Synthesis and Application of MnO-Fe2O3 Nanocomposites for the Removal of 137Cs and 60Co Radionuclides from Artificial Radioactive Aqueous Waste
Abstract
:1. Introduction
2. Experiments
2.1. Chemicals
2.2. Preparation of MnO-Fe2O3 Nanocomposite
2.3. Preparation of Radioactive Waste Solutions
2.4. Techniques for Characterization of Adsorbent
2.5. Conducting Adsorption Experiments
3. Results and Discussion
3.1. Characterization of MnO-Fe2O3 Nanocomposite
3.1.1. Surface Morphology and Composition Analysis via SEM-EDX
3.1.2. Analysis of X-ray Diffraction (XRD)
3.1.3. FTIR Analysis
3.2. Adsorption Studies
3.2.1. Impact of Calcination Temperature on Radioisotope Adsorption by Nanocomposites
3.2.2. Impact of Contact Time on 137Cs and 60Co Removal
3.2.3. Effect of Dose Amount on Removal of 137Cs and 60Co
3.2.4. Effect of Temperature on Removal of 137Cs and 60Co
3.2.5. Effect of pH-Value on Removal of 137Cs and 60Co
3.2.6. Kinetic Studies
3.2.7. Exploration of Adsorption Isotherms
3.2.8. Thermodynamic Analysis and Adsorption Reaction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mushtaq, W.; Rafiq, M.; Mushtaq, Z.; Nadeem, F.; Abdul, H. Wastewater Treatment and Dye Sequestration Using Potential Magnetic Composites—A Comprehensive Review. Int. J. Chem. Biochem. Sci. 2019, 15, 74–86. [Google Scholar]
- Allan, K.F.; Holiel, M.; Sanad, W.A. Gamma Radiation Induced Preparation of Organic-Inorganic Composite Material for Sorption of Cesium and Zinc. Radiochemistry 2014, 56, 267–274. [Google Scholar] [CrossRef]
- Mansy, M.S.; Hassan, R.S.; Selim, Y.T.; Kenawy, S.H. Evaluation of Synthetic Aluminum Silicate Modified by Magnesia for the Removal of 137Cs, 60Co and 152+ 154Eu from Low-Level Radioactive Waste. Appl. Radiat. Isot. 2017, 130, 198–205. [Google Scholar] [CrossRef]
- Ma, B.; Shin, W.S.; Oh, S.; Park, Y.-J.; Choi, S.-J. Adsorptive Removal of Co and Sr Ions from Aqueous Solution by Synthetic Hydroxyapatite Nanoparticles. Sep. Sci. Technol. 2010, 45, 453–462. [Google Scholar] [CrossRef]
- IAEA. Management of Low and Intermediate Level Radioactive Wastes with Regard to Their Chemical Toxicity; TECDOC Series 1325; International Atomic Energy Agency: Vienna, Austria, 2003; ISBN 92-0-119802-7. [Google Scholar]
- Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A Comprehensive Review on Conventional and Biological-Driven Heavy Metals Removal from Industrial Wastewater. Environ. Adv. 2022, 7, 100168. [Google Scholar] [CrossRef]
- Dawoud, M.M.A.; Hegazi, M.M.; Saleh, H.M.; El Helew, W.K. Removal of Stable and Radio Isotopes from Wastewater by Using Modified Microcrystalline Cellulose Based on Taguchi L16. Int. J. Environ. Sci. Technol. 2022, 20, 1289–1300. [Google Scholar] [CrossRef]
- Abdelhamid, A.A.; Badr, M.H.; Mohamed, R.A.; Saleh, H.M. Using Agricultural Mixed Waste as a Sustainable Technique for Removing Stable Isotopes and Radioisotopes from the Aquatic Environment. Sustainability 2023, 15, 1600. [Google Scholar] [CrossRef]
- Eskander, S.B.; Saleh, H.M.; Tawfik, M.E.; Bayoumi, T.A. Towards Potential Applications of Cement-Polymer Composites Based on Recycled Polystyrene Foam Wastes on Construction Fields: Impact of Exposure to Water Ecologies. Case Stud. Constr. Mater. 2021, 15, e00664. [Google Scholar] [CrossRef]
- Saleh, H.M.; Moussa, H.R.; El-Saied, F.A.; Dawoud, M.; Bayoumi, T.A.; Abdel Wahed, R.S. Mechanical and Physicochemical Evaluation of Solidified Dried Submerged Plants Subjected to Extreme Climatic Conditions to Achieve an Optimum Waste Containment. Prog. Nucl. Energy 2020, 122, 103285. [Google Scholar] [CrossRef]
- Saleh, H.M.; Bondouk, I.I.; Salama, E.; Esawii, H.A. Consistency and Shielding Efficiency of Cement-Bitumen Composite for Use as Gamma-Radiation Shielding Material. Prog. Nucl. Energy 2021, 137, 103764. [Google Scholar] [CrossRef]
- Singh, S.; Eapen, S.; Thorat, V.; Kaushik, C.P.; Raj, K.; D’souza, S.F. Phytoremediation of 137cesium and 90strontium from Solutions and Low-Level Nuclear Waste by Vetiveria Zizanoides. Ecotoxicol. Environ. Saf. 2008, 69, 306–311. [Google Scholar] [CrossRef]
- Abdel Ghaffar, A.M.; El-Arnaouty, M.B.; Diab, H.M.; Hegazy, E.-S.A. Radiation Synthesis of Grafted Polymers for Studying Thermoluminescence Characterization and Its Possible Application as a Dosimeter at Low Doses. Polym. Plast. Technol. Eng. 2009, 48, 423–431. [Google Scholar] [CrossRef]
- Afifi, M.; Abass, M.R.; Diab, H.M.; Abou-Mesalam, M.M.; Gaafar, M.S. Dosimetric Impact of Some Gamma Radiation-Induced Polymeric Materials Incorporated Silicate Using Thermoluminescence and Ultrasonic Techniques. Silicon 2022, 14, 4391–4400. [Google Scholar] [CrossRef]
- Hao, W.M.; Baker, S.; Lincoln, E.; Hudson, S.; Lee, S.D.; Lemieux, P. Cesium Emissions from Laboratory Fires. J. Air Waste Manag. Assoc. 2018, 68, 1211–1223. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, J.; Zhao, X.; Li, F.; Jiang, F.; Zhang, M.; Cheng, X. Competitive Adsorption of Strontium and Cobalt onto Tin Antimonate. Chem. Eng. J. 2016, 285, 679–689. [Google Scholar] [CrossRef]
- Corami, A.; Mignardi, S.; Ferrini, V. Cadmium Removal from Single-and Multi-Metal (Cd+ Pb+ Zn+ Cu) Solutions by Sorption on Hydroxyapatite. J. Colloid Interface Sci. 2008, 317, 402–408. [Google Scholar] [CrossRef]
- Krestou, A.; Xenidis, A.; Panias, D. Mechanism of Aqueous Uranium (VI) Uptake by Hydroxyapatite. Miner. Eng. 2004, 17, 373–381. [Google Scholar] [CrossRef]
- Hamed, M.M.; Holiel, M.; Ahmed, I.M. Sorption Behavior of Cesium, Cobalt and Europium Radionuclides onto Hydroxyl Magnesium Silicate. Radiochim. Acta 2016, 104, 873–890. [Google Scholar] [CrossRef]
- El-Aryan, Y.F.; El-Said, H.; Abdel-Galil, E.A. Synthesis and Characterization of Polyaniline-Titanium Tungstophosphate; Its Analytical Applications for Sorption of Cs+, Co2+, and Eu3+ from Waste Solutions. Radiochemistry 2014, 56, 614–621. [Google Scholar] [CrossRef]
- Faghihian, H.; Iravani, M.; Moayed, M.; Ghannadi-Maragheh, M. Preparation of a Novel PAN–Zeolite Nanocomposite for Removal of Cs+ and Sr2+ from Aqueous Solutions: Kinetic, Equilibrium, and Thermodynamic Studies. Chem. Eng. J. 2013, 222, 41–48. [Google Scholar] [CrossRef]
- Li, Y.-H.; Di, Z.; Ding, J.; Wu, D.; Luan, Z.; Zhu, Y. Adsorption Thermodynamic, Kinetic and Desorption Studies of Pb2+ on Carbon Nanotubes. Water Res. 2005, 39, 605–609. [Google Scholar] [CrossRef]
- Navas, D.; Fuentes, S.; Castro-Alvarez, A.; Chavez-Angel, E. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels 2021, 7, 275. [Google Scholar] [CrossRef]
- Celebi, O.; Kilikli, A.; Erten, H.N. Sorption of Radioactive Cesium and Barium Ions onto Solid Humic Acid. J. Hazard. Mater. 2009, 168, 695–703. [Google Scholar] [CrossRef]
- Hashemian, S. MnFe2O4/Bentonite Nano Composite as a Novel Magnetic Material for Adsorption of Acid Red 138. Afr. J. Biotechnol. 2010, 9, 8667–8671. [Google Scholar]
- Faghihian, H.; Moayed, M.; Firooz, A.; Iravani, M. Evaluation of a New Magnetic Zeolite Composite for Removal of Cs+ and Sr2+ from Aqueous Solutions: Kinetic, Equilibrium and Thermodynamic Studies. Comptes Rendus Chim. 2014, 17, 108–117. [Google Scholar] [CrossRef]
- Kim, S.; Gupta, N.K.; Bae, J.; Kim, K.S. Fabrication of Coral-like Mn2O3/Fe2O3 Nanocomposite for Room Temperature Removal of Hydrogen Sulfide. J. Environ. Chem. Eng. 2021, 9, 105216. [Google Scholar] [CrossRef]
- Gupta, N.K.; Ghaffari, Y.; Kim, S.; Bae, J.; Kim, K.S.; Saifuddin, M. Photocatalytic Degradation of Organic Pollutants over MFe2O4 (M= Co, Ni, Cu, Zn) Nanoparticles at Neutral PH. Sci. Rep. 2020, 10, 4942. [Google Scholar] [CrossRef]
- Slatineanu, T.; Diana, E.; Nica, V.; Oancea, V.; Caltun, O.; Iordan, A.; Palamaru, M. The Influence of the Chelating/Combustion Agents on the Structure and Magnetic Properties of Zinc Ferrite. Open Chem. 2012, 10, 1799–1807. [Google Scholar] [CrossRef]
- Mioduska, J.; Zielińska-Jurek, A.; Janczarek, M.; Hupka, J. The Effect of Calcination Temperature on Structure and Photocatalytic Properties of WO3/TiO2 Nanocomposites. J. Nanomater. 2016, 2016, 3145912. [Google Scholar] [CrossRef]
- Yu, J.; Yu, H.; Cheng, B.; Trapalis, C. Effects of Calcination Temperature on the Microstructures and Photocatalytic Activity of Titanate Nanotubes. J. Mol. Catal. A Chem. 2006, 249, 135–142. [Google Scholar] [CrossRef]
- SenthilKumar, P.; Ramalingam, S.; Sathyaselvabala, V.; Kirupha, S.D.; Sivanesan, S. Removal of Copper (II) Ions from Aqueous Solution by Adsorption Using Cashew Nut Shell. Desalination 2011, 266, 63–71. [Google Scholar] [CrossRef]
- El-Naggar, M.R.; El-Naggar, I.M.; El-Shahat, M.F.; Abd El-Mohsen, E.S. Sorption of Cesium and Cobalt Ions onto Novel Zirconium Silicophosphate/Polyacrylamide Nanocomposite. J. Radiat. Res. Appl. Sci. 2019, 12, 319–331. [Google Scholar] [CrossRef]
- Sheha, R.; Roushdy, A.; Al-Shazly, E.; Salah, B.; Kandil, A.-E.T.; Kandil, A.-E.T. Investigating the Sorption Behavior of Cesium and Cobalt on Soil Samples. Arab J. Nucl. Sci. Appl. 2020, 53, 1–12. [Google Scholar] [CrossRef]
- Olatunji, M.A.; Khandaker, M.U.; Mahmud, E.H.N.M.; Amin, Y.M.; Ademola, J.A.; Olorode, D.O. Remediation of 137 Cs Radionuclide in Nuclear Waste Effluents by Polymer Composite: Adsorption Kinetics, Isotherms and Gamma Irradiation Studies. J. Radioanal. Nucl. Chem. 2018, 316, 933–945. [Google Scholar] [CrossRef]
- Khandaker, S.; Toyohara, Y.; Kamida, S.; Kuba, T. Effective Removal of Cesium from Wastewater Solutions Using an Innovative Low-Cost Adsorbent Developed from Sewage Sludge Molten Slag. J. Environ. Manag. 2018, 222, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Tewari, P.H.; Campbell, A.B.; Lee, W. Adsorption of Co2+ by Oxides from Aqueous Solution. Can. J. Chem. 1972, 50, 1642–1648. [Google Scholar] [CrossRef]
- Sahoo, T.R.; Prelot, B. Adsorption Processes for the Removal of Contaminants from Wastewater: The Perspective Role of Nanomaterials and Nanotechnology. In Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 161–222. [Google Scholar]
- Hwang, K.-J.; Shim, W.-G.; Kim, Y.; Kim, G.; Choi, C.; Kang, S.O.; Cho, D.W. Dye Adsorption Mechanisms in TiO2 Films, and Their Effects on the Photodynamic and Photovoltaic Properties in Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2015, 17, 21974–21981. [Google Scholar] [CrossRef]
60Co | 137Cs | ||||||||
---|---|---|---|---|---|---|---|---|---|
Activity | 1.12 | 1.27 | 1.98 | 2.46 | 19.6 | 30 | 36.5 | 55 | |
Pseudo-first-order | K1 (min−1) | 0.012 | 0.011 | 0.011 | 0.017 | 0.011 | 0.019 | 0.013 | 0.007 |
qecal (mg/g) | 32.8 | 34.5 | 34.5 | 45.5 | 34.5 | 42.1 | 41.2 | 29.2 | |
qeexp (mg/g) | 30.3 | 27.9 | 27.9 | 27.6 | 27.9 | 30.6 | 30.0 | 30.0 | |
R2 | 0.87 | 0.91 | 0.91 | 0.80 | 0.91 | 0.93 | 0.88 | 0.99 | |
Pseudo-second-order | K2 (min−1) | 0.00032 | 0.00008 | 0.0000 | 0.00009 | 0.00008 | 0.00033 | 0.00007 | 0.00011 |
qecal (mg/g) | 37.7 | 50.8 | 50.8 | 50.3 | 50.8 | 39.1 | 55.6 | 47.2 | |
qeexp (mg/g) | 30.3 | 27.9 | 27.9 | 27.6 | 27.9 | 30.6 | 30.0 | 30.0 | |
R2 | 0.98 | 0.99 | 0.99 | 0.97 | 0.99 | 0.97 | 0.97 | 0.97 | |
Weber and Morris model | Ki (mg min1/2) | 1.76 | 1.93 | 1.93 | 1.93 | 1.93 | 1.84 | 2.09 | 1.92 |
C | 0.9 | −4.6 | −4.6 | −4.5 | −4.6 | 1.2 | −4.9 | −4.0 | |
R2 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.96 | 0.99 | 0.99 |
Element | T K | ΔH KJ·mol−1 | ΔS KJ·mol·k−1 | TΔS KJ·mol−1 | ΔG KJ·mol−1 |
---|---|---|---|---|---|
60Co | 298 | −20.4 | −0.086 | −25.628 | 5.228 |
308 | −26.488 | 6.088 | |||
318 | −27.348 | 6.948 | |||
328 | −28.208 | 7.808 | |||
137Cs | 298 | −10.37 | −0.0394 | −11.741 | 1.3712 |
308 | −12.135 | 1.7652 | |||
318 | −12.529 | 2.1592 | |||
328 | −12.923 | 2.5532 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, H.M.; Mahmoud, H.H.; Aglan, R.F.; Shehata, M.M. Synthesis and Application of MnO-Fe2O3 Nanocomposites for the Removal of 137Cs and 60Co Radionuclides from Artificial Radioactive Aqueous Waste. ChemEngineering 2023, 7, 106. https://doi.org/10.3390/chemengineering7060106
Saleh HM, Mahmoud HH, Aglan RF, Shehata MM. Synthesis and Application of MnO-Fe2O3 Nanocomposites for the Removal of 137Cs and 60Co Radionuclides from Artificial Radioactive Aqueous Waste. ChemEngineering. 2023; 7(6):106. https://doi.org/10.3390/chemengineering7060106
Chicago/Turabian StyleSaleh, Hosam M., Hazem H. Mahmoud, Refaat F. Aglan, and Mohamed M. Shehata. 2023. "Synthesis and Application of MnO-Fe2O3 Nanocomposites for the Removal of 137Cs and 60Co Radionuclides from Artificial Radioactive Aqueous Waste" ChemEngineering 7, no. 6: 106. https://doi.org/10.3390/chemengineering7060106
APA StyleSaleh, H. M., Mahmoud, H. H., Aglan, R. F., & Shehata, M. M. (2023). Synthesis and Application of MnO-Fe2O3 Nanocomposites for the Removal of 137Cs and 60Co Radionuclides from Artificial Radioactive Aqueous Waste. ChemEngineering, 7(6), 106. https://doi.org/10.3390/chemengineering7060106