men | Berries (Blackberry) 600 g | Increased fat oxidation reduced insulin sensitivity increased hepatic glucose | Solverson et al., 2018 [61] |
RCT 1 35 days acute | n = 101 overweight or obese women with metabolic syndrome | 100 g powdered berries | Decreased waist circumference and body weight—positive effects on metabolic diseases | Lehtonen et al., 2011 [68] |
RCT 1 20 weeks acute | n = 61 women with decreased fasting plasma HDL-C and systolic and diastolic blood pressure | 163 g Berries | Increased fasting plasma HDL-C decreased systolic and diastolic blood pressures | Lehtonen et al., 2010 [59] |
RCBT 2 12 weeks acute | n = 63 participants adults 20–79 years with diabetes mellitus, decreased glycemic control, increased fasting glucose | Berries 100–140 mg/dL in capsules | Increased glycemic control, decreased fasting glucose | Choi et al., 2017 [58] |
RCT 1 5 weeks | n = 40 healthy older adults 50–70 years old with increased cardio-metabolic risk markers | Anthocyanins 414.2 mg/L from berries | Improvements in type II diabetes mellitus and cardiovascular disease biomarkers | Nilsson et al., 2017 [57] |
RCT 1 acute | n = 21.13 million people metabolic syndrome | Pomegranate leaf extract and ascorbic acid 10–20 mg in capsules or powder | Treatment of obesity and type 2 diabetes mellitus reduced body weight | Medjakovic et al., 2013 [67] |
Study Type/Duration | Participants/Intervention | Functional Food Dose | Summary of Key Results | Study Reference |
---|---|---|---|---|
RCT 1 4 weeks | n = 46 (28 women, 18 men) overweight, obese adults | Walnuts 56 g | Improved endothelial function in overweight | Katz MD et al., 2012 [77] |
RCT 1 acute | n = 21 Men 45–75 years with prostate cancer and overweight | Walnuts 75 g/day | Maintained body weight | Kranz et al., 2013 [74] |
RCT 1 12 weeks | n = 300 adults 51 years with type 2 diabetes mellitus | Cashew nuts 30 g/day | Increased body weight, BMI, waist circumference, increased HDL cholesterol and reduced systolic blood pressure | Mohan et al., 2018 [76] |
RCT 1 | n = 8800 (men, women) obese, type 2 diabetes mellitus | 67 g nuts | Reduced insulin levels, reduced LDL cholesterol, and increased HDL cholesterol | Ros et al., 2010 [69] |
RCT 1 acute | n = 63 patients with prostate cancer or prostate hyperplasia | Walnuts 50 g | Improved prostate biomarkers | Sánchez-González et al., 2015 [72] |
RCT 1 12 week sacute | n = 50 patients with insulin resistance | 30 g nuts | Decreased insulin resistance | Casas-Agustench et al., 2011 [75] |
RCT 1 4 weeks acute | n = 137 participants with postprandial glycemia | Almonds 43 g | Suppressed hunger | Tan and Matteset al., 2013 [78] |
Study Type/Duration | Participants/Intervention | Functional Food Dose | Summary of Key Results | Study Reference |
---|---|---|---|---|
RCT 1 6 months | n = 93 male patients with insulin resistance | Olive oil 20 g/day | Reduction in BMI and increased insulin sensitivity | Gupta et al., 2015 [17] Nigam P et al., 2014 [86] |
RCBT 2 1 week | n = 26 healthy overweight adults with increased blood glucose and insulin | Avocado 75 g or ½ avocado | Insulin resistant varied BMI | Wien et al., 2013 [92] |
RCBT 2 acute | n = 20 patients with metabolic syndrome | Phenolics (olive oil) 70–398 mg | Reduced cardiovascular disease | Camargo et al., 2010 [84] |
RCBT 2 2 months | n = 24 young women with mild hypertension | Polyphenols (olive oil) 30 mg/day | Decrease blood pressure | Moreno-Luna et al., 2012 [85] |
2 weeks | 3 Male adult mice per group type 2 diabetes cardiovascular diseases (CVD) platelet aggregation | 240 g freeze-dried avocado pulp | Inhibited platelet aggregation | Rodriguez-Sanchez et al., 2015 [93] |
RCT 1 | n = 45 overweight and obese adults with Cardiovascular disease | 136 g avocado pulp | Beneficial effects on cardiovascular and metabolic risk factors | Wang et al., 2015 [94] |
RCT 1 6 months | n = 48 healthy, non-smoking women and men with macular pigment density (MPD) | Avocado | Increased MPD levels | Scott et al., 2017 [88] |
Study Type/Duration | Participants/Intervention | Functional Food Dose | Summary of Key Results | Study Reference |
---|---|---|---|---|
RCT 1 6 weeks acute | n = 10 overweight men | 1 g ginger | Increased body weight and food consumption | Mansour et al., 2012 [96] |
RCT 1 12 weeks | n = 44 patients with non-alcoholic fatty liver disease | 2 g ginger | Decreased BMI | Attari et al., 2017 [100] |
RCT 1 5 days | n = 5 men and n = 5 women with muscle damage | 2 g ginger | Increased muscle damage | Matsumura et al., 2015 [97] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinidi, M.; Koutelidakis, A.E. Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity’s Metabolic Consequences. Medicines 2019, 6, 94. https://doi.org/10.3390/medicines6030094
Konstantinidi M, Koutelidakis AE. Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity’s Metabolic Consequences. Medicines. 2019; 6(3):94. https://doi.org/10.3390/medicines6030094
Chicago/Turabian StyleKonstantinidi, Melina, and Antonios E. Koutelidakis. 2019. "Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity’s Metabolic Consequences" Medicines 6, no. 3: 94. https://doi.org/10.3390/medicines6030094
APA StyleKonstantinidi, M., & Koutelidakis, A. E. (2019). Functional Foods and Bioactive Compounds: A Review of Its Possible Role on Weight Management and Obesity’s Metabolic Consequences. Medicines, 6(3), 94. https://doi.org/10.3390/medicines6030094