A Review on Gas-Liquid Mass Transfer Coefficients in Packed-Bed Columns
Abstract
:1. Introduction
2. Mass Transfer Models for Packed-Bed Columns
2.1. Onda et al., 1968 (The OTO Model)
2.2. Bravo et al., 1985 (The BRF Model)
2.3. Bravo et al., 1992 (The SRP Model)
2.4. Billet and Schultes, 1993 (The BS Model)
2.5. Brunazzi and Paglianti, 1997 (The BP Model)
2.6. Olujić et al., 2004 (The Delft Model)
2.7. Hanley and Chen, 2012 (The HC Model)
3. Final Considerations and Models Refinement
3.1. Model Comparison and Field of Application
3.2. New Insights on the Characterization of Liquid Distribution in Packed Columns
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Symbols
a | Proportionality coefficient for the Sherwood liquid number in the BP model, [-] |
A | Constant depending by type and size packing in Delft model, [-] |
ae | Wet effective surface area of packing, [m2·m−3] |
an | Nominal surface area of packing, [m2·m−3] |
b | Functional parameter for Graetz liquid number in the BP model, [-] |
B | Functional parameter for superficial liquid velocity in Delft model, [-] |
Bp | Base width of a packing corrugation, [m] |
c | Functional parameter for Kapitza liquid number in the BP model, [-] |
CESRP | Surface renewal factor of the packing in the BRF model, [-] |
CEDelft | Surface renewal factor of the packing in the Delft model, [-] |
CGBP | Gas proportionality factor in the BP model, [-] |
CGBRF | Gas proportionality factor in the BRF model, [-] |
CGBS | Gas-side specific constant in the BS model, [-] |
CGDelft | Gas-side proportionality coefficient for laminar flow case in the Delft model, [-] |
CGHC | Gas proportionality factor in the HC model, [-] |
CGSRP | Gas proportionality factor in the SRP model, [-] |
CGOTO | Gas proportionality model factor in the OTO model, [-] |
CLBP | Liquid-side proportionality model factor in the BP model, [-] |
CLBRF | Liquid-side proportionality model factor in the BRF model, [-] |
CLBS | Liquid-side proportionality model factor in the BS model, [-] |
CLHC | Liquid-side proportionality model factor in the HC model, [-] |
CLSRP | Liquid-side proportionality model factor in the SRP model, [-] |
CLOTO | Liquid-side proportionality model factor in the OTO model, [-] |
CmHC | Correction factor related to construction material, [-] |
d | Characteristic dimension of the liquid film, [m] |
deq | Equivalent diameter, [m] |
D | Column diameter, [m] |
DG | Gas diffusivity in the gas phase, [m2·s−1] |
dh | Hydraulic diameter, [m] |
dhG | Hydraulic diameter of triangular gas flow channel, [m] |
DL | Gas diffusivity in the liquid phase, [m2·s−1] |
dp | Diameter of a sphere possessing the same surface are as a piece of packing, [m] |
FrL | Froude liquid number, [-] |
FSE | Surface enhancement factor in the SRP model, [-] |
Ft | Correction factor for total hold-up due to effective wetted area in the SRP model, [-] |
Fθ,G | Gas-side mass transfer coefficient dependence on crimp inclination angle, [-] |
Fθ,L | Liquid-side mass transfer coefficient dependence on crimp inclination angle, [-] |
g | Acceleration of gravity, [m·s−2] |
geff | Effective acceleration of gravity, [m·s−2] |
GrL | Graetz liquid number, [-] |
H | Flow distance, [m] |
HETP | Height equivalent to a theoretical plate, [m] |
hL | Volumetric liquid hold-up, [m−3·m−3] |
Hp | Peak height of a packing corrugation, [m] |
hpe | Height of structured packing element unit, [m] |
KaL | Kapitza liquid number, [-] |
K1 | Parameter for packing type dependence, [-] |
khL | Proportionality factor for liquid hold-up in BP model, [-] |
kx | Liquid-side mass transfer coefficient per surface unit, [kmol·m−2·s−1] |
ky | Gas-side mass transfer coefficient per surface unit, [kmol·m−2·s−1] |
ky,lam | Gas-side mass transfer coefficient for laminar regime, [kmol·m−2·s−1] |
ky,turb | Gas-side mass transfer coefficient for turbulent regime, [kmol·m−2·s−1] |
lG,pe | Length of the triangular gas flow channel in a packing element, [m] |
n | Correction exponent for the effective area in Delft model, [-] |
Pop | Operating pressure, [bar] |
Ps | Perimeter per unit cross-sectional area, [m] |
ReG | Reynolds gas number, [-] |
ReGrv | Reynolds gas number based on relative effective velocity between gas and liquid, [-] |
ReL | Reynolds liquid number, [-] |
ScG | Schmidt gas number, [-] |
ScL | Schmidt liquid number, [-] |
ShL | Sherwood liquid number, [-] |
ShG,lam | Sherwood gas number for laminar flow, [-] |
ShG,lam | Sherwood gas number for turbulent flow, [-] |
Sp | Slant height of a packing corrugation, [m] |
te | Exposure time, [s] |
tG | Gas contact time, [s] |
tL | Time necessary for renewal of interface area, [s] |
uGe | Gas effective velocity through the packing channel, [m·s−1] |
uLe | Liquid effective velocity through the packing channel, [m·s−1] |
uGs | Superficial gas velocity, [m·s−1] |
uLs | Superficial liquid velocity, [m·s−1] |
WeL | Weber liquid number, [-] |
Z | Packing height, [m] |
Greek Symbols
α | Liquid-side mass transfer coefficient dependence on crimp inclination angle in the HC model, [-] |
β | Functional parameter for Reynolds gas number in the HC model, [-] |
γ | Gas-side mass transfer dependence on crimp inclination angle in the HC model, [-] |
Γ | Liquid flow per unit length of perimeter, [kg·m−1·s−1] |
γc | contact angle accounts for surface material wettability, [°] |
δf | Liquid film thickness, [m] |
ΔP/Z | Total pressure drops per meter of packing, [Pa·m−1] |
ΔP/Zfloood | Pressure drops per meter of packing at flooding condition, [Pa·m−1] |
εp | Void volumetric fraction of the packing, [m−3·m−3] |
ζGL | Interaction coefficient for gas-liquid friction losses in the Delft model, [-] |
η | Proportionality coefficient for the wet surface area in the HC model, [-] |
θc | Inclination or corrugation angle, [°] |
θL | Slope of the steepest descent line with respect to the horizontal axis, [°] |
κ | Functional parameter for Reynolds gas number in the HC model, [-] |
λ | Functional parameter for Reynolds liquid number in the HC model, [-] |
μG | Mass gas viscosity, [kg·m−1·s−1] |
μL | Mass liquid viscosity, [kg·m−1·s−1] |
μLo | Dynamic viscosity of water at 20 °C, [kg·m−1·s−1] |
ν | Functional parameter for Weber liquid number in the HC model, [-] |
ρG | Mass gas density, [kg·m3] |
ρy | Molar gas density, [kmol·m−3] |
ρx | Molar liquid density, [kmol·m−3] |
ρL | Mass liquid density, [kg·m−3] |
σc | Critical surface tension of packing material, [N·m−1] |
σL | Liquid surface tension, [N·m−1] |
φ | Fraction of the triangular flow channel occupied by liquid, [-] |
χ | Functional parameter for Froude liquid number in the HC model, [-] |
ψ | Wet surface area dependence parameter on the gas to liquid viscosity ratio in the HC model, [-] |
ω | Wet surface area dependence parameter on the gas to liquid density ratio in the HC model, [-] |
Ωp | Fraction of packing surface area occupied by holes, [m−3·m−3] |
Abbreviations
BP | Referred to the work of Brunazzi and Paglianti (1997) |
BRF | Referred to the work of Bravo et al. (1985) |
BS | Referred to the work of Billet and Schultes (1993) |
Delft | Referred to the work of Olujić et al. (2004) |
HC | Referred to the work of Hanley and Chen (2012) |
OTO | Referred to the work of Onda et al. (1968) |
SRP | Referred to the work of Bravo et al. (1992) |
References
- Salten, A.H.; Maćkowiak, J.F.; Maćkowiak, J.K.; Kenig, E.Y. A new hydrodynamic analogy model for the determination of transport phenomena in random packings. Chem. Eng. Sci. 2021, 233, 116246. [Google Scholar] [CrossRef]
- Górak, A.; Olujić, Ž. Distillation: Equipment and Processes; Academic Press: Cambridge, MA, USA, 2014; Chapter 3; pp. 85–144. ISBN 9780123868787. [Google Scholar]
- Daldrup, A.G.; Crine, M.; Marchot, P.; Toye, D.; Kenig, E. An approach to separation efficiency modelling of structured packings based on X-ray tomography measurements: Application to aqueous viscous systems. Chem. Eng. Sci. 2019, 204, 310–319. [Google Scholar] [CrossRef]
- Cornell, D.; Knapp, W.G.; Fair, J.R. Mass transfer efficiency packed columns: Part 1. Chem. Eng. Prog. 1960, 56, 68–74. [Google Scholar]
- McCabe, W.L.; Smith, J.C.; Harriott, P. Unit Operations of Chemical Engineering, 7th ed.; McGraw-Hill Education: New York, NY, USA, 1993; ISBN 0070448442. [Google Scholar]
- Onda, K.; Takeuchi, H.; Okumoto, Y. Mass transfer coefficients between gas and liquid phases in packed columns. J. Chem. Eng. Jpn. 1968, 1, 56–62. [Google Scholar] [CrossRef] [Green Version]
- Bolles, W.L.; Fair, J.R. Performance and design of packed distillation columns. Inst. Chem. Eng. Symp. Ser. 1979, 56, 3–35. [Google Scholar]
- Bravo, J.L.; Rocha, J.A.; Fair, J.R. Mass transfer in Gauze Packings. Hydrocarb. Process. 1985, 64, 91–95. [Google Scholar]
- Shi, M.; Mersmann, A. Effective Interfacial Area in Packed Columns. Ger. Chem. Eng. 1985, 8, 87–96. [Google Scholar]
- Bravo, J.L.; Rocha, J.A.; Fair, J.R. A comprehensive model for the performance of columns containing structured packings. Inst. Chem. Eng. Symp. Ser. 1992, 128, A489–A507. [Google Scholar]
- Billet, R.; Schultes, M. Predicting mass transfer in packed columns. Chem. Eng. Technol. 1993, 16, 1–9. [Google Scholar] [CrossRef]
- Brunazzi, E.; Paglianti, A. Liquid-Film Mass-Transfer Coefficient in a Column Equipped with Structured Packings. Ind. Eng. Chem. Res. 1997, 36, 3792–3799. [Google Scholar] [CrossRef]
- Olujić, Ž.; Behrens, M.; Colli, L.; Paglianti, A. Predicting the efficiency of corrugated sheet structured packings with large specific surface area. Chem. Biochem. Eng. Q. 2004, 18, 89–96. [Google Scholar]
- Hanley, B.; Chen, C.C. New mass-transfer correlations for packed towers. AIChE J. 2012, 58, 132–152. [Google Scholar] [CrossRef]
- Billet, R.; Schultes, M. Prediction of Mass Transfer Columns with Dumped and Arranged Packings. Chem. Eng. Res. Des. 1999, 77, 498–504. [Google Scholar] [CrossRef]
- Wang, G.Q.; Yuan, X.G.; Yu, K.T. Review of Mass-Transfer Correlations for Packed Columns. Ind. Eng. Chem. Res. 2005, 44, 8715–8729. [Google Scholar] [CrossRef]
- Olujić, Z.; Seibert, A.F. Predicting the liquid phase mass transfer resistance of structured packings. Chem. Biochem. Eng. Q. 2014, 28, 409–424. [Google Scholar] [CrossRef]
- Wang, C.; Song, D.; Seibert, F.A.; Rochelle, G.T. Dimensionless Models for Predicting the Effective Area, Liquid-Film, and Gas-Film Mass-Transfer Coefficients of Packing. Ind. Eng. Chem. Res. 2016, 55, 5373–5384. [Google Scholar] [CrossRef]
- Chávez, R.H.; De Guadarrama, J.J.; Hernández-Guerrero, A. Effect of the structured packing on column diameter, pressure drop and height in a mass transfer unit. Int. J. Thermodyn. 2004, 7, 141–148. [Google Scholar] [CrossRef]
- Chavez, R.H.; De Guadarrama, J.J. Comparison of structured packings in CO2 absorber with chemical reactions. Chem. Eng. Trans. 2010, 21, 577–582. [Google Scholar] [CrossRef]
- Chung, T.-W.; Ghosh, T.K.; Hines, A.L. Comparison between Random and Structured Packings for Dehumidification of Air by Lithium Chloride Solutions in a Packed Column and Their Heat and Mass Transfer Correlations. Ind. Eng. Chem. Res. 1996, 35, 192–198. [Google Scholar] [CrossRef]
- Flagiello, D.; Erto, A.; Lancia, A.; Di Natale, F. Dataset of wet desulphurization scrubbing in a column packed with Mellapak 250.X. Data Brief 2020, 33, 106383. [Google Scholar] [CrossRef] [PubMed]
- Flagiello, D.; Di Natale, F.; Lancia, A.; Erto, A. Characterization of mass transfer coefficients and pressure drops for packed towers with Mellapak 250.X. Chem. Eng. Res. Des. 2020, 161, 340–356. [Google Scholar] [CrossRef]
- Flagiello, D.; Parisi, A.; Lancia, A.; Carotenuto, C.; Erto, A.; Di Natale, F. Seawater desulphurization scrubbing in spray and packed columns for a 4.35 MW marine diesel engine. Chem. Eng. Res. Des. 2019, 148, 56–67. [Google Scholar] [CrossRef]
- Flagiello, D.; Lancia, A.; Erto, A.; Natale, F. Di Desulphurization of combustion flue-gases by Wet Oxidation Scrubbing (WOS). In Proceedings of the 42nd Meeting of the Italian Section of The Combustion Institute, Ravenna, Italy, 9–11 September 2019; pp. 5–10. [Google Scholar]
- Flagiello, D.; Di Natale, F.; Carotenuto, C.; Erto, A.; Lancia, A. Seawater desulphurization of simulated flue gas in spray and packed columns: An experimental and modelling comparison. Chem. Eng. Trans. 2018, 69, 799–804. [Google Scholar] [CrossRef]
- Flagiello, D.; Erto, A.; Lancia, A.; Di Natale, F. Experimental and modelling analysis of seawater scrubbers for sulphur dioxide removal from flue-gas. Fuel 2018, 214, 254–263. [Google Scholar] [CrossRef]
- Flagiello, D.; Di Natale, F.; Carotenuto, C.; Erto, A.; Lancia, A. Marine diesel engine flue gas desulphurization by seawater scrubbing in a structured packing absorption column. In Proceedings of the 40th Meeting of the Italian Section of The Combustion Institute, Rome, Italy, , 7–9 June 2017; Volume 69, pp. 3–8. [Google Scholar]
- Ghaemi, A.; Hemmati, A. Mass transfer coefficient for PZ + CO2 + H2O system in a packed column. Heat Mass Transf. 2020, 57, 283–297. [Google Scholar] [CrossRef]
- Iliuta, I.; Petre, C.; Larachi, F. Hydrodynamic continuum model for two-phase flow structured-packing-containing columns. Chem. Eng. Sci. 2004, 59, 879–888. [Google Scholar] [CrossRef]
- Orlando, A.E., Jr.; Medina, L.C.; Mendes, M.F.; Nicolaiewsky, E.M.A. HETP evaluation of structured packing distillation column. Braz. J. Chem. Eng. 2009, 26, 619–633. [Google Scholar] [CrossRef]
- Razi, N.; Svendsen, H.F.; Bolland, O. Assessment of mass transfer correlations in rate-based modeling of a large-scale CO2 capture with MEA. Int. J. Greenh. Gas Control 2014, 26, 93–108. [Google Scholar] [CrossRef]
- Rocha, J.A.; Bravo, J.L.; Fair, J.R. Distillation Columns Containing Structured Packings: A Comprehensive Model for Their Performance. 2. Mass-Transfer Model. Ind. Eng. Chem. Res. 1996, 35, 1660–1667. [Google Scholar] [CrossRef]
- Shetty, S.; Cerro, R.L. Fundamental Liquid Flow Correlations for the Computation of Design Parameters for Ordered Packings. Ind. Eng. Chem. Res. 1997, 36, 771–783. [Google Scholar] [CrossRef]
- Song, D.; Seibert, A.F.; Rochelle, G.T. Effect of Liquid Viscosity on the Liquid Phase Mass Transfer Coefficient of Packing. Energy Procedia 2014, 63, 1268–1286. [Google Scholar] [CrossRef] [Green Version]
- Tsai, R.E.; Seibert, A.F.; Eldridge, R.B.; Rochelle, G.T. Influence of viscosity and surface tension on the effective mass transfer area of structured packing. Energy Procedia 2009, 1, 1197–1204. [Google Scholar] [CrossRef] [Green Version]
- Tsai, R.E.; Seibert, A.F.; Eldridge, R.B.; Rochelle, G.T. A dimensionless model for predicting the mass-transfer area of structured packing. AIChE J. 2010, 57, 1173–1184. [Google Scholar] [CrossRef]
- Wang, C. Mass Transfer Coefficients and Effective Area of Packing. Ph.D. Thesis, University of Texas, Austin, TX, USA, 2015. [Google Scholar]
- Wilson, I.D. Gas-Liquid Contact Area of Random and Structured Packing. Master’s Thesis, University of Texas, Austin, TX, USA, 2004. [Google Scholar]
- Xu, Z.; Afacan, A.; Chuang, K. Predicting Mass Transfer in Packed Columns Containing Structured Packings. Chem. Eng. Res. Des. 2000, 78, 91–98. [Google Scholar] [CrossRef]
- Zarei, M.M.; Zivdar, M.; Fazllolahi, F. High Capacity of Columns of Stabilizer Unit of Shiraz Refinery Using Structured Packing. J. Chem. Sci. Technol. 2013, 2, 83–87. [Google Scholar]
- Flagiello, D.; Di Natale, F.; Erto, A.; Lancia, A. Wet oxidation scrubbing (WOS) for flue-gas desulphurization using sodium chlorite seawater solutions. Fuel 2020, 277, 118055. [Google Scholar] [CrossRef]
- Onda, K.; Sada, E.; Kido, C.; Tanaka, A. Liquid-side and Gas-side Mass Transfer Coefficients in Towers Packed with Spheres. Chem. Eng. 1963, 27, 140–146. [Google Scholar] [CrossRef] [Green Version]
- Onda, K.; Sada, E.; Saitô, M. Gas-Side Mass Transfer Coefficients in Packed Tower. Chem. Eng. 1961, 25, 820–829. [Google Scholar] [CrossRef] [Green Version]
- Onda, K.; Okamoto, T.; Honda, H. Liquid-side Mass-transfer Coefficient in a Tower Packed with Berl Saddles. Chem. Eng. 1960, 24, 490–493. [Google Scholar] [CrossRef] [Green Version]
- Sinnott, R.; Towler, G. Chemical Engineering Design, 6th ed.; Butterworth-Heinemann: Oxford, UK, 2019; ISBN 9780081025994. [Google Scholar]
- Vankrevelen, D.W.; Hoftijzer, P.J. Kinetics of simultaneous absorption and chemical reaction. Chem. Eng. Prog. 1948, 44, 529–536. [Google Scholar]
- Fujita, S.; Hayakawa, T. Liquid-film Mass Transfer Coefficients in Packed Towers and Rod-Like Irrigation Towers. Chem. Eng. 1956, 20, 113–117. [Google Scholar] [CrossRef] [Green Version]
- Norman, W.S.; Sammak, F.Y.Y. Gas Absorption in a packed column part II: The effect of mixing between packing elements on the liquid film mass transfer coefficients. Inst. Chem. Eng. 1963, 41, 117–125. [Google Scholar]
- Hikita, H.; Sugata, M.; Kamo, K. Liquid film coefficients of commercial packings: Gas absorption in a packed tower. Kagaku Kogaku 1954, 18, 454–456. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, T.K.; Holloway, F.A.L. Performance of packed twers-liquid film data for several packings. Trans. Am. Inst. Chem. Eng. 1940, 36, 39–70. [Google Scholar]
- Yoshida, F.; Koyanagi, T. Liquid Phase Mass Transfer Rates and Effective Interfacial Area in Packed Absorption Columns. Ind. Eng. Chem. 1958, 50, 365–374. [Google Scholar] [CrossRef]
- Whitman, W.G. The two film theory of gas absorption. Int. J. Heat Mass Transf. 1962, 5, 429–433. [Google Scholar] [CrossRef]
- Johnstone, H.F.; Pigford, R.L. Distillation in a wetted-wall column. Trans. Am. Inst. Chem. Eng. 1942, 38, 25–51. [Google Scholar]
- Grossman, G. Simultaneous heat and mass transfer in film absorption under laminar flow. Int. J. Heat Mass Transf. 1983, 26, 357–371. [Google Scholar] [CrossRef]
- Higbie, R. The rate of absorption of a pure gas into a still liquid during short periods of exposure. Trans. AIChE 1935, 31, 365–389. [Google Scholar]
- Orlando, A.E., Jr. Análise de Desempenho de Coluna de Destilação Contendo Recheio Estruturado. Master’s Thesis, Escola de Química, UFRJ, Rio de Janeiro, Brazil, 2007. [Google Scholar]
- Bravo, J.L.; Fair, J.R. Generalized correlation for mass transfer in packed distillation columns. Ind. Eng. Chem. Process. Des. Dev. 1982, 21, 162–170. [Google Scholar] [CrossRef]
- Fair, J.R.; Bravo, J.L. Prediction of Mass Transfer Efficiencies and Pressure Drop for Structured Tower Packings in Vapor/Liquid Service. Inst. Chem. Eng. Symp. Ser. 1987, 104, A183–A201. [Google Scholar]
- McGlamery, G.G. Liquid Transport Characteristics of Textured Metal Surfaces. Ph.D. Thesis, University of Texas, Austin, TX, USA, 1988. [Google Scholar]
- Rocha, J.A.; Bravo, J.L.; Fair, J.R. Distillation columns containing structured packings: A comprehensive model for their performance. 1. Hydraulic models. Ind. Eng. Chem. Res. 1993, 32, 641–651. [Google Scholar] [CrossRef]
- Park, C.D.; Nosoko, T.; Gima, S.; Ro, S.T. Wave-augmented mass transfer in a liquid film falling inside a vertical tube. Int. J. Heat Mass Transf. 2004, 47, 2587–2598. [Google Scholar] [CrossRef]
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007; ISBN 0471410772. [Google Scholar]
- Fair, J.R.; Bravo, J.L. Distillation columns containing structured packing. Chem. Eng. Prog. 1990, 86, 19–29. [Google Scholar]
- Murrieta, C. Liquid phase mass transfer in structured packing. In Proceedings of the Separation Research Program Report, University of Texas, Austin, TX, USA, 16–19 October 1991. [Google Scholar]
- Billet, R.; Schultes, M. Modelling of pressure drop in packed columns. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 1991, 14, 89–95. [Google Scholar] [CrossRef]
- Spekuljak, Z.; Billet, R. Pressure gradient of the Gaseous Phase in Regular Packings. Lat. Am. Appl. Res. 1989, 19, 133–145. [Google Scholar]
- Brunazzi, E.; Nardini, G.; Paglianti, A.; Petarca, L. Interfacial area of mellapak packing: Absorption of 1,1,1-trichloroethane by Genosorb 300. Chem. Eng. Technol. 1995, 18, 248–255. [Google Scholar] [CrossRef]
- Nardini, G.; Paglianti, A.; Petarca, L.; Viviani, E. Sulzer BX gauze: Fluid dynamics and absorption of acid gases. Chem. Eng. Technol. 1996, 19, 20–27. [Google Scholar] [CrossRef]
- Suess, P.; Spiegel, L. Hold-up of mellapak structured packings. Chem. Eng. Process. Process. Intensif. 1992, 31, 119–124. [Google Scholar] [CrossRef]
- Torelli, G. Experimental Work on Structured Packing Absorption Columns. Master’s Thesis, University of Pisa, Pisa, Italy, 1994. [Google Scholar]
- Olujić, Ž. Develompment of a complete simulation model for predicting the hydraulic and separation performance of distillation columns equipped with structured packings. Chem. Biochem. Eng. Q. 1997, 11, 31–46. [Google Scholar]
- Olujić, Ž.; Kamerbeek, A.; De Graauw, J. A corrugation geometry based model for efficiency of structured distillation packing. Chem. Eng. Process. Process. Intensif. 1999, 38, 683–695. [Google Scholar] [CrossRef]
- Olujić, Ž.; Seibert, A.; Fair, J. Influence of corrugation geometry on the performance of structured packings: An experimental study. Chem. Eng. Process. Process. Intensif. 2000, 39, 335–342. [Google Scholar] [CrossRef]
- Bateman, L.; Hargrave, K.R. Experiments with fluid friction in roughened pipes. Proc. R. Soc. London. Ser. A Math. Phys. Sci. 1937, 161, 367–381. [Google Scholar] [CrossRef]
- Fair, J.R.; Seibert, A.F.; Behrens, M.; Saraber, A.P.P.; Olujić, Ž. Structured Packing Performance Experimental Evaluation of Two Predictive Models. Ind. Eng. Chem. Res. 2000, 39, 1788–1796. [Google Scholar] [CrossRef]
- Aspen Technology, Inc. Aspen Rate-Based Distillation. Available online: http://www.aspentech.com/products/aspen-ratesep.cfm (accessed on 24 June 2010).
- Chilton, T.H.; Colburn, A.P. Mass Transfer (Absorption) Coefficients Prediction from Data on Heat Transfer and Fluid Friction. Ind. Eng. Chem. 1934, 26, 1183–1187. [Google Scholar] [CrossRef]
- Danckwerts, P.V. Significance of Liquid-Film Coefficients in Gas Absorption. Ind. Eng. Chem. 1951, 43, 1460–1467. [Google Scholar] [CrossRef]
- Potnis, S.V.; Lenz, T.G. Dimensionless Mass-Transfer Correlations for Packed-Bed Liquid-Desiccant Contactors. Ind. Eng. Chem. Res. 1996, 35, 4185–4193. [Google Scholar] [CrossRef]
- Nakajima, H. Mass Transfer-Advanced Aspects, 1st ed.; Intech: Rijeka, Croatia, 2011; Chapter 32; pp. 729–742. ISBN 978953307362. [Google Scholar]
- Wehrli, M.; Kögl, T.; Linder, T.; Arlt, W. An Unobstructed View of Liquid Flow in Structured Packing. Chem. Eng. 2018, 69, 775–780. [Google Scholar] [CrossRef]
- Olenberg, A.; Kenig, E.Y. Numerical Simulation of Two-Phase Flow in Representative Elements of Structured Packings; Elsevier Masson SAS: Paris, France, 2017; ISBN 9780444639653. [Google Scholar]
- Wu, H.; Buschle, B.; Yang, Y.; Tan, C.; Dong, F.; Jia, J.; Lucquiaud, M. Liquid distribution and hold-up measurement in counter current flow packed column by electrical capacitance tomography. Chem. Eng. J. 2018, 353, 519–532. [Google Scholar] [CrossRef]
- Green, C.W.; Farone, J.; Briley, J.K.; Eldridge, R.B.; Ketcham, R.; Nightingale, B. Novel Application of X-ray Computed Tomography: Determination of Gas/Liquid Contact Area and Liquid Holdup in Structured Packing. Ind. Eng. Chem. Res. 2007, 46, 5734–5753. [Google Scholar] [CrossRef]
- Amini, Y.; Esfahany, M.N. CFD simulation of the structured packings: A review. Sep. Sci. Technol. 2018, 54, 2536–2554. [Google Scholar] [CrossRef]
- Haroun, Y.; Raynal, L.; Alix, P. Prediction of effective area and liquid hold-up in structured packings by CFD. Chem. Eng. Res. Des. 2014, 92, 2247–2254. [Google Scholar] [CrossRef]
- Haroun, Y.; Raynal, L. Use of Computational Fluid Dynamics for Absorption Packed Column Design. Oil Gas Sci. Technol. Rev. l’IFP 2015, 71, 43. [Google Scholar] [CrossRef]
- Lassauce, A.; Alix, P.; Raynal, L.; Royon-Lebeaud, A.; Haroun, Y. Pressure Drop, Capacity and Mass Transfer Area Requirements for Post-Combustion Carbon Capture by Solvents. Oil Gas Sci. Technol. Rev. l’IFP 2014, 69, 1021–1034. [Google Scholar] [CrossRef] [Green Version]
- Macfarlan, L.H.; Seibert, A.F.; Phan, M.T.; Eldridge, R.B. CFD-based study on structured packing geometry. Chem. Eng. Sci. 2021, 243, 116767. [Google Scholar] [CrossRef]
- Salten, A.H.; Kenig, E.Y. Model based random packing optimisation for absorption processes using the hydrodynamic analogy concept. Chem. Eng. Sci. 2021, 242, 116670. [Google Scholar] [CrossRef]
Packing Material | Ceramic | Steel | Plastic | Carbon |
---|---|---|---|---|
σc [N·m−1] | 0.061 | 0.075 | 0.033 | 0.056 |
Structured Packing | Bp mm | Sp mm | Hp mm |
---|---|---|---|
Flexipac 1.Y, Metal/Plastic | 12.7 | 9 | 6.4 |
Mellapak 2.Y, Metal/Plastic | 33 | 21.5 | 13.8 |
Mellapak 125.Y, Metal/Plastic | 55 | 37 | 24.8 |
Mellapak 250.Y, Metal/Plastic | 24.1 | 17 | 11.9 |
Mellapak 350.Y, Metal/Plastic | 15.3 | 11.9 | 8.9 |
Mellapak 500.Y, Metal/Plastic | 9.6 | 8.1 | 6.53 |
Mellapak Plus 252.Y, Metal/Plastic | 24.1 | 17 | 11.9 |
Mellapak 250.YS, Metal/Plastic | 24.1 | 17 | 11.9 |
Mellapak 250.X, Metal/Plastic * | 24.1 | 17 | 11.9 |
Sulzer BX, Metal/Plastic | 24.1 | 17 | 11.9 |
Structured Packing | an m−2·m−3 | εp m−3·m−3 | Sp mm | FSE - |
---|---|---|---|---|
Flexipac 2.Y, Metal | 233 | 0.95 | 18 | 0.35 |
Gempak 2A, Metal | 233 | 0.95 | 18 | 0.34 |
Gempak 2AT, Metal | 233 | 0.95 | 18 | 0.312 |
Intalox 2T, Metal | 213 | 0.95 | 22.1 | 0.415 |
Maxpak, Metal | 229 | 0.95 | 17.5 | 0.364 |
Mellapak 250.Y, Metal | 250 | 0.95 | 17 | 0.35 |
Mellapak 350.Y, Metal | 350 | 0.93 | 11.9 | 0.35 |
Mellapak 500.Y, Metal | 500 | 0.91 | 8.1 | 0.35 |
Sulzer BX, Metal | 492 | 0.9 | 17 | 0.35 |
Random/Structured Packing | Material | Size mm | an m−2·m−3 | εp m−3·m−3 | CLBS - | CGBS - |
---|---|---|---|---|---|---|
Raschig | Metal | 0.3 | 315 | 0.96 | 1.5 | 0.45 |
Super-Rings | Metal | 0.5 | 250 | 0.975 | 1.45 | 0.43 |
Metal | 1 | 160 | 0.98 | 1.29 | 0.44 | |
Metal | 2 | 97.6 | 0.985 | 1.323 | 0.4 | |
Metal | 3 | 80 | 0.982 | 0.85 | 0.3 | |
Plastic | 2 | 100 | 0.96 | 0.377 | 0.337 | |
Raschig rings | Ceramic | 50 | 95 | 0.83 | 1.416 | 0.21 |
Ceramic | 38 | 118 | 0.68 | 1.536 | 0.23 | |
Ceramic | 25 | 190 | 0.68 | 1.361 | 0.412 | |
Ceramic | 15 | 312 | 0.69 | 1.276 | 0.401 | |
Ceramic | 13 | 370 | 0.64 | 1.367 | 0.265 | |
Ceramic | 10 | 440 | 0.65 | 1.303 | 0.272 | |
Carbon | 25 | 202.2 | 0.72 | 1.379 | 0.471 | |
Ralu Flow | Plastic | 1 | 165 | 0.94 | 1.486 | 0.36 |
Plastic | 2 | 100 | 0.945 | 1.27 | 0.32 | |
Pall Rings | Metal | 50 | 112.6 | 0.951 | 1.192 | 0.41 |
Metal | 38 | 139.4 | 0.965 | 1.012 | 0.341 | |
Metal | 25 | 223.5 | 0.954 | 1.44 | 0.336 | |
Plastic | 50 | 111.1 | 0.919 | 1.139 | 0.368 | |
Plastic | 38 | 151.1 | 0.906 | 0.856 | 0.38 | |
Plastic | 25 | 225 | 0.887 | 0.905 | 0.446 | |
Ceramic | 50 | 155.2 | 0.754 | 1.278 | 0.333 | |
Ralu rings | Metal | 50 | 105 | 0.975 | 1.192 | 0.345 |
Metal | 38 | 135 | 0.965 | 1.277 | 0.341 | |
Metal | 25 | 215 | 0.96 | 1.44 | 0.336 | |
Plastic | 50 | 95.2 | 0.983 | 1.52 | 0.303 | |
Plastic | 38 | 150 | 0.93 | 1.32 | 0.333 | |
Plastic | 25 | 190 | 0.94 | 1.32 | 0.333 | |
Hiflow rings | Metal | 50 | 92.3 | 0.977 | 1.168 | 0.408 |
Metal | 25 | 202.9 | 0.962 | 1.641 | 0.402 | |
Metal | 50 | 117.1 | 0.925 | 1.478 | 0.345 | |
Plastic | 50 hydr. | 118.4 | 0.925 | 1.553 | 0.369 | |
Plastic | 50 S | 82 | 0.942 | 1.219 | 0.342 | |
Plastic | 25 | 194.5 | 0.918 | 1.577 | 0.39 | |
Ceramic | 50 | 89.7 | 0.809 | 1.377 | 0.379 | |
Ceramic | 38 | 111.8 | 0.788 | 1.659 | 0.464 | |
Ceramic | 20 | 286.2 | 0.758 | 1.744 | 0.465 | |
NOR PAC rings | Plastic | 50 | 86.6 | 0.947 | 1.08 | 0.322 |
Plastic | 35 | 141.8 | 0.944 | 0.754 | 0.425 | |
Plastic | 25 type B | 202 | 0.953 | 0.883 | 0.366 | |
Plastic | 25 | 197.9 | 0.92 | 0.976 | 0.41 | |
Glitsch rings | Metal | 30 PMK | 180.5 | 0.975 | 1.92 | 0.45 |
Metal | 30 P | 164 | 0.959 | 1.577 | 0.398 | |
VSP rings | Metal | 50 | 104.6 | 0.98 | 1.416 | 0.21 |
Metal | 25 | 199.6 | 0.975 | 1.361 | 0.412 | |
Envi Pac rings | Plastic | 80 | 60 | 0.955 | 1.603 | 0.257 |
Plastic | 60 | 98.4 | 0.961 | 1.522 | 0.296 | |
Plastic | 32 | 138.9 | 0.931 | 1.517 | 0.459 | |
Bialecki rings | Metal | 50 | 121 | 0.966 | 1.721 | 0.301 |
Metal | 35 | 155 | 0.967 | 1.412 | 0.39 | |
Metal | 35 | 176.6 | 0.945 | 1.405 | 0.377 | |
Metal | 25 | 210 | 0.956 | 1.462 | 0.331 | |
Raflux rings | Plastic | 15 | 307.9 | 0.894 | 1.913 | 0.37 |
TOP-Pac rings | Aluminum | 50 | 105.5 | 0.956 | 1.326 | 0.389 |
Berl saddles | Ceramic | 38 | 164 | 0.7 | 1.568 | 0.244 |
Ceramic | 25 | 260 | 0.68 | 1.246 | 0.387 | |
Ceramic | 13 | 545 | 0.65 | 1.364 | 0.232 | |
Intalox saddles | Ceramic | 13 | 625 | 0.78 | 1.677 | 0.488 |
DIN-PAK | Plastic | 70 | 110.7 | 0.938 | 1.527 | 0.326 |
Plastic | 47 | 131.2 | 0.923 | 1.69 | 0.354 | |
Ralu Pak | Metal | YC-250 | 250 | 0.945 | 1.334 | 0.385 |
Metal | 250 | 250 | 0.975 | 0.983 | 0.27 | |
Impulse packing | Metal | 250 | 250 | 0.975 | 0.983 | 0.27 |
Plastic | 100 | 91.4 | 0.838 | 1.317 | 0.327 | |
Montz packing | Metal | B1-200 | 200 | 0.979 | 0.971 | 0.39 |
Metal | B1-300 | 300 | 0.93 | 1.165 | 0.422 | |
Plastic | C1-200 | 200 | 0.954 | 1.006 | 0.412 | |
Euroform | Plastic | PN-110 | 110 | 0.936 | 0.973 | 0.167 |
Type of Packing | Material | a - | b - | c - |
---|---|---|---|---|
Mellapak Y | Metal/Plastic | 16.43 | 0.915 | 0.09 |
Sulzer BX | Plastic | 63.10 | 0.676 | 0.09 |
Structured Packing | an m−2·m−3 | θc ° | εp m−3·m−3 | Hp mm | Bp mm | Sp mm | hpe m |
---|---|---|---|---|---|---|---|
Montz B1-250, Metal | 244 | 45 | 0.98 | 12 | 22.5 | 16.5 | 0.197 |
Montz B1-250.60, Metal | 245 | 60 | 0.98 | 12 | 22.3 | 16.4 | 0.211 |
Montz B1-400, Metal | 394 | 45 | 0.96 | 7.4 | 14 | 10.3 | 0.197 |
Montz B1-400.60, Metal | 390 | 60 | 0.96 | 7.4 | 14.3 | 10.3 | 0.215 |
Montz BSH-400, Metal | 378 | 45 | 0.97 | 7.4 | 15.1 | 10.6 | 0.194 |
Montz BSH-400.60, Metal | 382 | 60 | 0.97 | 7.4 | 14.8 | 10.5 | 0.215 |
Mellapak 250.X, Metal/Plastic * | 250 | 60 | 0.98 | 17 | 24.1 | 11.9 | 0.223 |
Packing Type | CGHC - | β - | γ - | CLHC - | α - |
---|---|---|---|---|---|
Pall rings | 0.00104 | 1.0 | - | 1.0 | - |
IMTP | 0.00473 | 1.0 | - | 1.0 | - |
Mellapak | 0.0084 | 1.0 | −3.072 | 0.33 | 4.078 |
Sulzer X | 0.3516 | 0.5 | - | 12 | - |
Packing Type | η - | κ - | λ - | ν - | χ - | ω - | ψ - |
---|---|---|---|---|---|---|---|
Pall rings | 0.25 | 0.134 | 0.205 | 0.075 | −0.164 | −0.154 | 0.195 |
IMTP | 0.332 | 0.132 | −0.102 | 0.194 | −0.2 | −0.154 | 0.195 |
Mellapak | 0.538 | 0.1455 | −0.1526 | 0.2 | −0.2 | −0.033 | 0.090 |
Sulzer X | 2.308 | −0.274 | 0.246 | 0.248 | −0.161 | −0.180 | 0.233 |
Models | Application | Column Size | Operating Conditions | Packing Type | Error | Fitting Param | ||||
---|---|---|---|---|---|---|---|---|---|---|
D, m | Z, m | P, atm | T, K | FG, Pa0.5 | FL, m/h | |||||
OTO | Absorption/Desorption | 0.06–0.1 | 0.1–0.3 | 1.0 | 293–298 | 0.75–2.95 | up to 295 | Raschig rings, Berl saddles, Spheres, Rods | ±30% 1 | 2 |
BRF | Distillation | 0.43 | 3.0 | 0.33–4.14 | 334–427 | 0.6–3.2 | 9.35 | Sulzer BX | 47% 2 8.0% 3 | 2 |
SRP | Distillation Absorption | 0.43 | 3.0 | 0.33–20.4 | 334–427 | 0.2–3.6 | 9.35 | Sulzer BX, Gempak 2A, Gempak 2AT, Intalox 2T, Flexipac 2Y, Maxpak, Mellapak: 250Y, 350Y, 500Y | ±24% 4 | 4 |
BS | Distillation Absorption/Desorption | 0.06–1.4 | 0.15–3.95 | 0.033–1.0 | 288–407 | 0.01–2.77 | up to 118.20 | See Table 4 | ±8.3% 5 ±12.4% 6 | 2 |
BP | Absorption/Desorption | 0.05–1.0 | 0.42–1.89 | 1.00 | 298 | 0.5–3.1 | 1.2–79.2 | Sulzer BX, Mellapak: 125Y, 250Y, 500Y | ±15% 5 ±19% 6 | 4 |
Delft | Distillation | 0.2–1.4 | 3.4–6.0 | 0.33–4.14 | 334–427 | 0.5–4.0 | 9.0–35 | Montz: B1-250,B1-400 B1-250.60 B1-400.60 BSH-400 BSH-400.60 | ±12% 4 | 3 |
HC | Distillation Absorption/Desorption | See BRF, SRP and BS model | ±10% 4 | 10 (random) 11/12 (structured) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flagiello, D.; Parisi, A.; Lancia, A.; Di Natale, F. A Review on Gas-Liquid Mass Transfer Coefficients in Packed-Bed Columns. ChemEngineering 2021, 5, 43. https://doi.org/10.3390/chemengineering5030043
Flagiello D, Parisi A, Lancia A, Di Natale F. A Review on Gas-Liquid Mass Transfer Coefficients in Packed-Bed Columns. ChemEngineering. 2021; 5(3):43. https://doi.org/10.3390/chemengineering5030043
Chicago/Turabian StyleFlagiello, Domenico, Arianna Parisi, Amedeo Lancia, and Francesco Di Natale. 2021. "A Review on Gas-Liquid Mass Transfer Coefficients in Packed-Bed Columns" ChemEngineering 5, no. 3: 43. https://doi.org/10.3390/chemengineering5030043
APA StyleFlagiello, D., Parisi, A., Lancia, A., & Di Natale, F. (2021). A Review on Gas-Liquid Mass Transfer Coefficients in Packed-Bed Columns. ChemEngineering, 5(3), 43. https://doi.org/10.3390/chemengineering5030043