Investigating the Routes to Produce Cellulose Fibers from Agro-Waste: An Upcycling Process
Abstract
:1. Introduction
Research Objectives
2. Cellulose and Cellulose Fibers
3. 1st Route Towards Cellulose Fibers: Extraction and Purification of NCFs
Method | Purification Agent | Short Description | Pros | Cons | References |
---|---|---|---|---|---|
Dew retting | Fungi such as Aspergillus sp., Penicillium sp., and Cladosporium sp. | Fibrous plant parts are placed uniformly across the crop field. Air, dew and sunlight support fungal colonization that deconstructs plant tissue towards the research of fibers. |
|
| [31,32,33,34] |
Water retting | Bacteria such as Clostridium sp., and Bacillus sp. | Fibrous plant parts are immersed in water (fresh water or seawater) that causes swelling and allows the development and activity of decay-causing bacteria. The process conditions are monitored periodically. |
|
| [32,33,34] |
Enzymatic process | Enzymes such as pectinases, xylanases, cellulases | The enzymes cause degradation of the components separating the cellulosic fiber from non-fiber tissues. Conditions are controlled based on the enzymes applied. |
|
| [32,33,35,36,37,38,39] |
Decortication | Impact, shear, and compressive forces | Squeezing and breaking are used to separate fibers from other unwanted plant tissue. |
|
| [37,40,41] |
Steam explosion | Steam | Fibrous plant parts are subject to steam boiling, followed by a phase of explosion when the pressure drops. Temperature and pressure are controlled. |
|
| [42,43,44,45,46] |
Chemical process | Chemicals such as sodium hydroxide, hydrogen peroxide, sodium percarbonate, sulfuric acid, and oxalic acid | Treatment with chemical agents. Time, temperature, and concentrations are controlled. May include pre-treatment or post-treatments. |
|
| [37,44,47,48] |
3.1. Biological Processes
3.2. Mechanical/Physical Processes
3.3. Chemical Processes
3.4. Production of Agro-Waste NCF
Crop and Residue Raw Material | Production Process | Process Description | References |
---|---|---|---|
Banana Pseudostem | Anoxic biological extraction | Submersion of sheaths in anoxic water which is circulated via an anaerobic reactor for 6 or 12 days. | [52] |
Mechanical | (1) Use of a mechanical decorticator consisting of two feed and two scraper rollers; (2) Sun drying for 24 h. | [37] | |
Chemical | (1) Acid treatment with 2 g/L H2SO 4 solution at 55 °C for 2 h to remove wax; (2) Treatment with 7 g/L H2O2, 3% Na2SiO3, and 2% sodium polyphosphate at 95 °C for 1.5 h; (3) Treatment with 9 g/L NaOH solution at boiling temperature for 3 h; (4) Neutralization with 2 g/L H2SO4; (5) Washing and drying at 105 °C for 24 h. Initial banana pseudostem mass: 10 g. Bath volumes: 200 mL. | ||
Enzymatic/chemical | (1) Delignification using trisodium citrate; (2) Treatment with protease aqueous solution with trisodium citrate as buffer; (3) Washing and centrifugation; (4) Mixing with pectinase enzyme; (5) Bleaching with H2O2 in the presence of NaOH. | ||
Seawater retting | (1) Retting in seawater for 1 to 5 weeks at room temperature (28 ± 5) ℃; (2) Washing with sterile distilled water; (3) Cleaning with metallic hand brush. | [58] | |
Abyssinia banana (Ensete ventricosum) | Mechanical/retting/enzymatic | (1) Use of decortication machine; (2) Retting of the leaves; (3) Washing, cleaning and manual fiber separation; (4) Enzymatic treatment with 10% w/w amylase at 40 °C for 90 min. | [59] |
Canola stem (Brassica napus) | Water retting/chemical | (1) Over drying at 105 °C for 8 h; (2) Water retting at room temperature until separation from the exterior of the stem; (3) Alkaline treatment with 5% NaOH and 0.5% glycerin at 60 °C for 60 min, followed by washing and drying; (4) Acidic treatment with 4% acetic acid solution at 60 °C for 30 min, followed by washing and drying; (5) Treatment with 10% Tubingal 4748 softener at 40 °C for 30 min at pH = 4.5 in the presence of acetic acid, followed by washing and drying. | [60] |
Green Coconut husk | Biological retting | (1) Soaking in 1% w/v ammonium dihydrogen phosphate solution; (2) Sterilization in autoclave; (3) Inoculation with Aspergillus niger fungus and incubation at 30 °C for 8–9 days. | [31] |
Pineapple leaf | Chemical/mechanical | (1) Washing, cutting into 1–2 cm and oven drying at 70 °C (2) Treatment with 5% w/w sodium hydroxide solution at 90 °C for 180 min, solid-to-liquid ratio 1:20; (3) Washing until neutral pH and overnight drying at 60 °C; (4) Treatment with 5% w/w sodium chlorite at 70 °C for 90 min, pH 4–5; (5) Washing until neutral pH and drying at 60 °C. | [61] |
Prosopis juliflora bark | Water retting | (1) Retting in seawater for 14 days; (2) Separation of fibers by traditional combing process and drying. | [62] |
Sausage plant fruit (Kigelia Africana) | Mechanical/Chemical | (1) Oven drying for 24 h; (2) Collection of the fibrous part via the use of a two-roller mechanical crusher; (3) Soaking in boiling water; (4) Treatment with 0.2 N NaOH solution for 90 min at 100 °C, 1:10 fiber-to-liquid ratio and washing until neutral pH; (5) Treatment with 10% acetic acid solution for 10 min and rinsing; (6) Drying at 110 °C for 3 h. | [63] |
Sida cordifolia stem | Water retting | (1) Retting in seawater for 14 days; (2) Separation of fibers by traditional combing process and drying. | [64] |
Soybean straw | Chemical | (1) Boiling in 8% w/w NaOH for 2 h; (2) Thorough washing to remove the dissolved substances; (3) Neutralization with dilute acetic acid 3% w/w; (4) Washing and drying under ambient conditions. | [65] |
Turmeric stem (Curcuma longa L.) | Chemical | (1) Alkali treatment with NaOH solution 1M at 90 °C for 30 min, solid-to-liquid ratio 1:10; (2) Washing until neutral pH; (3) Immersion in 10% acetic acid for 10 min; (4) Washing and drying. | [57] |
Water retting | (1) Water retting at 20–28 °C for 3–4 weeks; (2) Manual separation of the fibers from the turmeric stem; (3) Washing and drying in the shade. | [66] | |
Wild tulsi stalk (Hyptis suaveolens) | Chemical | (1) Alkali treatment with NaOH solution 1M at 85 °C for 60 min, solid-to-liquid ratio 1:10; (2) Draining and washing until neutral pH; (3) Immersion in 10% acetic acid for 10 min; (4) Washing and drying. | [67] |
4. 2nd Route Towards Cellulose Fibers: Step A. Extraction and Purification of CPs
4.1. Soda Pulping
4.2. Pulping with Organic Solvents
4.3. Hydrogen Peroxide Use in Pulping
4.4. Use of Ionic Liquids in Pulping
Method | Short Description | Pros | Cons | References |
---|---|---|---|---|
Soda pulping | Treatment with NaOH. |
|
| [74,105,106,107,108] |
Organosolv | Treatment with organic solvents (e.g., ethanol, formic acid, acetic acid, ketones, esters). |
|
| [69,81,83,84,85,86,87,88,89,90,91] |
H2O2 | Use of H2O2 for delignification and bleaching. |
|
| [72,93,94,95,96,97,98,99] |
IL treatment |
|
|
| [100,101,102,103,109,110] |
4.5. Production of Agro-Waste CP and DCP
Source | Major Production Process | Process Description | Product | Final Product | References |
---|---|---|---|---|---|
Agave bagasse (Agave tequilana) | Chemical treatment | (1) Acid hydrolysis with 0.5% H2SO 4 at 160 °C for 30 min, with a hydromodule of 8:1; (2) Cooking with 23.2% NaOH and 0.1% AQ 0.1% at 170 °C for 2.5 h, with a hydromodule of 5:1; (3) Bleaching with 10% w/w pulp, 1.7% w/w ClO2 and 0.15% w/w HCl 1.0 N at 60 °C for 0.5, pH 2–3; (4) Extraction with 5% w/w NaOH 1.0 N at 70 °C for 1 h, pH ≥ 10.5; (5) Bleaching with 1% w/w ClO2 and 0.15% w/w NaOH 1.0 N at 80 °C for 3 h; (6) Treatment with 1.5% w/w H2O2 and 1.0% w/w NaOH 1.0 N at 80 °C for 3 h, pH 11.5–11.8; (7) Removal of hemicelluloses with 0.5 g of NaOH per 100 g of dry pulp at 25 °C for 0.5 h. Final alpha-cellulose content: 89% w/w, yield: 15% | CP | Thermoplastic starch/cellulose nanofibrils nanocomposites | [111] |
Agave leaves | Organosolv: Acetosolv | (1) Treatment with 80–95% acetic acid at boiling temperature and addition of 0.05–0.3% w/w HCl for 30–90 min, solid-to-liquid ratio 1:10; (2) Filtration into medium-porosity glass crucibles and washed with acetic acid ×4; (3) Washing until neutral pH and drying at room temperature. | CP | Paper | [88] |
Coconut mesocarp (Cocos nucifera) | Chemical treatment | (1) Drying, crushing and cutting; (2) Pre-washing: ×2 washing with distilled water for 10 min; ×2 treatment with water at 50 °C for 2 h; filtering; (3) Treatment ×2 with 2% NaOH solution for 2 h at 80 °C, filtering, washing and drying at 50 °C for 24 h; (4) Bleaching with NaClO2 in the presence of glacial acetic acid at 60–70 °C, cooling, filtering and washing; (5) Treatment with 0.05 N HNO3 for 1 h at 70 °C; screening and washing; (6) Treatment with H2O2 at different concentrations 0.5–3% v/v at 45 °C for 15 h, pH 11.5; (7) Alkaline treatment with 10% w/v NaOH and 1% w/v Na2B4O7 at 28 °C for 15 h; (8) Treatment with 80% v/v CH3COOH and 70% v/v HNO3 (10:1 ratio) at 120 °C for 15 min; (9) Acid hydrolysis with 64% H2SO 4 at 45 °C for 30 min and washing; (10) Centrifugation at 10,000 rpm for 10 min; (11) Dialysis with water for 3 days until constant pH. | CNF | Sewing thread via electrospinning | [112] |
Corn stover | IL | (1) Separate dissolution with imidazolium ILs at 80 °C for 3 h, solid-to-liquid ratio 1:10 w/w: (a) 1-dodecyl-3-methyl-imidazoliumbis-(2,4,4-tri-methyl-pentyl)-phophinate, [C12mim][(iC8)2PO2] and (b) 1-Decyl-3-methyl-imidazolium bis-(2,4,4-tri-methyl-pentyl)-phosphinate, [C10mim][(iC8)2PO2]; (2) Addition of water and hexane to form a microemulsion; (3) Centrifugation at 4400 rpm for 15 min for phase separation; (4) Washing with methanol and drying overnight at 105 °C. | CP | - | [109] |
(1) Separate dissolution with phosphonium ILs at 80 °C for 3 h, solid-to-liquid ratio 1:10 w/w: (a) Tetra-butyl-phosphonium acetate, [P4444][CH3COO], (b) tri-butyl-methyl-phosphonium acetate, [P4441][CH3COO], (c) tetra-butyl-phosphonium 2-ethyl-hexanoate, [P4444][CH3(CH2)3CH(C2H5)COO] (2) Addition of methanol; (3) Centrifugation for phase separation; (4) Washing with methanol ×4 and drying overnight at 105 °C. | |||||
Hemp shives/isolated fibers | Soda pulping/hydrogen peroxide | (1) Treatment with 3.5–4.0% w/w NaOH at 160–170 °C for 105–150 min; (2) Washing with 20% acetic acid (pulp density 3%w/w); (3) Neutralization and bleaching (pulp density 10%w/w) with 1% NaOH and max 5% H2O2 optimally at 85 °C for 30 min.; (4) Neutralization and repetition of step (2) and washing until neutral pH. Hemp pulp (shives based): alpha-cellulose content: 87%, DP: 559 Hemp pulp (fiber based): alpha-cellulose content: 96%, DP: 656 Oil flax pulp: alpha-cellulose content: 91%, DP: 542 | DCP | Lyocell fiber via NMMO dissolution and air gap spinning | [113] |
Oil flax fibers | |||||
Mango tegument | Alkali treatment | (1) Alkaline treatment of grounded tegument with 2% or 4% w/v NaOH at 80 °C for 60 or 120 min, solid-to-liquid ratio 1:20; (2) Washing with distilled water and vacuum filtering until neutral pH; (3) Drying at 50 °C for 24 h; (4) Bleaching with 30% v/v H2O2 and 4% w/v NaOH at 50 °C for 2 h, solid-to-liquid ratio 1:20; (5) Washing with distilled water until neutral pH; (6) Drying at 50 °C for 24 h. Holocellulose content: 73–75% w/w, yield: 37–42% | CP | - | [77] |
Organosolv | (1) Acetic acid treatment with 1:1 or 1:2 CH3COOH:H2O2 at 60 or 70 °C for 1 or 2 h, solid-to-liquid ratio 1:20; (2) Washing with distilled water and vacuum filtering until neutral pH; (3) Drying at 50 °C for 24 h. Holocellulose content: 78–88% w/w, yield: 47–48% | ||||
Mango seed | Alkali treatment | (1) Grinding and sieving using a mill and an 18-mesh screen; (2) Alkali treatment with NaOH 2%w/w at 100 °C for 4 h ×4; (3) Washing until neutral pH and drying at 40 °C for 24 h; (4) Bleaching with 1:1 (v/v) acetate buffer: 1.7%w/w NaClO2 at 80 °C for 6 h ×2; (5) Washing until neutral pH and drying at 40 °C for 24 h ×2. Holocellulose content: 86% w/w, yield: 29% | CP | Cellulose nanocrystals via acid hydrolysis | [114] |
Orange | Hydrogen peroxide/organosolv/Soda pulping | (1) Separation of albedo from flavedo via dissolution in toluene and ethanol; (2) Cooking with 1–3% v/v H2O2 at 65–80 °C, pH 11–12 and filtering; (3) Treatment with acetic acid and formic acid in the presence of 0.5–6% w/w H2O2 at 65–90 °C; (4) Alkali treatment with 0.5–6% w/w NaOH at 90–110 °C followed by filtration; (5) Washing and drying. Alpha-cellulose content ≥ 90% w/w, yield ≥ 10% | DCP | - | [97] |
Oil palm empty fruit bunches | Soda pulping | (1) Pre-treatment with 0.1% w/v H2SO4 at 150 °C for 2 h and filtering; (2) Alkaline processing using 10% w/v NaOH at 150 °C for 2 h, solid-to-liquid ratio 1:7; (3) 1st bleaching using 0.5% NaClO2 in the presence of CH3COOH at 80 °C for 1.5 h, solid-to-liquid ratio 1:12, followed by filtration; (4) 2nd bleaching using 10% H2O2 at 70 °C for 5 h, solid-to-liquid ratio 1:12, followed by filtration; (5) Washing until neutral pH. Oil palm pulp: cellulose: 72.38% w/w, hemicellulose: 8.11%, lignin: 12.09% w/w; rice straw pulp: 76.10% w/w, hemicellulose: 5.4%, lignin: 3.2% w/w | CP | Cellulose acetate via acetylation | [108] |
Paddy (Oriza sativa) rice straw | |||||
Pineapple leaf | Alkali/acid treatment | Treatment according to steps (1)–(5) of the NCFs production process (see Table 2). (6) Hydrolysis with 3.5 M HCl at 70 °C for 12 h and washing until neutral pH; (7) Overnight hydrolysis with 7.5 M HCl and washing until neutral pH. | CP | Microcellulose by homogenization and ultrasonic action | [61] |
Sugarcane bagasse | Oxidizing/Alkali treatment | (1) Dewaxing with toluene-EtOH (2:1, v/v) in a Soxhlet apparatus; (2) oven drying at 60 °C for 16 h; (3) Removal of water-soluble components by treatment with H2O at 55 °C; (4) Filtering and washing until neutral pH; (5) Delignification using acidified 1.3% NaClO2, pH 4; (6) Treatment with 10% KOH and 10% NaOH at 20 °C; (7) Washing with EtOH/H2O and drying at 60 °C for 16 h. | CP |
| [115] |
Soda pulping | Treatment with 10% NaOH with 1% consistency at 90 °C for 24 h | DCP | MMCF via wet spinning | [3] | |
Treatment with 19.2% NaOH and 0.1% AQ at 170 °C for 1.5 h, solid-to-liquid ratio 1:10. | |||||
South African sugarcane bagasse | IL | (1) Treatment with protic IL triethylammonium hydrogen sulfate [TEA][HSO4]:H2O 4:1 w/w at 120 °C for 1–24 h, solid-to-liquid ratio 1:10 w/w; (2) Ethanol wash ×4; (3) Soxhlet extraction and air-drying. | CP | Enzymatic hydrolysis towards glucose and xylose | [110] |
Rice straw | Soda pulping | (1) Mixing with NaOH 12% (optimal concentration) at 121 °C and 1 bar for 1 h; (2) Removal of soluble lignin by centrifugation at 5000 rpm for 10 min; (3) Drying overnight at 60 °C; (4) Bleaching with a 5% w/v NaClO2 in 1 M glacial acetic acid at 70 °C for 10 min, solid-to-liquid ratio 1:10. | CP | Ball milling to nanofibers | [116] |
Steam explosion | Treatment in a high-pressure reactor under 10–15 bar at 180 °C for 10 min. | ||||
Organsolv | Treatment with formic acid and ethanol 3:1 at a solid-to-liquid ratio 1:10 at 160 °C for 1 h, solid-to-liquid ratio 1:10 | ||||
Tea stem | Soda pulping | (1) Grinding and sieving (150–210 µm); (2) Washing and filtering to remove water-soluble impurities; (3) Treatment with 4% NaOH solution at 80 °C ×3; (4) Bleaching with H2O2 or NaClO2 1.7% w/w in acetic acid buffer at 80 °C ×4; (5) Oven drying at 105 °C. | CP | Cellulose aerogel after hydrolysis, regeneration and freeze-drying | [117] |
Wheat straw | Organosolv/Chempolis | (1) Delignification using formic acid, less than 1 h; (2) Alkaline bleaching with oxygen-based chemicals such as oxygen, ozone, H2O2 and peracetic acid; (3) Recovery of formic acid through: evaporation and drying; partial distillation of water to avoid accumulation; and hydrolysis of esterified formic acid during delignification. | CP | - | [69] |
Elephant grass |
5. 2nd Route Towards Cellulose Fibers: Step B. Production of MMCFs
5.1. Derivatizing Processes
5.2. Non-Derivatizing Processes
Process/Chemical Agent | Spinning Method | Pros | Cons | References | |
---|---|---|---|---|---|
Derivatizing | Viscose/Carbon disulfide | Wet spinning |
|
| [17,125,126,127] |
Cellulose acetate | Dry spinning |
|
| [132] | |
Carbamite/Urea | Wet spinning |
|
| [135,136,137,138,158] | |
Non-derivatizing | Lyocell/NMMO | Dry-jet wet spinning |
|
| [141,148,149,151] |
Cuprammonium | Wet spinning |
|
| [71,135,145,147] | |
Ioncell/[DBNH][OAc] and [mTBDH][OAc] | Dry-jet wet spinning |
|
| [148,149,150,151,152,153] | |
Spinnova | Aqueous suspension spinning |
|
| [154,155,156] |
6. Agricultural and Agro-Industrial Waste Based Products in the Textile Industry
7. The Routes Towards Agricultural and Food Waste Cellulose Fibers
8. Conclusions
Recommendations and Steps Towards Industrialization
- Prioritization of sustainable raw materials
- Investment in process optimization and scalability
- Integration of circular economy principles
- Advancement of biochemical reagents
- Technological application of non-derivatizing procedures
- Implementation of hybrid methodologies
- Diversification of product portfolios
- Industry-wide compatibility and standardization
- Adherence to regulations, environmental certifications, and labeling
Author Contributions
Funding
Conflicts of Interest
References
- McNamara, J.T.; Morgan, J.L.W.; Zimmer, J. A Molecular Description of Cellulose Biosynthesis. Annu. Rev. Biochem. 2015, 84, 895–921. [Google Scholar] [CrossRef] [PubMed]
- Samiee, S.; Ahmadzadeh, H.; Hosseini, M.; Lyon, S. Chapter 17—Algae as a Source of Microcrystalline Cellulose. In Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts; Hosseini, M., Ed.; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2019; pp. 331–350. ISBN 978-0-12-817941-3. [Google Scholar]
- Ma, Y.; Nasri-Nasrabadi, B.; You, X.; Wang, X.; Rainey, T.J.; Byrne, N. Regenerated Cellulose Fibers Wetspun from Different Waste Cellulose Types. J. Nat. Fibers 2021, 18, 2338–2350. [Google Scholar] [CrossRef]
- Haemmerle, F.M. The Cellulose Gap (the Future of Cellulose Fibres). Lenzing. Ber. 2011, 89, 12–21. [Google Scholar]
- Plakantonaki, S.; Roussis, I.; Bilalis, D.; Priniotakis, G. Dietary Fiber from Plant-Based Food Wastes: A Comprehensive Approach to Cereal, Fruit, and Vegetable Waste Valorization. Processes 2023, 11, 1580. [Google Scholar] [CrossRef]
- Sommer, S.G.; Hamelin, L.; Olesen, J.E.; Montes, F.; Jia, W.; Chen, Q.; Triolo, J.M. Agricultural Waste Biomass. In Supply Chain Management for Sustainable Food Networks; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 67–106. ISBN 978-1-118-93749-5. [Google Scholar]
- Shyamsundar, P.; Springer, N.P.; Tallis, H.; Polasky, S.; Jat, M.L.; Sidhu, H.S.; Krishnapriya, P.P.; Skiba, N.; Ginn, W.; Ahuja, V.; et al. Fields on Fire: Alternatives to Crop Residue Burning in India. Science 2019, 365, 536–538. [Google Scholar] [CrossRef]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.-H. Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef]
- Kaab, A.; Sharifi, M.; Mobli, H.; Nabavi-Pelesaraei, A.; Chau, K. Combined Life Cycle Assessment and Artificial Intelligence for Prediction of Output Energy and Environmental Impacts of Sugarcane Production. Sci. Total Environ. 2019, 664, 1005–1019. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verma, M.; Prasada Rao, U.J.S. Sustainable Solutions for Agro Processing Waste Management: An Overview. In Environmental Protection Strategies for Sustainable Development; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 65–109. ISBN 978-94-007-1591-2. [Google Scholar]
- Opperskalski, S.; Franz, A.; Patanè, A.; Siew, S.; Tan, E. Preferred Fiber & Materials Market Report; Textile Exchange: Lamesa, TX, USA, 2022; p. 75. [Google Scholar]
- Mondal, S.; Ramachandran, A.A.; De, S.; Kanthale, P. Review on Wastewater Treatment for Man-Made Cellulosic Fibre Industries: Recent Advancement and Future Prospects. Cellulose 2024, 31, 1–26. [Google Scholar] [CrossRef]
- Nagaraja, S.; Anand, P.B.; Ammarullah, M.I. Synergistic Advances in Natural Fibre Composites: A Comprehensive Review of the Eco-Friendly Bio-Composite Development, Its Characterization and Diverse Applications. RSC Adv. 2024, 14, 17594–17611. [Google Scholar] [CrossRef]
- Sayyed, A.J.; Deshmukh, N.A.; Pinjari, D.V. A Critical Review of Manufacturing Processes Used in Regenerated Cellulosic Fibres: Viscose, Cellulose Acetate, Cuprammonium, LiCl/DMAc, Ionic Liquids, and NMMO Based Lyocell. Cellulose 2019, 26, 2913–2940. [Google Scholar] [CrossRef]
- Narasimhan, S.; Srikanth, B.S.; Poltronieri, P. Chapter 3—Plants By-Products and Fibers’ Industrial Exploitation. In Biotransformation of Agricultural Waste and By-Products; Poltronieri, P., D’Urso, O.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 49–67. ISBN 978-0-12-803622-8. [Google Scholar]
- Duhoux, T.; Le Blévennec, K.; Manshoven, S.; Grossi, F.; Arnold, M.; Fogh Mortensen, L. ETC/CE Report 2/2022: Textiles and the Environment—The Role of Design in Europe’s Circular Economy; European Topic Centre on Circular Economy and Resource Use: Boeretang, Belgium, 2022. [Google Scholar]
- Deckers, J.; Manshoven, S.; Mortensen, L.F. The Role of Bio-Based Textile Fibres in a Circular and Sustainable Textiles System; European Environmental Agency: Copenhagen, Denmark, 2023. [Google Scholar]
- Akatwijuka, O.; Gepreel, M.; Abdel-Mawgood, A.; Yamamoto, M.; Saito, Y.; Hassanin, A. Overview of Banana Cellulosic Fibers: Agro-Biomass Potential, Fiber Extraction, Properties, and Sustainable Applications. Biomass Convers. Biorefinery 2022, 14. [Google Scholar] [CrossRef]
- Bock, J.H.; Norris, D.O. Forensic Plant Science; Academic Press: Cambridge, MA, USA, 2015; ISBN 978-0-12-801581-0. [Google Scholar]
- Koh, J. 3—Dyeing of Cellulosic Fibres. In Handbook of Textile and Industrial Dyeing; Clark, M., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2011; Volume 2, pp. 129–146. ISBN 978-1-84569-696-2. [Google Scholar]
- Ruiz-Caldas, M.-X.; Carlsson, J.; Sadiktsis, I.; Jaworski, A.; Nilsson, U.; Mathew, A.P. Cellulose Nanocrystals from Postconsumer Cotton and Blended Fabrics: A Study on Their Properties, Chemical Composition, and Process Efficiency. ACS Sustain. Chem. Eng. 2022, 10, 3787–3798. [Google Scholar] [CrossRef]
- Yang, S.-T. Chapter 1—Bioprocessing—From Biotechnology to Biorefinery. In Bioprocessing for Value-Added Products from Renewable Resources; Yang, S.-T., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–24. ISBN 978-0-444-52114-9. [Google Scholar]
- PÉrez, S.; Samain, D. Structure and Engineering of Celluloses. In Advances in Carbohydrate Chemistry and Biochemistry; Horton, D., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 64, pp. 25–116. [Google Scholar]
- PubChem Cellulose Gel. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/14055602 (accessed on 6 April 2024).
- Gupta, M.; Rawal, T.B.; Dupree, P.; Smith, J.C.; Petridis, L. Spontaneous Rearrangement of Acetylated Xylan on Hydrophilic Cellulose Surfaces. Cellulose 2021, 28, 3327–3345. [Google Scholar] [CrossRef]
- Mehandzhiyski, A.Y.; Zozoulenko, I. A Review of Cellulose Coarse-Grained Models and Their Applications. Polysaccharides 2021, 2, 257–270. [Google Scholar] [CrossRef]
- Delgado-Aguilar, M.; Tarrés, Q.; Pèlach, M.À.; Mutjé, P.; Fullana-i-Palmer, P. Are Cellulose Nanofibers a Solution for a More Circular Economy of Paper Products? Environ. Sci. Technol. 2015, 49, 12206–12213. [Google Scholar] [CrossRef]
- Zanchetta, E.; Damergi, E.; Patel, B.; Borgmeyer, T.; Pick, H.; Pulgarin, A.; Ludwig, C. Algal Cellulose, Production and Potential Use in Plastics: Challenges and Opportunities. Algal Res. 2021, 56, 102288. [Google Scholar] [CrossRef]
- Zhang, X. Fundamentals of Fiber Science; DEStech Publications, Inc.: Lancaster, PA, USA, 2014; ISBN 1-60595-119-6. [Google Scholar]
- Reddy, N.; Yang, Y. Biofibers from Agricultural Byproducts for Industrial Applications. Trends Biotechnol. 2005, 23, 22–27. [Google Scholar] [CrossRef]
- Basak, M.K.; Bhaduri, S.K.; Paul, N.B. Nature of the Microbiologically Extracted Coir Fibre from Green Coconut Husks—An Agro-Waste. Agric. Wastes 1983, 5, 51–58. [Google Scholar] [CrossRef]
- Sharma, H.S.S.; Van Sumere, C.F. Enzyme Treatment of Flax. Genet. Eng. Biotechnol. 1992, 12, 19–23. [Google Scholar]
- Sharma, H.S.S.; Faughey, G.; Lyons, G. Comparison of Physical, Chemical, and Thermal Characteristics of Water-, Dew-, and Enzyme-retted Flax Fibers. J. Appl. Polym. Sci. 1999, 74, 139–143. [Google Scholar] [CrossRef]
- Banik, S.; Basak, M.K.; Paul, D.; Nayak, P.; Sardar, D.; Sil, S.C.; Sanpui, B.C.; Ghosh, A. Ribbon Retting of Jute—A Prospective and Eco-Friendly Method for Improvement of Fibre Quality. Ind. Crops Prod. 2003, 17, 183–190. [Google Scholar] [CrossRef]
- Paloheimo, M.; Piironen, J.; Vehmaanperä, J. Xylanases and Cellulases as Feed Additives. In Enzymes in Farm Animal Nutrition; CABI: Wallingford, UK, 2010; pp. 12–53. [Google Scholar] [CrossRef]
- Al-Ghanayem, A.; Joseph, B.; Alhussaini, M.; Ramteke, P. Current Applications and Future Trends of Extremozymes in Detergent Industries. In Microbial Extremozymes; Academic Press: Cambridge, MA, USA, 2022; pp. 223–230. ISBN 978-0-12-822945-3. [Google Scholar]
- Xu, S.; Xiong, C.; Tan, W.; Zhang, Y. Microstructural, Thermal, and Tensile Characterization of Banana Pseudo-Stem Fibers Obtained with Mechanical, Chemical, and Enzyme Extraction. BioResources 2015, 10, 3724–3735. [Google Scholar] [CrossRef]
- Sharma, H.S.S. Screening of Polysaccharide-Degrading Enzymes for Retting Flax Stem. Int. Biodeterior. 1987, 23, 181–186. [Google Scholar] [CrossRef]
- Alix, S.; Lebrun, L.; Marais, S.; Philippe, E.; Bourmaud, A.; Baley, C.; Morvan, C. Pectinase Treatments on Technical Fibres of Flax: Effects on Water Sorption and Mechanical Properties. Carbohydr. Polym. 2012, 87, 177–185. [Google Scholar] [CrossRef]
- Carter, H.R. The Decortication of Fibrous Plants; John Bale, Sons & Danielsson: London, UK, 1921. [Google Scholar]
- Mumthas, A.C.S.I.; Wickramasinghe, G.L.D.; Gunasekera, U.S. Effect of Physical, Chemical and Biological Extraction Methods on the Physical Behaviour of Banana Pseudo-Stem Fibres: Based on Fibres Extracted from Five Common Sri Lankan Cultivars. J. Eng. Fibers Fabr. 2019, 14, 1558925019865697. [Google Scholar] [CrossRef]
- Gao, S.; Han, G.; Jiang, W.; Zhang, Y.; Zhang, X. Steam Explosion and Alkali-Oxygen Combined Effect for Degumming of Kenaf Fiber. BioResources 2015, 10, 5476–5488. [Google Scholar] [CrossRef]
- Jiang, W.; Han, G.; Zhou, C.; Gao, S.; Zhang, Y.; Li, M.; Gong, Y.; Via, B. The Degradation of Lignin, Cellulose, and Hemicellulose in Kenaf Bast under Different Pressures Using Steam Explosion Treatment. J. Wood Chem. Technol. 2017, 37, 359–368. [Google Scholar] [CrossRef]
- Jiang, W.; Song, Y.; Liu, S.; Ben, H.; Zhang, Y.; Zhou, C.; Han, G.; Ragauskas, A.J. A Green Degumming Process of Ramie. Ind. Crops Prod. 2018, 120, 131–134. [Google Scholar] [CrossRef]
- Ziegler-Devin, I.; Chrusciel, L.; Brosse, N. Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical and Experimental Approaches. Front. Chem. 2021, 9, 705358. [Google Scholar] [CrossRef]
- Zhang, X.; Han, G.; Jiang, W.; Zhang, Y.; Li, X.; Li, M. Effect of Steam Pressure on Chemical and Structural Properties of Kenaf Fibers during Steam Explosion Process. BioResources 2016, 11, 6590–6599. [Google Scholar] [CrossRef]
- Doraiswamy, I.; Doraiswamy, I.; Chellamani, P. Pineapple-Leaf Fibres; Textile Institute: Manchester, UK, 1993; ISBN 978-1-870812-47-4. [Google Scholar]
- Paridah, M.T.; Khalina, A. Effects of Soda Retting on the Tensile Strength of Kenaf (Hibiscus cannobnius L.) Bast Fibres. Proj. Rep. Kenaf EPU 2009, 21. [Google Scholar]
- Ramesh, M. 9—Hemp, Jute, Banana, Kenaf, Ramie, Sisal Fibers. In Handbook of Properties of Textile and Technical Fibres, 2nd ed.; Bunsell, A.R., Ed.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2018; pp. 301–325. ISBN 978-0-08-101272-7. [Google Scholar]
- Konczewicz, W.; Kryszak, N.; Nowaczkiewicz, E.; Kozlowski, R.; Wojtysiak, J.; Podsiedlik, W. Osmosis Phenomena Based Degumming of Bast Fibrous Plants as a Promising Method in Primary Processing. Mol. Cryst. Liq. Cryst. 2013, 571, 116–131. [Google Scholar] [CrossRef]
- Różańska, W.; Romanowska, B.; Rojewski, S. The Quantity and Quality of Flax and Hemp Fibers Obtained Using the Osmotic, Water-, and Dew-Retting Processes. Materials 2023, 16, 7436. [Google Scholar] [CrossRef] [PubMed]
- Jayaprabha, J.; Brahmakumar, M.; Vattackatt, M. Banana Pseudostem Characterization and Its Fiber Property Evaluation on Physical and Bioextraction. J. Nat. Fibers 2011, 8, 149–160. [Google Scholar] [CrossRef]
- Wobiwo, F.; Alleluya, K.; Emaga, T.; Boda, M.; Fokou, E.; Gillet, S.; Deleu, M.; Gerin, P. Recovery of Fibers and Biomethane from Banana Peduncles Biomass through Anaerobic Digestion. Energy Sustain. Dev. 2017, 37, 60–65. [Google Scholar] [CrossRef]
- Summerscales, J.; Dissanayake, N.P.J.; Virk, A.S.; Hall, W. A Review of Bast Fibres and Their Composites. Part 1—Fibres as Reinforcements. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1329–1335. [Google Scholar] [CrossRef]
- Bar, M.; Belay, H.; Ramasamy, A.; Das, A.; Ouagne, P. Refining of Banana Fiber for Load Bearing Application through Emulsion Treatment and Its Comparison with Other Traditional Methods. J. Nat. Fibers 2021, 19, 1–18. [Google Scholar] [CrossRef]
- Palanisamy, S.; Kalimuthu, M.; Santulli, C.; Nagarajan, R.; Karuppiah, G. Effect of Extraction Methods on the Properties of Bast Fibres. In Bast Fibers and Their Composites: Processing, Properties and Applications; Rajeshkumar, G., Devnani, G.L., Sinha, S., Sanjay, M.R., Siengchin, S., Eds.; Springer Nature: Singapore, 2022; pp. 17–37. ISBN 978-981-19486-6-4. [Google Scholar]
- Ilangovan, M.; Guna, V.; Hu, C.; Nagananda, G.S.; Reddy, N. Curcuma Longa L. Plant Residue as a Source for Natural Cellulose Fibers with Antimicrobial Activity. Ind. Crops Prod. 2018, 112, 556–560. [Google Scholar] [CrossRef]
- Hotor, P.; Hassanin, A.H.; Akatwijuka, O.; Gepreel, M.A.H.; Yamamoto, M.; Saito, Y.; Abdel-Mawgood, A. Evaluating Mechanism of Banana Pseudo-Stem Retting Using Seawater: A Cost-Effective Surface Pre-Treatment Approach. J. Bioresour. Bioprod. 2024, 9, 322–335. [Google Scholar] [CrossRef]
- Temesgen, A.G.; Eren, R.; Aykut, Y. Investigation and Characterization of Fine Fiber from Enset Plant for Biodegradable Composites. In Proceedings of the 17th National 3rd International the Recent Progress Symposium on Textile Technology and Chemistry, Bursa, Turkey, 20–22 November 2019. [Google Scholar]
- Shuvo, I.I.; Rahman, M.; Duncan, R.; DuCharme, S.; Choo, L.-P. A New Generation of Textile Fibre from Canola Biomass and the Impact of Cultivar on Fibre Quality. In Proceedings of the Integrating Design with Sustainable Technology, Textile Institute, Leeds, UK, 23–26 July 2018. [Google Scholar]
- Gnanasekaran, S.; Li, Y.Y.; Shariffuddin, J.H.; Ahamad Nordin, N.I.A. Production of Cellulose and Microcellulose from Pineapple Leaf Fibre by Chemical-Mechanical Treatment. IOP Conf. Ser. Mater. Sci. Eng. 2020, 991, 012055. [Google Scholar] [CrossRef]
- Saravanakumar, S.S.; Kumaravel, A.; Nagarajan, T.; Sudhakar, P.; Baskaran, R. Characterization of a Novel Natural Cellulosic Fiber from Prosopis Juliflora Bark. Carbohydr. Polym. 2013, 92, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Ilangovan, M.; Guna, V.; Prajwal, B.; Jiang, Q.; Reddy, N. Extraction and Characterisation of Natural Cellulose Fibers from Kigelia Africana. Carbohydr. Polym. 2020, 236, 115996. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, P.; Prithiviraj, M.; Saravanakumar, S.S.; Arthanarieswaran, V.P.; Senthamaraikannan, P. Physicochemical, Tensile, and Thermal Characterization of New Natural Cellulosic Fibers from the Stems of Sida Cordifolia. J. Nat. Fibers 2018, 15, 860–869. [Google Scholar] [CrossRef]
- Reddy, N.; Yang, Y. Natural Cellulose Fibers from Soybean Straw. Bioresour. Technol. 2009, 100, 3593–3598. [Google Scholar] [CrossRef]
- Martina, T.; Wardiningsih, W.; Rianti, A.; Rudy, R.; Pradana, S.M. An Investigation into the Potential of Water Retted Fiber from Agricultural Waste of Curcuma Longa Plant for Textile Application. Res. J. Text. Appar. 2022. ahead of printing. [Google Scholar] [CrossRef]
- Guna, V.; Ilangovan, M.; Hu, C.; Nagananda, G.S.; Ananthaprasad, M.G.; Venkatesh, K.; Reddy, N. Antimicrobial Natural Cellulose Fibers from Hyptis Suaveolens for Potential Biomedical and Textiles Applications. J. Nat. Fibers 2021, 18, 867–876. [Google Scholar] [CrossRef]
- Sixta, H. Pulp Properties and Applications. In Handbook of Pulp; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1009–1067. ISBN 978-3-527-61988-7. [Google Scholar]
- Rousu, P.; Rousu, P.; Anttila, J. Sustainable Pulp Production from Agricultural Waste. Resour. Conserv. Recycl. 2002, 35, 85–103. [Google Scholar] [CrossRef]
- Ma, Y.; Hummel, M.; Määttänen, M.; Särkilahti, A.; Harlin, A.; Sixta, H. Upcycling of Waste Paper and Cardboard to Textiles. Green Chem. 2016, 18, 858–866. [Google Scholar] [CrossRef]
- Harlin, A. Cellulose Carbamate: Production and Applications; VTT Technical Research Centre of Finland: Espo, Finland, 2019. [Google Scholar]
- Bajpai, P. Brief Description of the Pulp and Papermaking Process. In Biotechnology for Pulp and Paper Processing; Bajpai, P., Ed.; Springer: Singapore, 2018; pp. 9–26. ISBN 978-981-10-7853-8. [Google Scholar]
- Windeisen, E.; Wegener, G. Lignin as Building Unit for Polymers. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2012; pp. 255–265. ISBN 0-08-087862-8. [Google Scholar]
- Yan, X.; Cheng, J.-R.; Wang, Y.-T.; Zhu, M.-J. Enhanced Lignin Removal and Enzymolysis Efficiency of Grass Waste by Hydrogen Peroxide Synergized Dilute Alkali Pretreatment. Bioresour. Technol. 2020, 301, 122756. [Google Scholar] [CrossRef]
- Sayakulu, N.F.; Soloi, S. The Effect of Sodium Hydroxide (NaOH) Concentration on Oil Palm Empty Fruit Bunch (OPEFB) Cellulose Yield. J. Phys. Conf. Ser. 2022, 2314, 012017. [Google Scholar] [CrossRef]
- Influencing Factors for Alkaline Degradation of Cellulose: BioResources. Available online: https://bioresources.cnr.ncsu.edu/ (accessed on 30 August 2024).
- García-Mahecha, M.; Soto-Valdez, H.; Peralta, E.; Carvajal-Millan, E.; Madera-Santana, T.J.; Lomelí-Ramírez, M.G.; Colín-Chávez, C. Production and Characterization of Cellulosic Pulp from Mango Agro-Industrial Waste and Potential Applications. Polymers 2023, 15, 3163. [Google Scholar] [CrossRef] [PubMed]
- Oluwasina, O.O.; Lajide, L.; Owolabi, B. Microcrystalline Cellulose from Plant Wastes through Sodium Hydroxide-Anthraquinone-Ethanol Pulping. BioResources 2014, 9, 6166–6192. [Google Scholar] [CrossRef]
- Chai, X.S.; Samp, J.; Hou, Q.X.; Yoon, S.-H.; Zhu, J.Y. Possible Mechanism for Anthraquinone Species Diffusion in Alkaline Pulping. Ind. Eng. Chem. Res. 2007, 46, 5245–5249. [Google Scholar] [CrossRef]
- Sixta, H.; Iakovlev, M.; Testova, L.; Roselli, A.; Hummel, M.; Borrega, M.; Van Heiningen, A.; Froschauer, C.; Schottenberger, H. Novel Concepts of Dissolving Pulp Production. Cellulose 2013, 20, 1547–1561. [Google Scholar] [CrossRef]
- Hintz, H.L. Paper: Pulping and Bleaching. In Encyclopedia of Materials: Science and Technology; Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S., Veyssière, P., Eds.; Elsevier: Oxford, UK, 2001; pp. 6707–6711. ISBN 978-0-08-043152-9. [Google Scholar]
- Liu, W.; Liu, S.; Liu, T.; Liu, T.; Zhang, J.; Liu, H. Eco-Friendly Post-Consumer Cotton Waste Recycling for Regenerated Cellulose Fibers. Carbohydr. Polym. 2019, 206, 141–148. [Google Scholar] [CrossRef]
- Lindner, A.; Wegener, G. Characterization of Lignins from Organosolv Pulping According to the Organocell Process Part 1. Elemental Analysis, Nonlignin Portions and Functional Groups. J. Wood Chem. Technol. 1988, 8, 323–340. [Google Scholar] [CrossRef]
- Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid Fuels, Hydrogen and Chemicals from Lignin: A Critical Review. Renew. Sustain. Energy Rev. 2013, 21, 506–523. [Google Scholar] [CrossRef]
- Patt, R.; Kordsachia, O. Ullmann’s Encyclopedia of Industrial Chemistry: Paper and Pulp; Wiley-VCH: Weinheim, Germany, 2005. [Google Scholar]
- Dewi Agustina Iryani, S.T. Chemistry and Structure Characterization of Bamboo Pulp with Formacell Pulping. IOP Conf. Ser. Mater. Sci. Eng. 2019, 532, 012024. [Google Scholar]
- Vazquez, G.; Antorrena, G.; Gonzalez, J.; Freire, S.; Crespo, I. The Influence of Acetosolv Pulping Conditions on the Enzymatic Hydrolysis of Eucalyptus Pulps. Wood Sci. Technol. 2000, 34, 345–354. [Google Scholar] [CrossRef]
- Hernández-Hernández, H.M.; Chanona-Pérez, J.J.; Vega, A.; Ligero, P.; Mendoza-Pérez, J.A.; Calderón-Domínguez, G.; Terrés, E.; Farrera-Rebollo, R.R. Acetosolv Treatment of Fibers from Waste Agave Leaves: Influence of Process Variables and Microstructural Study. Ind. Crops Prod. 2016, 86, 163–172. [Google Scholar] [CrossRef]
- Janković, B. The Comparative Kinetic Analysis of Acetocell and Lignoboost® Lignin Pyrolysis: The Estimation of the Distributed Reactivity Models. Bioresour. Technol. 2011, 102, 9763–9771. [Google Scholar] [CrossRef]
- Technologies & Solutions. Chempolis. Available online: https://chempolis.com/technologies-solutions/ (accessed on 2 September 2024).
- Granatier, M.; Lê, H.Q.; Ma, Y.; Rissanen, M.; Schlapp-Hackl, I.; Diment, D.; Zaykovskaya, A.; Pokki, J.-P.; Balakshin, M.; Louhi-Kultanen, M.; et al. Gamma-Valerolactone Biorefinery: Catalyzed Birch Fractionation and Valorization of Pulping Streams with Solvent Recovery. Heliyon 2023, 9, e17423. [Google Scholar] [CrossRef]
- Products. Assam Bio Refinery Private Limited. Available online: https://abrpl.co.in/product.html (accessed on 10 September 2024).
- Suess, H.U. Pulp Bleaching Today; de Gruyter: Berlin, Germany, 2010; ISBN 3-11-020737-0. [Google Scholar]
- Walter, K. Influence of Acid Hydrogen Peroxide Treatment on Refining Energy and TMP Properties, FSCN-Fibre Science and Communication Network. Ph.D. Thesis, Mid Sweeden University, Sundsvall, Sweeden, 2009. [Google Scholar]
- Lewin, M. (Ed.) . Handbook of Fiber Chemistry; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-429-11639-1. [Google Scholar]
- Taher, A.M.M.; Cates, D.M. Bleaching Cellulose: Part I. A Free Radical Mechanism. Text. Chem. Color. 1975, 7, 30. [Google Scholar]
- Santanocito, A.M.; Vismara, E. Production of Textile from Citrus Fruit, WO. 2015018711 Patent 12 February 2015. Available online: https://patents.google.com/patent/WO2015018711A1/fr (accessed on 10 September 2024).
- Zeronian, S.H.; Inglesby, M.K. Bleaching of Cellulose by Hydrogen Peroxide. Cellulose 1995, 2, 265–272. [Google Scholar] [CrossRef]
- Llano, T.; Arce, C.; Ruiz, G.; Chenna, N.; Coz, A. Modelling and Optimization of the Last Two Stages of an Environmentally-Compatible TCF Bleaching Sequence. BioRes 2018, 13, 6642–6662. [Google Scholar] [CrossRef]
- Tadesse, H.; Luque, R. Advances on Biomass Pretreatment Using Ionic Liquids: An Overview. Energy Environ. Sci. 2011, 4, 3913–3929. [Google Scholar] [CrossRef]
- Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U.S. Extended Dissolution Studies of Cellulose in Imidazolium Based Ionic Liquids. Green Chem. 2009, 11, 417–424. [Google Scholar] [CrossRef]
- Holbrey, J.D.; Turner, M.B.; Rogers, R.D. Selection of Ionic Liquids for Green Chemical Applications. In Ionic Liquids as Green Solvents; ACS Publications: Washington, DC, USA, 2003; ISBN 1947-5918. [Google Scholar]
- Docherty, K.M.; Hebbeler, S.Z.; Charles, F.; Kulpa, J. An Assessment of Ionic Liquid Mutagenicity Using the Ames Test. Green Chem. 2006, 8, 560–567. [Google Scholar] [CrossRef]
- Frade, R.F.M.; Matias, A.; Branco, L.C.; Afonso, C.A.M.; Duarte, C.M.M. Effect of Ionic Liquids on Human Colon Carcinoma HT-29 and CaCo-2 Cell Lines. Green Chem. 2007, 9, 873–877. [Google Scholar] [CrossRef]
- González-García, S.; Teresa Moreira, M.; Artal, G.; Maldonado, L.; Feijoo, G. Environmental Impact Assessment of Non-Wood Based Pulp Production by Soda-Anthraquinone Pulping Process. J. Clean. Prod. 2010, 18, 137–145. [Google Scholar] [CrossRef]
- Hubbe, M.A.; Metts, J.R.; Hermosilla, D.; Blanco, M.A.; Yerushalmi, L.; Haghighat, F.; Lindholm-Lehto, P.; Khodaparast, Z.; Kamali, M.; Elliott, A. Wastewater Treatment and Reclamation: A Review of Pulp and Paper Industry Practices and Opportunities. BioResources 2016, 11, 7953–8091. [Google Scholar] [CrossRef]
- Trung, T.; Allison, B. Advanced Online Process Analyzer for Chemical Recovery and Pulp Mill Control. O Pap. 2015, 76, 47–56. [Google Scholar] [CrossRef]
- Maryana, R.; Anwar, M.; Hasanah, S.U.; Fitriana, E.; Suwanto, A.; Rizal, W.A. Cellulose Acetate Production from Paddy Rice Straw and Oil Palm Empty Fruit Bunch: Trichloroacetate Catalyst. IOP Conf. Ser. Earth Environ. Sci. 2020, 462, 012054. [Google Scholar] [CrossRef]
- Glińska, K.; Gitalt, J.; Torrens, E.; Plechkova, N.; Bengoa, C. Extraction of Cellulose from Corn Stover Using Designed Ionic Liquids with Improved Reusing Capabilities. Process Saf. Environ. Prot. 2021, 147, 181–191. [Google Scholar] [CrossRef]
- Chambon, C.L.; Mkhize, T.Y.; Reddy, P.; Brandt-Talbot, A.; Deenadayalu, N.; Fennell, P.S.; Hallett, J.P. Pretreatment of South African Sugarcane Bagasse Using a Low-Cost Protic Ionic Liquid: A Comparison of Whole, Depithed, Fibrous and Pith Bagasse Fractions. Biotechnol. Biofuels 2018, 11, 247. [Google Scholar] [CrossRef]
- Lomelí-Ramírez, M.G.; Valdez-Fausto, E.M.; Rentería-Urquiza, M.; Jiménez-Amezcua, R.M.; Anzaldo Hernández, J.; Torres-Rendon, J.G.; García Enriquez, S. Study of Green Nanocomposites Based on Corn Starch and Cellulose Nanofibrils from Agave Tequilana Weber. Carbohydr. Polym. 2018, 201, 9–19. [Google Scholar] [CrossRef]
- Rojas-Valencia, M.N.; Galeana-Olvera, E.Y.; Fernández-Rojas, D.; Mendoza-Buenrostro, C.; Nájera-Aguilar, H.A.; Vaca-Mier, M. Isolation of Cellulose Nanofibrils from Coconut Waste for the Production of Sewing Thread. Adv. Mater. Sci. 2018, 3, 1–3. [Google Scholar] [CrossRef]
- Kosan, B.; Thümmler, K.; Meister, F.; Römhild, K. Suitable Dissolving Pulps and Their Impacts on Solution Spinning of Cellulose Man-Made Fibers. Cellulose 2024, 31, 1941–1955. [Google Scholar] [CrossRef]
- Henrique, M.A.; Silvério, H.A.; Flauzino Neto, W.P.; Pasquini, D. Valorization of an Agro-Industrial Waste, Mango Seed, by the Extraction and Characterization of Its Cellulose Nanocrystals. J. Environ. Manag. 2013, 121, 202–209. [Google Scholar] [CrossRef]
- Sofla, M.R.K.; Brown, R.J.; Tsuzuki, T.; Rainey, T.J. A Comparison of Cellulose Nanocrystals and Cellulose Nanofibres Extracted from Bagasse Using Acid and Ball Milling Methods. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 035004. [Google Scholar] [CrossRef]
- Sharma, N.; Allardyce, B.J.; Rajkhowa, R.; Agrawal, R. Rice Straw-Derived Cellulose: A Comparative Study of Various Pre-Treatment Technologies and Its Conversion to Nanofibres. Sci. Rep. 2023, 13, 16327. [Google Scholar] [CrossRef]
- Kaya, M.; Tabak, A. Recycling of an Agricultural Bio-Waste as a Novel Cellulose Aerogel: A Green Chemistry Study. J. Polym. Environ. 2020, 28, 323–330. [Google Scholar] [CrossRef]
- Chen, J.-H.; Guan, Y.; Wang, K.; Xu, F.; Sun, R.-C. Regulating Effect of Hemicelluloses on the Preparation and Properties of Composite Lyocell Fibers. Cellulose 2015, 22, 1505–1516. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Zhang, S.; Li, F.; Yu, J.; Lin, J. Structure and Properties of Novel Regenerated Cellulose Fibers Prepared in NaOH Complex Solution. Carbohydr. Polym. 2013, 98, 1031–1038. [Google Scholar] [CrossRef]
- Textile Exchange Materials Market Report 2023; Textile Exchange: Lamesa, TX, USA, 2023.
- Singh, P.; Duarte, H.; Alves, L.; Antunes, F.; Le Moigne, N.; Dormanns, J.; Duchemin, B.; Staiger, M.P.; Medronho, B. From Cellulose Dissolution and Regeneration to Added Value Applications—Synergism between Molecular Understanding and Material Development. In Cellulose-Fundamental Aspects and Current Trends; Poletto, M., Ornaghi, H.L.J., Eds.; IntechOpen: London, UK, 2015; pp. 1–44. [Google Scholar]
- Teng, Y.; Yu, G.; Fu, Y.; Yin, C. The Preparation and Study of Regenerated Cellulose Fibers by Cellulose Carbamate Pathway. Int. J. Biol. Macromol. 2018, 107, 383–392. [Google Scholar] [CrossRef]
- Sen, S.; Martin, J.D.; Argyropoulos, D.S. Review of Cellulose Non-Derivatizing Solvent Interactions with Emphasis on Activity in Inorganic Molten Salt Hydrates. ACS Sustain. Chem. Eng. 2013, 1, 858–870. [Google Scholar] [CrossRef]
- Senthil Kumar, P.; Suganya, S. 1—Introduction to Sustainable Fibres and Textiles. In Sustainable Fibres and Textiles; Muthu, S.S., Ed.; The Textile Institute Book Series; Woodhead Publishing: Sawston, UK, 2017; pp. 1–18. ISBN 978-0-08-102041-8. [Google Scholar]
- Chen, J. Chapter 4—Synthetic Textile Fibers: Regenerated Cellulose Fibers. In Textiles and Fashion; Sinclair, R., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Sawston, UK, 2015; pp. 79–95. ISBN 978-1-84569-931-4. [Google Scholar]
- Schmidtbauer, J.; Schmidt, H.; Schiemer, S. Process for the Manufacture of Solid Regenerated Viscose Fibres. U.S. Patent 11/029,885, 1 May 2005. [Google Scholar]
- Cobbing, M.; Vicaire, Y. Fashion at the Crossroads; Greenpeace: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Tan, S.S.Y.; MacFarlane, D.R. Ionic Liquids in Biomass Processing. In Ionic Liquids; Kirchner, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 311–339. ISBN 978-3-642-01780-3. [Google Scholar]
- Chen, H. 5—Lignocellulose Biorefinery Product Engineering. In Lignocellulose Biorefinery Engineering; Chen, H., Ed.; Woodhead Publishing: Sawston, UK, 2015; pp. 125–165. ISBN 978-0-08-100135-6. [Google Scholar]
- Sid, S.; Mor, R.S.; Kishore, A.; Sharanagat, V.S. Bio-Sourced Polymers as Alternatives to Conventional Food Packaging Materials: A Review. Trends Food Sci. Technol. 2021, 115, 87–104. [Google Scholar] [CrossRef]
- Wallenberger, F.T.; Weston, N. Natural Fibers, Plastics and Composites; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; ISBN 978-1-4020-7643-5. [Google Scholar]
- Yadav, N.; Hakkarainen, M. Degradable or Not? Cellulose Acetate as a Model for Complicated Interplay between Structure, Environment and Degradation. Chemosphere 2021, 265, 128731. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, J.; Zhang, H.; He, J.; Ren, Q.; Guo, M. Homogeneous Acetylation of Cellulose in a New Ionic Liquid. Biomacromolecules 2004, 5, 266–268. [Google Scholar] [CrossRef]
- Heinze, T.; Schwikal, K.; Barthel, S. Ionic Liquids as Reaction Medium in Cellulose Functionalization. Macromol. Biosci. 2005, 5, 520–525. [Google Scholar] [CrossRef]
- Shen, H.; Sun, T.; Zhou, J. Recent Progress in Regenerated Cellulose Fibers by Wet Spinning. Macromol. Mater. Eng. 2023, 308, 2300089. [Google Scholar] [CrossRef]
- Fink, H.-P.; Ganster, J.; Lehmann, A. Progress in Cellulose Shaping: 20 Years Industrial Case Studies at Fraunhofer IAP. Cellulose 2014, 21, 31–51. [Google Scholar] [CrossRef]
- Qi, H. Platforms for Functionalization of Cellulose. In Novel Functional Materials Based on Cellulose; Qi, H., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 11–23. ISBN 978-3-319-49592-7. [Google Scholar]
- Guo, Y.; Zhou, J.; Song, Y.; Zhang, L. An Efficient and Environmentally Friendly Method for the Synthesis of Cellulose Carbamate by Microwave Heating. Macromol. Rapid Commun. 2009, 30, 1504–1508. [Google Scholar] [CrossRef]
- Fu, F.; Zhou, J.; Zhou, X.; Zhang, L.; Li, D.; Kondo, T. Green Method for Production of Cellulose Multifilament from Cellulose Carbamate on a Pilot Scale. ACS Sustain. Chem. Eng. 2014, 2, 2363–2370. [Google Scholar] [CrossRef]
- Gan, S.; Zakaria, S.; Chia, C.H.; Kaco, H.; Padzil, F.N.M. Synthesis of Kenaf Cellulose Carbamate Using Microwave Irradiation for Preparation of Cellulose Membrane. Carbohydr Polym 2014, 106, 160–165. [Google Scholar] [CrossRef]
- Rosenau, T.; Potthast, A.; Sixta, H.; Kosma, P. The Chemistry of Side Reactions and Byproduct Formation in the System NMMO/Cellulose (Lyocell Process). Prog. Polym. Sci. 2001, 26, 1763–1837. [Google Scholar] [CrossRef]
- Jiang, X.; Bai, Y.; Chen, X.; Liu, W. A Review on Raw Materials, Commercial Production and Properties of Lyocell Fiber. J. Bioresour. Bioprod. 2020, 5, 16–25. [Google Scholar] [CrossRef]
- Chavan, R.B.; Patra, A.K. Development and Processing of Lyocell. Indian J. Fibre Text. Res. 2004, 29, 483–492. [Google Scholar]
- Perepelkin, K.E. Lyocell Fibres Based on Direct Dissolution of Cellulose in N-Methylmorpholine N-Oxide: Development and Prospects. Fibre Chem. 2007, 39, 163–172. [Google Scholar] [CrossRef]
- Zaman, R.; Begum, H.A. Regenerating Cuprammonium Rayon from Various Cotton and Cotton-Polyester Mix Textile and Apparel Wastage. In Proceedings of the 1st National Conference on Sustainable Textile and Apparel Engineering, Tangail, Bangladesh, 14 February 2020. [Google Scholar]
- Melo-Lopez, L.; Cabello-Alvarado, C.J.; Andrade-Guel, M.L.; Medellín-Banda, D.I.; Fonseca-Florido, H.A.; Ávila-Orta, C.A. Synthetic Fibers from Renewable Sources. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1773–1797. ISBN 978-3-030-36267-6. [Google Scholar]
- Rana, S.; Pichandi, S.; Parveen, S.; Fangueiro, R. Regenerated Cellulosic Fibers and Their Implications on Sustainability. In Roadmap to Sustainable Textiles and Clothing: Eco-Friendly Raw Materials, Technologies, and Processing Methods; Springer: Singapore, 2014; pp. 239–276. ISBN 978-981-287-064-3. [Google Scholar]
- Sixta, H.; Michud, A.; Hauru, L.; Asaadi, S.; Ma, Y.; King, A.W.T.; Kilpeläinen, I.; Hummel, M. Ioncell-F: A High-Strength Regenerated Cellulose Fibre. Nord. Pulp Pap. Res. J. 2015, 30, 43–57. [Google Scholar] [CrossRef]
- Michud, A.; King, A.; Parviainen, A.; Sixta, H.; Hauru, L.; Hummel, M.; Kilpeläinen, I. Process for the Production of Shaped Cellulose Articles. WO2014162062A1, 4 April 2014. [Google Scholar]
- Michud, A.; Tanttu, M.; Asaadi, S.; Ma, Y.; Netti, E.; Kääriainen, P.; Persson, A.; Berntsson, A.; Hummel, M.; Sixta, H. Ioncell-F: Ionic Liquid-Based Cellulosic Textile Fibers as an Alternative to Viscose and Lyocell. Text. Res. J. 2016, 86, 543–552. [Google Scholar] [CrossRef]
- Sixta, H.; Hummel, M.; Boulch, K.L.; Kilpeläinen, A.I.; King, A.W.T.; Helminen, K.J.J.; Hellstén, S. A Process for Making a Cellulose Fibre or Film. Patent WO2018138416, 2 August 2018. [Google Scholar]
- Hauru, L.K.J.; Hummel, M.; Nieminen, K.; Michud, A.; Sixta, H. Cellulose Regeneration and Spinnability from Ionic Liquids. Soft Matter 2016, 12, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Mohd, N.; Draman, S.F.S.; Salleh, M.S.N.; Yusof, N.B. Dissolution of Cellulose in Ionic Liquid: A Review. AIP Conf. Proc. 2017, 1809, 020035. [Google Scholar]
- Spinnova Technology. Spinnova. Available online: https://spinnova.com/technology/ (accessed on 4 June 2024).
- Colmorgen, F.; Khawaja, C. Small-Scale Technology Options for Regional Bioeconomies; Be-REAL: Berlin, Germany, 2019. [Google Scholar]
- Salmela, J.; Kiiskinen, H.; Oksanen, A. Method for the Manufacture of Fibrous Yarn, Fibrous Yarn and Use of the Fibrous Yarn. WO2013034814A1, 14 March 2013. [Google Scholar]
- Sustainable Textile Materials. Spinnova. Available online: https://spinnova.com/fibre/ (accessed on 10 June 2024).
- Klemm, D.; Heublein, B.; Fink, H.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Circular Systems, Regenerative Impact. Agraloop. Available online: https://circularsystems.com/agraloop (accessed on 4 June 2024).
- Alt Materials. AltMat. Available online: https://altmat.in/alt-materials/ (accessed on 2 September 2024).
- Asahi Kasei Corporation Fibers & Textiles Bemberg Cupro Fiber Official Website. Available online: https://www.asahi-kasei.co.jp/fibers/en/bemberg/ (accessed on 19 June 2024).
- Thümmler, K.; Fischer, J.; Fischer, S.; Kosan, B.; Meister, F. LyohempTM Fibres from Hemp Shive Dissolving Pulp. Lenzing Berichte 2022, 97, 25–31. [Google Scholar]
- Lyocell. Lyohemp. Available online: https://www.titk.de/en/innovations/lyocell-/-lyohemp/ (accessed on 19 June 2024).
- Orange Fiber & TENCELTM Limited Edition Initiative Orange Fiber. Orange Fiber, 14 July 2021. Available online: https://orangefiber.it/tencel-limited-edition-initiative/ (accessed on 19 June 2024).
- Ananas Anam. Available online: https://www.ananas-anam.com/ (accessed on 3 June 2024).
- Pineapple Leaf Fibre (PALF). Available online: https://nextevo.one/products/pineapple-leaf-fibre-palf/ (accessed on 18 June 2024).
- PYRATEX. Element. Available online: https://www.pyratex.com/element (accessed on 4 June 2024).
- PYRATEX. Citrea. Available online: https://www.pyratex.com/citrea (accessed on 4 June 2024).
- Anand, P.B.; Nagaraja, S.; Jayaram, N.; Sreenivasa, S.P.; Almakayeel, N.; Khan, T.M.Y.; Kumar, R.; Ammarullah, M.I. Kenaf Fiber and Hemp Fiber Multi-Walled Carbon Nanotube Filler-Reinforced Epoxy-Based Hybrid Composites for Biomedical Applications: Morphological and Mechanical Characterization. J. Compos. Sci. 2023, 7, 324. [Google Scholar] [CrossRef]
- Keerthiveettil Ramakrishnan, S.; Vijayananth, K.; Arivendan, A.; Ammarullah, M.I. Evaluating the Effects of Pineapple Fiber, Potato Waste Filler, Surface Treatment, and Fiber Length on the Mechanical Properties of Polyethylene Composites for Biomedical Applications. Results Eng. 2024, 24, 102974. [Google Scholar] [CrossRef]
- Reddy, K.O.; Maheswari, C.U.; Dhlamini, M.S.; Mothudi, B.M.; Zhang, J.; Zhang, J.; Nagarajan, R.; Rajulu, A.V. Preparation and Characterization of Regenerated Cellulose Films Using Borassus Fruit Fibers and an Ionic Liquid. Carbohydr. Polym. 2017, 160, 203–211. [Google Scholar] [CrossRef]
- Plakantonaki, S.; Kiskira, K.; Zacharopoulos, N.; Chronis, I.; Coelho, F.; Togiani, A.; Kalkanis, K.; Priniotakis, G. A Review of Sustainability Standards and Ecolabeling in the Textile Industry. Sustainability 2023, 15, 11589. [Google Scholar] [CrossRef]
- Worku, L.A.; Bachheti, A.; Bachheti, R.K.; Rodrigues Reis, C.E.; Chandel, A.K. Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication. Membranes 2023, 13, 228. [Google Scholar] [CrossRef]
- Quintana, E.; Valls, C.; Roncero, M.B. Dissolving-Grade Pulp: A Sustainable Source for Fiber Production. Wood Sci. Technol. 2024, 58, 23–85. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Tong, M.; Shao, H.; Hu, X. Comparison of the Structures and Properties of Lyocell Fibers from High Hemicellulose Pulp and High α-Cellulose Pulp. J. Appl. Polym. Sci. 2008, 107, 636–641. [Google Scholar] [CrossRef]
- Jadhav, S.; Lidhure, A.; Thakre, S.; Ganvir, V. Modified Lyocell Process to Improve Dissolution of Cellulosic Pulp and Pulp Blends in NMMO Solvent. Cellulose 2021, 28, 973–990. [Google Scholar] [CrossRef]
Issue | Description |
---|---|
Bulk density | The low bulk density of non-wood raw materials significantly impacts their logistics, leading to much smaller mill sizes compared to wood-based mills. The use of baling presses can act correctively. |
Fiber length | Short fiber lengths affect drainage properties of the pulp and the degree of polymerization in dissolving pulps. |
Chemical composition | Different chemical composition from wood with higher hemicellulose, silicon and nutrient content. Pre-treatment or other methodological adjustment is needed. |
Dissolution of silicon | Dissolution of silicon into alkali cooking liquor has resulted in scaling problems in liquor evaporation and solvent recovery. |
Metal ions presence | When the pulp undergoes chlorine-free bleaching, the transition elements generate radicals that react indiscriminately with the pulp, resulting in a decrease in both yield and strength qualities. |
Product Name | Main Source | Fiber Type | Process | Company | References |
---|---|---|---|---|---|
Agraloop™ BioFibre™ | CBD hemp and oilseed flax | NCF | Decortication and Agraloop™ processing (wet treatment) | Circular Systems S.P.C. (Los Angeles, CA, USA) | [159] |
Alt Fibres | Food crops, e.g., hemp oil seed, banana fruit, pineapple fruit | NCF | - | AltMat Pvt. Ltd. (Ahmedabad, India) | [160] |
Bemberg™ | Cotton linter as byproduct of cottonseed oil | MMCF | Cuprammonium | Asahi Kasei Corporation (Tokyo, Japan) | [161] |
Lyohemp® | Hemp shives | MMCF | Chemical pulp/Lyocell process | TITK (Rudolstadt Germany), STFI (Chemnitz, Germany), FUDI GmbH & Co. KG (Zeulenroda-Triebes, Germany), MATRAK Service und Lohnarbeits GmbH (Auma-Weidatal, Germany) and Institute of Plant and Wood Chemistry (IPWC) (Dresden, Germany) | [162,163] |
Orange fiber | Citrus juice by-products | MMCF | Chemical pulp/Acetate | Orange Fiber s.r.l. (Catania, Italy) | [11] |
Orange fiber & TENCEL™ * | Chemical pulp/Lyocell process | Orange Fiber s.r.l. in collaboration with Lenzing AG (Lenzing, Austria) | [164] | ||
Piñatex® | Waste pineapple leaf fiber | NCF | Enzymatic treatment | Ananas Anam Ltd. (London, UK) | [165] |
Pineapple Leaf Fibers (PALF) | Pineapple leaf byproducts | NCF | - | Nextevo™ (Singapore, Singapore) | [166] |
PYRATEX® element 2 | Banana agro waste | NCF | Mechanical extraction | PYRATES Smart Fabrics SL (Madrid, Spain) | [167] |
PYRATEX® citrea | Orange peel agro waste | MMCF | - | PYRATES Smart Fabrics SL | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plakantonaki, S.; Kiskira, K.; Zacharopoulos, N.; Belessi, V.; Sfyroera, E.; Priniotakis, G.; Athanasekou, C. Investigating the Routes to Produce Cellulose Fibers from Agro-Waste: An Upcycling Process. ChemEngineering 2024, 8, 112. https://doi.org/10.3390/chemengineering8060112
Plakantonaki S, Kiskira K, Zacharopoulos N, Belessi V, Sfyroera E, Priniotakis G, Athanasekou C. Investigating the Routes to Produce Cellulose Fibers from Agro-Waste: An Upcycling Process. ChemEngineering. 2024; 8(6):112. https://doi.org/10.3390/chemengineering8060112
Chicago/Turabian StylePlakantonaki, Sofia, Kyriaki Kiskira, Nikolaos Zacharopoulos, Vassiliki Belessi, Emmanouela Sfyroera, Georgios Priniotakis, and Chrysoula Athanasekou. 2024. "Investigating the Routes to Produce Cellulose Fibers from Agro-Waste: An Upcycling Process" ChemEngineering 8, no. 6: 112. https://doi.org/10.3390/chemengineering8060112
APA StylePlakantonaki, S., Kiskira, K., Zacharopoulos, N., Belessi, V., Sfyroera, E., Priniotakis, G., & Athanasekou, C. (2024). Investigating the Routes to Produce Cellulose Fibers from Agro-Waste: An Upcycling Process. ChemEngineering, 8(6), 112. https://doi.org/10.3390/chemengineering8060112