Chemical Species Formed on FeB-Fe2B Layers during Wet Sliding Wear Test
Abstract
:1. Introduction
Contribution of This Work
2. Materials and Methods
2.1. Boriding Thermochemical or Powder Pack Boriding Process
2.2. Mechanical and Chemical Characterizations
3. Results and Discussion
3.1. Chemical Microstructure of the Borided AISI 316L Steel
3.2. Instrumented Nanoindentation Berkovich Test Results
3.3. Sliding Wear Behavior of the Borided AISI 316L Stainless Steel
3.4. XPS Analysis after Wet Wear Test on the Borided AISI 316L Stainless Steel
3.5. Human Body Implant Effects
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanawa, T.; Hiromoto, S.; Yamamoto, A.; Kuroda, D.; Asami, K. XPS characterization of the surface oxide film of 316L stainless steel samples that were located in quasi-biological environments. Mater. Trans. 2002, 43, 3088–3092. [Google Scholar] [CrossRef]
- Peruzzo, M.; Serafini, F.L.; Ordonez, M.F.C.; Souza, R.M.; Farias, M.C.M. Reciprocating sliding wear of the sintered 316L stainless steel with boron additions. Wear 2019, 422–423, 108–118. [Google Scholar] [CrossRef]
- Davis, J.R. Mechanical Properties of Carbon and Alloy Steels. In Metals Handbook Desk Edition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- García-León, R.A.; Martínez-Trinidad, J.; Campos-Silva, I. Historical Review on the Boriding Process using Bibliometric Analysis. Trans. Indian Inst. Met. 2021, 74, 541–557. [Google Scholar] [CrossRef]
- Hutchings, I.; Shipway, P. Sliding Wear; Elsevier Ltd.: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Campos-Silva, I.; Palomar-Pardavé, M.; Pérez Pastén-Borja, R.; Kahvecioglu Feridun, O.; Bravo-Bárcenas, D.; López-García, C.; Reyes-Helguera, R. Tribocorrosion and cytotoxicity of FeB-Fe2B layers on AISI 316 L steel. Surf. Coat. Technol. 2018, 349, 986–997. [Google Scholar] [CrossRef]
- ASTM-G119-09; Guide for Determining Synergism between Wear and Corrosion. ASTM International: West Conshohocken, PA, USA, 2009.
- Mejía-Caballero, I.; Palomar-Pardavé, M.; Martínez Trinidad, J.; Romero-Romo, M.; Pérez Pasten-Borja, R.; Lartundo-Rojas, L.; López-García, C.; Campos-Silva, I. Corrosion behavior of AISI 316L borided and non-borided steels immersed in a simulated body fluid solution. Surf. Coat. Technol. 2015, 280, 384–395. [Google Scholar] [CrossRef]
- Kayali, Y.; Büyüksagis, A.; Yalcin, Y. Corrosion and Wear Behaviors of Boronized AISI 316L Stainless Steel. Met. Mater. Int. 2013, 19, 1053–1061. [Google Scholar] [CrossRef]
- García-León, R.A.; Martínez-Trinidad, J.; Campos-Silva, I.; Figueroa-López, U.; Guevara-Morales, A. Development of tribological maps on borided AISI 316L stainless steel under ball-on-flat wet sliding conditions. Tribol. Int. 2021, 163, 107161. [Google Scholar] [CrossRef]
- Acequisa 2018 Aceros y Equipos S.L. Aleación AISI 316L. Available online: https://acequisa.com/tipologia/inoxidables-especiales-austeniticos-y-superausteniticos/ (accessed on 23 August 2022).
- Campos-Silva, I.; Ortiz-Domínguez, M.; Tapia-Quintero, C.; Rodríguez-Castro, G.; Jiménez-Reyes, M.Y.; Chávez-Gutiérrez, E. Kinetics and boron diffusion in the FeB/Fe2B layers formed at the surface of borided high-alloy steel. J. Mater. Eng. Perform. 2012, 21, 1714–1723. [Google Scholar] [CrossRef]
- ASTM-G133-05; Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. ASTM International: West Conshohocken, PA, USA, 2016.
- Mejía-Caballero, I. Evaluación de la Resistencia a la Corrosón en Aceros Aleados de Uso Industrial Endurecidos Por Difusión Superficial de Boro; Instituto Politecnico Nacional: Mexico City, Mexico, 2011. [Google Scholar]
- Holmberg, K.; Matthews, A. Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering; Elsevier: Oxford, UK, 2009. [Google Scholar]
- Özbek, I.; Konduk, B.A.; Bindal, C.; Ucisik, A.H. Characterization of borided AISI 316L stainless steel implant. Vacuum 2002, 65, 521–525. [Google Scholar] [CrossRef]
- Jurči, P.; Hudáková, M. Diffusion Boronizing of H11 Hot Work Tool Steel. J. Mater. Eng. Perform. 2011, 20, 1180–1187. [Google Scholar] [CrossRef]
- Kunst, H.; Schaaber, O. Beobachtungen beim Oberflächenborieren von Stahl II-Über Wachstumsmechanismen und Aufbau der bei der Eindiffusion von Bor in Eisen bei Gegenwart von Kohlenstoff entstehenden Verbindungs- und Diffusionsschichten. Harterei-Tech. Mitt. 1967, 22, 131–140. [Google Scholar]
- García-León, R.A.; Afanador-García, N.; Guerrero-Gómez, G. A Scientometric Review on Tribocorrosion in Hard Coatings. J. Bio-Tribo-Corrosion 2023, 9, 39. [Google Scholar] [CrossRef]
- García-Léon, R.A.; Martínez-Trinidad, J.; Campos-Silva, I.; Wong-Angel, W. Mechanical characterization of the AISI 316L alloy exposed to boriding process. DYNA 2020, 87, 34–41. [Google Scholar] [CrossRef]
- Taktak, S. Some mechanical properties of borided AISI H13 and 304 steels. Mater. Des. 2007, 28, 1836–1843. [Google Scholar] [CrossRef]
- Reséndiz-Calderon, C.D.; Rodríguez-Castro, G.A.; Meneses-Amador, A.; Campos-Silva, I.E.; Andraca-Adame, J.; Palomar-Pardavé, M.E.; Gallardo-Hernández, E.A. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel. J. Mater. Eng. Perform. 2017, 26, 5599–5609. [Google Scholar] [CrossRef]
- García-León, R.A.; Martinez-Trinidad, J.; Zepeda-Bautista, R.; Campos-Silva, I.; Guevara-Morales, A.; Martínez-Londoño, J.; Barbosa-Saldaña, J. Dry sliding wear test on borided AISI 316L stainless steel under ball-on-flat configuration: A statistical analysis. Tribol. Int. 2021, 157, 106885. [Google Scholar] [CrossRef]
- Majumdar, P.; Singh, S.B.; Chakraborty, M. Wear properties of Ti–13Zr–13Nb (wt.%) near β titanium alloy containing 0.5wt.% boron in dry condition, Hank’s solution and bovine serum. Mater. Sci. Eng. C 2010, 30, 1065–1075. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Klobčar, D.; Podgornik, B. Tribological response of laser-textured Ti6Al4V alloy under dry conditions and lubricated with Hank’s solution. Tribol. Int. 2021, 160, 107049. [Google Scholar] [CrossRef]
- García-León, R.A.; Martínez-Trinidad, J.; Campos-Silva, I.; Figueroa-López, U.; Guevara-Morales, A. Wear maps of borided AISI 316L steel under ball-on-flat dry sliding conditions. Mater. Lett. 2021, 282, 128842. [Google Scholar] [CrossRef]
- García-León, R.A.; Martínez-Trinidad, J.; Guevara-Morales, A.; Campos-Silva, I.; Figueroa-López, U. Wear Maps and Statistical Approach of AISI 316L Alloy under Dry Sliding Conditions. J. Mater. Eng. Perform. 2021, 30, 6175–6190. [Google Scholar] [CrossRef]
- Mischler, S.; Muñoz, A.I. Wear of CoCrMo alloys used in metal-on-metal hip joints: A tribocorrosion appraisal. Wear 2013, 297, 1081–1094. [Google Scholar] [CrossRef]
- Rainforth, W.M. The wear behaviour of oxide ceramics—A Review. J. Mater. Sci. 2004, 39, 6705–6721. [Google Scholar] [CrossRef]
- Hutchings, I.; Shipway, P. Tribology: Friction and Wear of Engineering Materials, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Blazquez de Mingo, A. Análisis de la Lubricación Termo-Elastohidrodinámica y Mixta Mediante la Aplicación de Modelos Numéricos (España). 2016. Available online: https://oa.upm.es/43073/1/TFG_ALVARO_LORENZO_BLAZQUEZ_DE_MINGO.pdf (accessed on 29 November 2022).
- Menezes, P.; Ingole, S.; Nosonovsky, M.; Kailas, S.V.; Lovell, M.R. Tribology for Scientists and Engineers; Springer: New York, NY, USA, 2013. [Google Scholar]
- Bhushan, B. Modern Tribology Handbook Volume One; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Mejía-Caballero, I.; Escobar-Martínez, C.; Palomar-Pardavé, M.; Le Manh, T.; Romero-Romo, M.; Rodríguez-Clemente, E.; Lartundo-Rojas, L.; Campos-Silva, I. On the Corrosion Mechanism of Borided X12CrNiMoV12-3 Steel Immersed in a Neutral Aqueous Solution Containing Chloride and Sulfate Ions. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2020, 51, 4868–4879. [Google Scholar] [CrossRef]
- Yan, Y. Bio-Tribocorrosion in Biomaterials and Medical Implants; Elsevier: New York, NY, USA, 2013. [Google Scholar]
- Kato, K.; Adachi, K. Wear of advanced ceramics. Wear 2002, 253, 1097–1104. [Google Scholar] [CrossRef]
- Chino-Ulloa, A.; Hernandes-Alejandro, M.; Castrejón-Flores, J.L.; Cabrera-González, M.; Torres-Avila, I.P.; Velázquez, J.C.; Ruiz-Trabolsi, P.A.; Hernández-Sánchez, E. Development of ultra-low friction coefficient films and their effect on the biocompatibility of biomedical steel. Mater. Trans. 2019, 60, 1605–1613. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-León, R.A.; Afanador-García, N. Chemical Species Formed on FeB-Fe2B Layers during Wet Sliding Wear Test. ChemEngineering 2024, 8, 22. https://doi.org/10.3390/chemengineering8010022
García-León RA, Afanador-García N. Chemical Species Formed on FeB-Fe2B Layers during Wet Sliding Wear Test. ChemEngineering. 2024; 8(1):22. https://doi.org/10.3390/chemengineering8010022
Chicago/Turabian StyleGarcía-León, Ricardo Andrés, and Nelson Afanador-García. 2024. "Chemical Species Formed on FeB-Fe2B Layers during Wet Sliding Wear Test" ChemEngineering 8, no. 1: 22. https://doi.org/10.3390/chemengineering8010022
APA StyleGarcía-León, R. A., & Afanador-García, N. (2024). Chemical Species Formed on FeB-Fe2B Layers during Wet Sliding Wear Test. ChemEngineering, 8(1), 22. https://doi.org/10.3390/chemengineering8010022