A Review on Lanthanum-Based Materials for Phosphate Removal
Abstract
:1. Introduction
1.1. Introduction to Adsorption
1.2. Adsorption Process—Parameters Effect
pH—Solution
2. Phosphate and La-NMs Interaction Mechanism
3. Lanthanum Containing Substances for the Removal of Phosphate
3.1. Characteristics for the Removal of Phosphates
3.2. Physico-Chemical Phosphate Removal
3.3. Phosphate Adsorption Mechanism
3.3.1. Ion Exchange
3.3.2. Biological Uptake
3.4. Phosphate Removal Methods
3.4.1. Chemical Precipitation
3.4.2. Adsorption and Surface Complexation
3.4.3. Co-Precipitation
3.4.4. pH Adjustment
3.4.5. Selective Precipitation
3.5. Photocatalytic Activity
4. Metal Oxides
5. La in Phosphate Removal—Application
Metallic Lanthanum-Based Adsorbents—Single Lanthanum
6. Real Environmental Sample—Application
6.1. Biomedical Applications
6.2. Wastewater Treatment
6.3. Energy Storage—Battery Technology
6.4. Environmental Remediation
7. Phosphate Removal in Soil
8. Future Aspects
9. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Zhi, Y.; Zhang, C.; Hjorth, R.; Baun, A.; Duckworth, O.W.; Call, D.F.; Knappe, D.R.U.; Jones, J.L.; Grieger, K. Emerging lanthanum (III)-containing materials for phosphate removal from water: A review towards future developments. Environ. Int. 2020, 145, 106115. [Google Scholar] [CrossRef] [PubMed]
- Behets, G.J.; Mubiana, K.V.; Lamberts, L.; Finsterle, K.; Traill, N.; Blust, R.; D’Haese, P.C. Use of lanthanum for water treatment a matter of concern? Chemosphere 2020, 239, 124780. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, X.; Yang, Q.; Wang, D.; Xu, Q.; Yao, F.; Chen, F.; Tao, Z.; Huang, X. Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. J. Environ. Manag. 2019, 231, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Bezak-Mazur, E.; Stoińska, R. The importance of phosphorus in the environment—Review article. Arch. Waste Manag. Environ. Prot. 2013, 15, 33–45. [Google Scholar]
- Luo, X.; Wang, X.; Bao, S.; Liu, X.; Zhang, W.; Fang, T. Adsorption of phosphate in water using one-step synthesized zirconium-loaded reduced graphene oxide. Sci. Rep. 2016, 6, 39108. [Google Scholar] [CrossRef]
- Yoon, H.-S.; Chung, K.W.; Kim, C.-J.; Kim, J.-H.; Lee, H.-S.; Kim, S.-J.; Lee, S.-I.; Yoo, S.-J.; Lim, B.-C. Characteristics of phosphate adsorption on ferric hydroxide synthesized from a Fe2(SO4)3 aqueous solution discharged from a hydrometallurgical process. Korean J. Chem. Eng. 2018, 35, 470–478. [Google Scholar] [CrossRef]
- Zhao, J.W.; Qi, Y.; Li, X.M.; Wang, D.B.; Luo, K.; Xu, Q.X.; Zeng, G.G. Enhanced production of short-chain fatty acid from food waste stimulated by alkyl polyglycosides and its mechanism. Waste Manag. 2015, 46, 133–139. [Google Scholar] [CrossRef]
- Yin, Q.Q.; Zhang, B.D.; Wang, R.K.; Zhao, Z.H. Biochar as an adsorbent for inorganic nitrogen and phosphorus removal from water a review. Environ. Sci. Pollut. Res. 2017, 24, 26297–26309. [Google Scholar] [CrossRef]
- Almeelbi, T.; Bezbaruah, A. Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart Res. 2012, 14, 197–210. [Google Scholar] [CrossRef]
- Mekonnen, M.; Hoekstra, Y. Global Anthropogenic Phosphorus Loads to Freshwater and Associated Grey Water Footprints and Water Pollution Levels: A High-Resolution Global Study. Water Resour. Res. 2017, 54, 345–358. [Google Scholar] [CrossRef]
- Zengin, G.E.; Artan, N.; Orhon, D.; Satoh, H.; Mino, T. Effect of aspartate and glutamate on the fate of enhanced biological phosphorus removal process and microbial community structure. Bioresour. Technol. 2011, 102, 894–903. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Huang, H.M.; Zhao, N.; Zhang, M.G.; Cao, L. Investigation into lanthanum-coated biochar obtained from urban dewatered sewage sludge for enhanced phosphate adsorption. Sci. Total Environ. 2020, 714, 136839. [Google Scholar] [CrossRef]
- Angkawijaya, A.E.; Santoso, S.P.; Bundjajac, V.; Soetaredjo, F.E.; Gunarto, C.; Ayucitra, A.; Ju, Y.H.; Go, A.W.; Ismadji, S. Studies on the performance of bentonite and its composite as phosphate adsorbent and phosphate supplementation for plant. J. Hazard. Mater. 2020, 399, 123130. [Google Scholar] [CrossRef]
- Zou, Y.H.; Zhang, R.Y.; Wang, L.Y.; Xue, K.; Chen, J.G. Strong adsorption of phosphate from aqueous solution by zirconium-loaded Ca-montmorillonite. Appl. Clay Sci. 2020, 192, 105638. [Google Scholar] [CrossRef]
- Hatami, H.; Fotovat, A.; Halajnia, A. Comparison of adsorption and desorption of phosphate on synthesized Zn-Al LDH by two methods in a simulated soil solution. Appl. Clay Sci. 2018, 152, 333–341. [Google Scholar] [CrossRef]
- Peng, G.F.; Jiang, S.Q.; Wang, Y.X.; Zhang, Q.Y.; Cao, Y.; Sun, Y.Q.; Zhang, W.Q.; Wang, L.P. Synthesis of Mn/Al double oxygen biochar from dewatered sludge for enhancing phosphate removal. J. Clean. Prod. 2020, 251, 119725. [Google Scholar] [CrossRef]
- Wujcicki, Ł.; Kluczka, J. Recovery of Phosphate(V) Ions from Water and Wastewater Using Chitosan-Based Sorbents Modified—A Literature Review. Int. J. Mol. Sci. 2023, 24, 12060. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhang, Y.; Li, D. Adsorptive removal of phosphate from water using mesoporous materials: A review. J. Environ. Manag. 2017, 193, 470–482. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Li, Q.; Zheng, X.; Chen, P.; Zhang, G.; Huang, Z. Lanthanum modified chitosan-attapulgite composite for phosphate removal from water: Performance, mechanisms and applicability. Int. J. Biol. Macromol. 2023, 224, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, Z.; Wu, Z.; Xu, F.; Yang, D.; He, Q.; Li, G.; Chen, Y. Novel lanthanum doped biochars derived from lignocellulosic wastes for efficient phosphate removal and regeneration. Bioresour. Technol. 2019, 289, 121600. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Chen, X.; Zhang, Z.; Jin, P.; Zhang, Q.; Wang, X. The removal of phosphate from aqueous solution through chemical filtration using a sponge filter. Chem. Lett. 2018, 47, 89–91. [Google Scholar] [CrossRef]
- Dong, S.; Wang, Y.; Zhao, Y.; Zhou, X.; Zheng, H. La3+/La(OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: Effect of lanthanum species and mechanistic study. Water Res. 2017, 126, 433–441. [Google Scholar] [CrossRef]
- Miao, L.; Deng, W.; Chen, X.; Gao, M.; Chen, W.; Ao, T. Selective adsorption of phosphate by carboxyl-modified activated carbon electrodes for capacitive deionization. Water Sci. Technol. 2021, 84, 1757–1773. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Fang, L.; Fortner, J.D.; Guan, X.; Lo, I.M.C. Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites. Water Res. 2017, 126, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Wu, B.; Chan, J.K.M.; Lo, I.M.C. Lanthanum oxide nanorods for enhanced phosphate removal from sewage: A response surface methodology study. Chemosphere 2018, 192, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Y.; Du, Y.X.; Luo, C.Y. Advances in researches on phosphorus immobilization by lanthanum modified bentonite in lakes and its ecological risk. J. Lake Sci. 2019, 31, 1499–1509. [Google Scholar]
- Liu, J.; Wang, G.; Lu, L.; Guo, Y.; Yang, L. Facile shape-controlled synthesis of lanthanum oxide with different hierarchical micro/nanostructures for antibacterial activity based on phosphate removal. RSC Adv. 2017, 7, 40965–40972. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, X.; Pan, B.; Zhang, W.; Hua, M.; Lv, L.; Zhang, W. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability. J. Hazard. Mater. 2015, 284, 35–42. [Google Scholar] [CrossRef]
- Madrakian, T.; Afkhami, A.; Ahmadi, M.; Bagheri, H. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater. 2011, 196, 109–114. [Google Scholar] [CrossRef]
- Liu, B.; Yu, Y.; Han, Q.; Lou, S.; Zhang, L.; Zhang, W. Fast and efficient phosphate removal on lanthanum-chitosan composite synthesized by controlling the amount of cross-linking agent. Int. J. Biol. Macromol. 2020, 157, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Mittala, A.; Gupta, V.K. Adsorptive removal and recovery of the azo dye eriochrome black T. Toxicol. Environ. Chem. 2010, 92, 1813–1823. [Google Scholar] [CrossRef]
- Long, F.; Gong, J.-L.; Zheng, G.-M.; Chen, L.; Wang, X.-Y.; Deng, J.-H.; Niu, Q.-Y.; Zheng, H.-Y.; Zhang, X.-R. Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide. Chem. Eng. J. 2011, 171, 448–455. [Google Scholar] [CrossRef]
- Koilraj, P.; Sasaki, K. Selective Removal of Phosphate Using La-Porous Carbon Composites from Aqueous Solutions: Batch and Column Studies. Chem. Eng. J. 2017, 317, 1059–1068. [Google Scholar] [CrossRef]
- Yue, Q.-Y.; Wang, W.-Y.; Gao, B.-Y.; Xu, X.; Zhang, J.; Li, Q. Phosphate removal from aqueous solution by adsorption on modified giant reed. Water Environ. Res. 2010, 82, 374–381. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Q.; Chen, J.; Zhang, L.; Chang, N. Phosphate adsorption on hydroxyl-iron-lanthanum doped activated carbon fiber. Chem. Eng. J. 2013, 215–216, 859–867. [Google Scholar] [CrossRef]
- Rout, P.R.; Bhunia, P.; Dash, R.R. A Mechanistic Approach to Evaluate the Effectiveness of Red Soil as a Natural Adsorbent for Phosphate Removal from Wastewater. Desalin. Water Treat. 2015, 54, 358–373. [Google Scholar] [CrossRef]
- Omari, H.; Dehbi, A.; Lammini, A.; Abdallaoui, A. Study of the Phosphorus Adsorption on the Sediments. J. Chem. 2019, 2019, 2760204. [Google Scholar] [CrossRef]
- Alemu, A.; Lemma, B.; Gabbiye, N.; Tadele, M.; Teferi, M. Removal of Chromium (VI) from Aqueous Solution Using Vesicular Basalt: A Potential Low Cost Wastewater Treatment System. Heliyon 2018, 4, e00682. [Google Scholar] [CrossRef]
- Asere, T.G.; Mincke, S.; De Clercq, J.; Verbeken, K.; Tessema, D.A.; Fufa, F.; Stevens, C.V.; Du Laing, G. Removal of Arsenic (V) from Aqueous Solutions Using Chitosan Red Scoria and Chitosan Pumice Blends. Int. J. Environ. Res. Public Health 2017, 14, 895. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Zhang, Y. Adsorption Isotherms, Kinetics and Thermodynamics of Nitrate and Phosphate in Binary Systems on a Novel Adsorbent Derived from Corn Stalks. J. Geochem. Explor. 2018, 188, 95–100. [Google Scholar] [CrossRef]
- Li, H.; Ru, J.; Yin, W.; Liu, X.; Wang, J.; Zhang, W. Removal of phosphate from polluted water by lanthanum doped vesuvianite. J. Hazard. Mater. 2009, 168, 326–330. [Google Scholar] [CrossRef]
- Ahmed, S.; Ashiq, M.N.; Li, D.; Tang, P.; Leroux, F.; Feng, Y. Recent Progress on Adsorption Materials for Phosphate Removal. Recent Patents Nanotechnol. 2019, 13, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Shen, L.-J.; Zhang, Y.-Y.; Dai, D.-Y.; Zheng, X.; Liao, L.-W.; Wang, L.; Shi, L. Enhanced Phosphate Removal from Water by Honeycomb-Like Microporous Lanthanum-Chitosan Magnetic Spheres. Water 2018, 10, 1659. [Google Scholar] [CrossRef]
- Boyer, T.H.; Persaud, A.; Banerjee, P.; Palomino, P. Comparison of low-cost and engineered materials for phosphorus removal from organic-rich surface water. Water Res. 2011, 45, 4803–4814. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Gorman, C.; Ford, E. Lanthanum carbonate nanofibers for phosphorus removal from water. J. Mater. Sci. 2020, 55, 5008–5020. [Google Scholar] [CrossRef]
- Tang, Q. Insight into the synthesis and adsorption mechanism of adsorbents for efficient phosphate removal: Exploration from synthesis to modification. Chem. Eng. J. 2022, 442, 136147. [Google Scholar]
- Cai, J.; Zhao, X.; Zhang, Y.; Zhang, Q.; Pan, B. Enhanced fluoride removal by La-doped Li/Al layered double hydroxides. J. Colloid Interface Sci. 2018, 509, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Preferable phosphate removal by nano-La(III) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge. Sci. Total Environ. 2019, 662, 511–520. [CrossRef] [PubMed]
- Kassem, A.H.; Ayoub, G.M.; Zayyat, A.; Fijul Kabir, S.M. Advances in nanomaterials for phosphates removal from water and wastewater: A review. Nanotechnol. Environ. Eng. 2022, 7, 609–634. [Google Scholar] [CrossRef]
- Akter, M.; Abdur Rahman, F.B.; Zainal Abedin, M.; Fijul Kabir, S.M. Adsorption Characteristics of Banana Peel in the Removal of Dyes from Textile Effluent. Textiles 2021, 1, 361–375. [Google Scholar] [CrossRef]
- European Commission’s. European Commission Directive 98/15/EC of 27 February 1998; amending Council Directive 91/271/EEC of May 1991 Concerning Urban Waste Water Treatment; European Commission: Brussels, Belgium, 1998.
- Norms for Establishing Pollutant Load Limits of Industrial and Municipal Wastewater to Discharge into the Natural Receivers; Romanian GD 352 from 21 April 2005, which modify and complete the GD 188/2002—Appendix 3, NTPA-001/2002; Ministry of Justice: Bucharest, Romania, 2005.
- Shwetharani, R.; Poojashree, A.; Balakrishna, G.R.; Jyothi, M. La activated high surface area titania float for adsorption of Pb (II) from aqueous media. New J. Chem. 2018, 42, 1067–1077. [Google Scholar]
- Wan, S.; Wang, S.; Li, Y.; Gao, B. Functionalizing biochar with Mg–Al and Mg–Fe layered double hydroxides for removal of phosphate from aqueous solutions. J. Ind. Eng. Chem. 2017, 47, 246–253. [Google Scholar] [CrossRef]
- Liao, T.; Li, T.; Su, X.; Yu, X.; Song, H.; Zhu, Y.; Zhang, Y. La(OH)3-modified magnetic pineapple biochar as novel adsorbents for efficient phosphate removal. Bioresour. Technol. 2018, 263, 207–213. [Google Scholar] [CrossRef]
- Drissi, R.; Mouats, C. Removal of phosphate by ion exchange resin: Kinetic and thermodynamic study. Rasayan J. Chem. 2018, 3, 1126–1132. [Google Scholar] [CrossRef]
- Rezania, S.; Mojiri, A.; Park, J.; Nawrot, N.; Wojciechowska, E.; Marraiki, N.; Zaghloul, N.S.S. Removal of lead ions from wastewater using lanthanum sulfide nanoparticle decorated over magnetic graphene oxide. Environ. Res. 2022, 204, 111959. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Huang, C.; Zhu, Y.; Wei, W.; Qin, H. A hierarchical porous adsorbent of nano-α-Fe2O3/Fe3O4 on bamboo biochar (HPA-Fe/C-B) for the removal of phosphate from water. J. Water Process. Eng. 2018, 25, 96–104. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, F.; Guo, P.; Lei, Y.; Xi, Q.; Wang, F. Short-Time Hydrothermal Synthesis of CuBi2O4 Nanocolumn Arrays for Efficient Visible-Light Photocatalysisnanomaterials. Nanomaterials 2019, 9, 1257. [Google Scholar] [CrossRef] [PubMed]
- Thakur, P.; Sharma, R.; Kumar, M.; Katyal, S.C.; Negi, N.S.; Thakur, N.; Sharma, V.; Sharma, P. Superparamagnetic La doped Mn–Zn nano ferrites: Dependence on dopant content and crystallite size Mater. Res. Express 2016, 3, 075001. [Google Scholar] [CrossRef]
- Jiang, D.; Chu, B.; Amano, Y.; Machida, M. Removal and recovery of phosphate from water by Mg-laden biochar: Batch and column studies. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 429–437. [Google Scholar] [CrossRef]
- Asomaning, S.K. Processes and Factors Affecting Phosphorus Sorption in Soils. In Sorption in 2020s; IntechOpen: London, UK, 2020. [Google Scholar]
- Nobaharan, K.; Novair, S.B.; ALajayer, B.; van Hullebusch, E.D. Phosphorus Removal from Wastewater: The Potential Use of Biochar and the Key Controlling Factors. Water 2021, 13, 517. [Google Scholar] [CrossRef]
- Del Campillo, M.C.; van der Zee, S.; Torrent, J. Modelling long-term phosphorus leaching and changes in phosphorus fertility in excessively fertilized acid sandy soils. Eur. J. Soil Sci. 1999, 50, 391–399. [Google Scholar] [CrossRef]
- Mocwana, M.L.; Mokoena, P.P.; Mbule, P.S.; Beas, I.N.; Kabongo, G.L.; Ogugua, S.N.; Tshabalala, T.E. Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites LaxMOy (M: Fe, Co, Ni). Catalysts 2022, 12, 1313. [Google Scholar] [CrossRef]
- Nir, O.; Sengpiel, R.; Wessling, M. Closing the cycle: Phosphorus removal and recovery from diluted effluents using acid resistive membranes. Chem. Eng. J. 2018, 346, 640–648. [Google Scholar] [CrossRef]
- Sato, S. Comerford, N.B. Influence of soil pH on inorganic phosphorus sorption and desorption in a humid Brazilian. Ultisol. Rev. Bras. Ciênc. Solo 2005, 29, 685–694. [Google Scholar] [CrossRef]
- Jung, K.W.; Ahn, K.H. Fabrication of porosity-enhanced MgO/biochar for removal of phosphate from aqueous solution: Application of a novel combined electrochemical modification method. Bioresour. Technol. 2016, 200, 1029–1032. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Sun, Y.; Tsang, D.C.; Cheng, K.; Ok, Y.S. Assembling biochar with various layered double hydroxides for enhancement of phosphorus recovery. J. Hazard. Mater. 2019, 365, 665–673. [Google Scholar] [CrossRef]
- Huang, H.; Liu, J.; Zhang, P.; Zhang, D.; Gao, F. Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation. Chem. Eng. J. 2017, 307, 696–706. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Li, A.Y.; Deng, H.; Ye, C.H.; Wu, Y.Q.; Linmu, Y.D.; Hang, H.L. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks. Bioresour. Technol. 2019, 276, 183–189. [Google Scholar] [CrossRef]
- Kanwar, J.S.; Grewal, J.S. Phosphorus fixation in indian soils: A review. Environ. Sci. 1971, 1–50. [Google Scholar]
- Zhang, Z.; Yan, L.; Yu, H.; Yan, T.; Li, X. Adsorption of phosphate from aqueous solution by vegetable biochar/layered double oxides: Fast removal and mechanistic studies. Bioresour. Technol. 2019, 284, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Antunes, E.; Jacob, M.V.; Brodie, G.; Schneider, P.A. kinetics and mechanism analysis of phosphorus recovery from aqueous solution by calcium-rich biochar produced from biosolids via microwave pyrolysis. J. Environ. Chem. Eng. 2018, 6, 395–403. [Google Scholar] [CrossRef]
- Cheng, R.; Xia, J.; Wen, J.; Xu, P.; Zheng, X. Nano Metal-Containing Photocatalysts for the Removal of Volatile Organic Compounds: Doping, Performance, and Mechanisms. Nanomaterials 2022, 12, 1335. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, M.; Sha, W.; Wang, Y.; Hao, H.; Dou, Y.; Li, Y. Sorption Behavior and Mechanisms of Organic Contaminants to Nano and Microplastics. Molecule 2020, 25, 1827. [Google Scholar] [CrossRef] [PubMed]
- Haddad, K.; Jellali, S.; Jeguirim, M.; Trabelsi, A.B.H.; Limousy, L. Investigations on phosphorus recovery from aqueous solutions by biochars derived from magnesium-pretreated cypress sawdust. J. Environ. Manag. 2018, 216, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, F.; Brookes, P.C.; Xu, J. Microplastics play a minor role in tetracycline sorption in the presence of dissolved organic matter. Environ. Pollut. 2018, 240, 87–94. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Zhou, B.; Zhou, Y.; Dai, Z.; Zhou, Q.; Chriestie, P.; Luo, Y. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ. Pollut. 2018, 243, 1550–1557. [Google Scholar] [CrossRef]
- Guo, X.; Pang, J.; Chen, S.; Jia, H. Sorption properties of tylosin on four different microplastics. Chemosphere 2018, 209, 240–245. [Google Scholar] [CrossRef]
- Xu, B.; Liu, F.; Brookes, P.C.; Xu, J. The sorption kinetics and isotherms of sulfamethoxazole with polyethylene microplastics. Mar. Pollut. Bull. 2018, 131, 191–196. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, K.; Huang, X.; Liu, J. Sorption of pharmaceuticals and personal care products to polyethylene debris. Environ. Sci. Pollut. Res. 2016, 23, 8819–8826. [Google Scholar] [CrossRef]
- Razanajatovo, R.; Ding, J.; Zhang, S.; Jiang, H.; Zou, H. Sorption and desorption of selected pharmaceuticals by polyethylene microplastics. Mar. Pollut. Bull. 2018, 136, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J. Comparative evaluation of sorption kinetics and isotherms of pyrene onto microplastics. Chemosphere 2018, 193, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, J. Different partition of polycyclic aromatic hydrocarbon on environmental particulates in freshwater: Microplastics in comparison to natural sediment. Ecotoxicol. Environ. Saf. 2018, 147, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Rowland, S.J.; Galloway, T.S.; Thompson, R.C. Potential for plastics to transport hydrophobic contaminants. Environ. Sci. Technol. 2007, 41, 7759–7764. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, T.; Li, P.; Jiang, R.; Wu, S.; Nie, H.; Wang, Y. Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar. J. Environ. Sci. 2015, 29, 106–114. [Google Scholar] [CrossRef]
- Zeytuncu, B.; Akman, S.; Yucel, O.; Kahraman, M. Synthesis and adsorption application of in situ photo-cross-linked electrospun poly(vinyl alcohol)-based nanofiber membranes. Water Air Soil Pollut. 2015, 226, 173. [Google Scholar] [CrossRef]
- Liu, F.; Zuo, J.; Chi, T.; Wang, P.; Yang, B. Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar. Front. Environ. Sci. Eng. 2015, 9, 1066–1075. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajendran, S.; Sai Bharadwaj, A.V.S.L.; Barmavatu, P.; Palani, G.; Trilaksanna, H.; Kannan, K.; Meenakshisundaram, N. A Review on Lanthanum-Based Materials for Phosphate Removal. ChemEngineering 2024, 8, 23. https://doi.org/10.3390/chemengineering8010023
Rajendran S, Sai Bharadwaj AVSL, Barmavatu P, Palani G, Trilaksanna H, Kannan K, Meenakshisundaram N. A Review on Lanthanum-Based Materials for Phosphate Removal. ChemEngineering. 2024; 8(1):23. https://doi.org/10.3390/chemengineering8010023
Chicago/Turabian StyleRajendran, Sundarakannan, A. V. S. L. Sai Bharadwaj, Praveen Barmavatu, Geetha Palani, Herri Trilaksanna, Karthik Kannan, and Nagaraj Meenakshisundaram. 2024. "A Review on Lanthanum-Based Materials for Phosphate Removal" ChemEngineering 8, no. 1: 23. https://doi.org/10.3390/chemengineering8010023
APA StyleRajendran, S., Sai Bharadwaj, A. V. S. L., Barmavatu, P., Palani, G., Trilaksanna, H., Kannan, K., & Meenakshisundaram, N. (2024). A Review on Lanthanum-Based Materials for Phosphate Removal. ChemEngineering, 8(1), 23. https://doi.org/10.3390/chemengineering8010023