Heavy Metal Pollution and Solutions for Its Control: General Aspects with a Focus on Cobalt Removal and Recovery from Aqueous Systems
Abstract
:1. Introduction
- (i)
- Describe and evaluate the present technologies for HM removal (Co in particular) and recovery from contaminated water and WW.
- (ii)
- Identify research trends and new treatment perspectives.
2. Methods in Water and WW Treatment
2.1. Precipitation
2.2. Electrochemical Methods (EM)
2.3. Membrane Separation
2.3.1. Ultrafiltration (UF) and Nanofiltration (NF)
2.3.2. Reverse Osmosis (RO) and Forward Osmosis (FO)
2.4. Coagulation-Flocculation
2.5. Flotation
2.6. Sorption Processes
- -
- Titration—Performed to evaluate the ion exchange capacity of the sorbent or to identify available/total functional groups, etc.;
- -
- FTIR—To identify available and/or active functional groups on sorbent surface (an example is presented in Figure 9(a1));
- -
- XRD—Used for nanoscale analysis to reveal structure, composition or crystallinity of adsorbent before and after adsorption(an example is presented in Figure 9(a2));
- -
- XPS—To examine adsorbent surface chemistry and/or determine the content of selected elements;
- -
- SEM-EDX—Used for visualization of macro/microstructural characteristics of sorbent, elemental mapping and concentration evaluation (Figure 9(b1,b2,c1–c3), BSED—backscattered electron detector).
2.7. Photocatalysis
3. Challenges and Future Perspectives
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ali, M.M.; Hossain, D.; Al-Imran, A.; Khan, M.S.; Begum, M.; Osman, M.H. Environmental Pollution with Heavy Metals: A Public Health Concern. In Heavy Metals—Their Environmental Impacts and Mitigation; Intechopen: London, UK, 2021; pp. 771–783. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, M.; Lan, J.; Huang, Y.; Zhang, J.; Huang, S.; Yang, Y.; Ru, J. Water Quality Degradation Due to Heavy Metal Contamination: Health Impacts and Eco-Friendly Approaches for Heavy Metal Remediation. Toxics 2023, 11, 828. [Google Scholar] [CrossRef] [PubMed]
- Issabayeva, G.; Aroua, M.K.; Sulaiman, N.M. Study on Palm Shell Activated Carbon Adsorption Capacity to Remove Copper Ions from Aqueous Solutions. Desalination 2010, 262, 94–98. [Google Scholar] [CrossRef]
- Ghaedi, M.; Sadeghian, B.; Pebdani, A.A.; Sahraei, R.; Daneshfar, A.; Duran, C. Kinetics, Thermodynamics and Equilibrium Evaluation of Direct Yellow 12 Removal by Adsorption onto Silver Nanoparticles Loaded Activated Carbon. Chem. Eng. J. 2012, 187, 133–141. [Google Scholar] [CrossRef]
- Lu, S.; Gibb, S.W. Copper Removal from Wastewater Using Spent-Grain as Biosorbent. Bioresour. Technol. 2008, 99, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Guo, X.; Feng, N.; Tian, Q. Application of Orange Peel Xanthate for the Adsorption of Pb2+ from Aqueous Solutions. J. Hazard. Mater. 2009, 170, 425–429. [Google Scholar] [CrossRef]
- Kamari, A.; Najiah, S.; Yusoff, M.; Abdullah, F.; Pranata, W. Biosorptive Removal of Cu (II), Ni (II) and Pb (II) Ions from Aqueous Solutions Using Coconut Dregs Residue: Adsorption and Characterisation Studies. Biochem. Pharmacol. 2014, 2, 1912–1919. [Google Scholar] [CrossRef]
- Jiang, Y.; Cui, S.; Xia, T.; Sun, T.; Tan, H.; Yu, F.; Su, Y.; Wu, S.; Wang, D.; Zhu, N. Real-Time Monitoring of Heavy Metals in Healthcare via Twistable and Washable Smartsensors. Anal. Chem. 2020, 92, 14536–14541. [Google Scholar] [CrossRef]
- Technical Working Group on Integrated Monitoring. Draft Report on Actions and Recommendations for Integrated Monitoring of Heavy Metals Under the Framework of the European Environment and Health Strategy (COM 2003)338 Final). 2004. Available online: https://www.academia.edu/112941803/Integrated_Monitoring_of_Heavy_Metals (accessed on 14 May 2024).
- United Nations. Decision 2018/5. Long-Term Strategy for the Convention on Long-Range Transboundary Air Pollution for 2020−2030 and Beyond. 2018, pp. 1–15. Available online: https://unece.org/fileadmin/DAM/env/documents/2018/Air/EB/correct_numbering_Decision_2018_5.pdf (accessed on 20 June 2024).
- Mushak, P. Lead in the Human Environment: Lead Emissions and Emission Trends. Trace Met. Other Contam. Environ. 2011, 10, 73–90. [Google Scholar] [CrossRef]
- Yao, L.; Min, X.; Ke, Y.; Wang, Y.; Liang, Y.; Yan, X.; Xu, H.; Fei, J.; Li, Y.; Liu, D.; et al. Release Behaviors of Arsenic and Heavy Metals from Arsenic Sulfide Sludge during Simulated Storage. Minerals 2019, 9, 130. [Google Scholar] [CrossRef]
- Adnan, M.; Xiao, B.; Xiao, P.; Zhao, P.; Li, R.; Bibi, S. Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China. Toxics 2022, 10, 231. [Google Scholar] [CrossRef]
- Qi, M.; Wu, Y.; Zhang, S.; Li, G.; An, T. Pollution Profiles, Source Identification and Health Risk Assessment of Heavy Metals in Soil near a Non-Ferrous Metal Smelting Plant. Int. J. Environ. Res. Public Health 2023, 20, 1004. [Google Scholar] [CrossRef] [PubMed]
- Adil, N.; Ashraf, K.; Munir, M.; Mohiuddin, M.; Abbasi, A.; Riaz, U.; Aslam, A.; Marey, S.A.; Hatamleh, A.A.; Zaman, Q.U. Pesticides, Heavy Metals and Plasticizers: Contamination and Risk Assessment of Drinking-Water Quality. Sustainability 2023, 15, 13263. [Google Scholar] [CrossRef]
- Dewi, T.; Martono, E.; Hanudin, E.; Harini, R. Impact of Agrochemicals Application on Lead and Cadmium Concentrations in Shallot Fields and Their Remediation with Biochar, Compost, and Botanical Pesticides. IOP Conf. Ser. Earth Environ. Sci. 2022, 1109, 012050. [Google Scholar] [CrossRef]
- Jibrin, M.; Abdulhameed, A.; Nayaya, A.; Ezra, A.G. Health Risk Effect of Heavy Metals from Pesticides in Vegetables and Soils: A Review. Dutse J. Pure Appl. Sci. 2022, 7, 24–32. [Google Scholar] [CrossRef]
- Defarge, N.; Spiroux de Vendômois, J.; Séralini, G.E. Toxicity of Formulants and Heavy Metals in Glyphosate-Based Herbicides and Other Pesticides. Toxicol. Rep. 2018, 5, 156–163. [Google Scholar] [CrossRef]
- Jagustyn, B.; Kmieć, M.; Smędowski, Ł.; Sajdak, M. The Content and Emission Factors of Heavy Metals in Biomass Used for Energy Purposes in the Context of the Requirements of International Standards. J. Energy Inst. 2017, 90, 704–714. [Google Scholar] [CrossRef]
- Maciejczyk, P.; Chen, L.C.; Thurston, G. The Role of Fossil Fuel Combustion Metals in PM2.5 Air Pollution Health Associations. Atmosphere 2021, 12, 1086. [Google Scholar] [CrossRef]
- You, Y.; Lu, J. Timely or Early? Breaking Away from Cobalt-Reliant Lithium-Ion Batteries. Next Mater. 2023, 1, 100004. [Google Scholar] [CrossRef]
- Savinova, E.; Evans, C.; Lèbre, É; Stringer, M.; Azadi, M.; Valenta, R.K. Will Global Cobalt Supply Meet Demand? The Geological, Mineral Processing, Production and Geographic Risk Profile of Cobalt. Resour. Conserv. Recycl. 2023, 190, 106855. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt Toxicity in Humans—A Review of the Potential Sources and Systemic Health Effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
- Quiton, K.G.N.; Huang, Y.-H.; Lu, M.-C. Recovery of Cobalt and Copper from Single- and Co-Contaminated Simulated Electroplating Wastewater via Carbonate and Hydroxide Precipitation. Sustain. Environ. Res. 2022, 32, 31. [Google Scholar] [CrossRef]
- Banerjee, P.; Bhattacharya, P. Investigating Cobalt in Soil-Plant-Animal-Human System: Dynamics, Impact and Management. J. Soil Sci. Plant Nutr. 2021, 21, 2339–2354. [Google Scholar] [CrossRef]
- Hu, X.; Wei, X.; Ling, J.; Chen, J. Cobalt: An Essential Micronutrient for Plant Growth? Front. Plant Sci. 2021, 12, 768523. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.N.; Al-Tameemi, I.M.; Hasan, M.B.; Al-Madhhachi, A.-S.T. Chemical Removal of Cobalt and Lithium in Contaminated Soils Using Promoted White Eggshells with Different Catalysts. S. Afr. J. Chem. Eng. 2021, 35, 23–32. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Dash, S.K.; Tripathy, S.; Das, B.; Mandal, D.; Pramanik, P.; Roy, S. Toxicity of Cobalt Oxide Nanoparticles to Normal Cells; An in Vitro and in Vivo Study. Chem. Biol. Interact. 2015, 226, 58–71. [Google Scholar] [CrossRef]
- Simonsen, L.O.; Harbak, H.; Bennekou, P. Cobalt Metabolism and Toxicology-A Brief Update. Sci. Total Environ. 2012, 432, 210–215. [Google Scholar] [CrossRef]
- Chen, F.; Khan, Z.I.; Zafar, A.; Ma, J.; Nadeem, M.; Ahmad, K.; Mahpara, S.; Wajid, K.; Bashir, H.; Munir, M.; et al. Evaluation of Toxicity Potential of Cobalt in Wheat Irrigated with Wastewater: Health Risk Implications for Public. Environ. Sci. Pollut. Res. 2021, 28, 21119–21131. [Google Scholar] [CrossRef]
- Prochaska, C.; Gallios, G. Nano-Adsorbents for Cobalt Removal from Wastewater: A Bibliometric Analysis of Research Articles Indexed in the Scopus Database. Processes 2021, 9, 1177. [Google Scholar] [CrossRef]
- Canada, E. Canadian Environmental Protection Act, 1999 Federal Environmental Quality Guidelines Cobalt. 2017. Available online: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/canadian-environmental-protection-act-1999-federal-environmental-quality-guidelines-cobalt.html (accessed on 28 August 2024).
- Lace, A.; Cleary, J. A Review of Microfluidic Detection Strategies for Heavy Metals in Water. Chemosensors 2021, 9, 60. [Google Scholar] [CrossRef]
- Regulation NTPA-001/2002 Regarding the Establishment of Pollutant Loading Limits of Industrial and Urban Wastewater When Discharged into Natural Receivers, in Romanian. 2002. Available online: https://legislatie.just.ro/Public/DetaliiDocument/98311 (accessed on 12 November 2024).
- Stubblefield, W.A.; Van Genderen, E.; Cardwell, A.S.; Heijerick, D.G.; Janssen, C.R.; De Schamphelaere, K.A.C. Acute and Chronic Toxicity of Cobalt to Freshwater Organisms: Using a Species Sensitivity Distribution Approach to Establish International Water Quality Standards. Environ. Toxicol. Chem. 2020, 39, 799–811. [Google Scholar] [CrossRef]
- Islam, M.A.; Morton, D.W.; Johnson, B.B.; Pramanik, B.K.; Mainali, B.; Angove, M.J. Opportunities and Constraints of Using the Innovative Adsorbents for the Removal of Cobalt(II) from Wastewater: A Review. Environ. Nanotechnol. Monit. Manag. 2018, 10, 435–456. [Google Scholar] [CrossRef]
- Adam, M.R.; Othman, M.H.D.; Kurniawan, T.A.; Puteh, M.H.; Ismail, A.F.; Khongnakorn, W.; Rahman, M.A.; Jaafar, J. Advances in Adsorptive Membrane Technology for Water Treatment and Resource Recovery Applications: A Critical Review. J. Environ. Chem. Eng. 2022, 10, 107633. [Google Scholar] [CrossRef]
- U.S. EPA. National Primary Drinking Water Guidelines; Epa 816-F-09-004 2009, 1; United States Environmental Protection Agency: Washington, DC, USA, 2009; 7p. [Google Scholar]
- Official Journal of the European Communities. COUNCIL DIRECTIVE 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption; Official Journal of the European Communities: Luxembourg, 1998. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A Comprehensive Review on Conventional and Biological-Driven Heavy Metals Removal from Industrial Wastewater. Environ. Adv. 2022, 7, 100168. [Google Scholar] [CrossRef]
- Imdad, S.; Dohare, R.K. A Critical Review On Heavy Metals Removal Using Ionic Liquid Membranes From The Industrial Wastewater. Chem. Eng. Process.-Process Intensif. 2022, 173, 108812. [Google Scholar] [CrossRef]
- Saritha, D. A Concise Review on the Removal of Heavy Metals from Wastewater Using Adsorbents. Mater. Today Proc. 2022, 62, 3973–3977. [Google Scholar] [CrossRef]
- Kadłubowicz, A.; Janiszewska, M.; Baraniak, M.; Lota, G.; Staszak, K.; Regel-Rosocka, M. Diffusion Dialysis and Extraction Integrated System for Recovery of Cobalt(II) from Industrial Effluent. J. Water Process Eng. 2021, 39, 101754. [Google Scholar] [CrossRef]
- Benalia, M.C.; Youcef, L.; Bouaziz, M.G.; Achour, S.; Menasra, H. Removal of Heavy Metals from Industrial Wastewater by Chemical Precipitation: Mechanisms and Sludge Characterization. Arab. J. Sci. Eng. 2022, 47, 5587–5599. [Google Scholar] [CrossRef]
- Pohl, A. Removal of Heavy Metal Ions from Water and Wastewaters by Sulfur-Containing Precipitation Agents. Water Air Soil Pollut. 2020, 231, 503. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Yang, B. Co-Precipitation with CaCO3 to Remove Heavy Metals and Significantly Reduce the Moisture Content of Filter Residue. Chemosphere 2020, 239, 124660. [Google Scholar] [CrossRef]
- Zhang, J.; Mani, R.; Louhi-Kultanen, M. Process Monitoring of Cobalt Carbonate Precipitation by Reactions between Cobalt Sulfate and Sodium Carbonate Solutions to Control Product Morphology and Purity. Hydrometallurgy 2024, 224, 106232. [Google Scholar] [CrossRef]
- De Repentigny, C.; Courcelles, B.; Zagury, G.J. Spent MgO-Carbon Refractory Bricks as a Material for Permeable Reactive Barriers to Treat a Nickel- and Cobalt-Contaminated Groundwater. Environ. Sci. Pollut. Res. 2018, 25, 23205–23214. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Chai, L.; Min, X.; Tang, C.; Chen, J.; Wang, Y.; Liang, Y. Sulfidation of Heavy-Metal-Containing Neutralization Sludge Using Zinc Leaching Residue as the Sulfur Source for Metal Recovery and Stabilization. Miner. Eng. 2014, 61, 105–112. [Google Scholar] [CrossRef]
- Jeong, S.; Naidu, G.; Leiknes, T.; Vigneswaran, S. Membrane Biofouling: Biofouling Assessment and Reduction Strategies in Seawater Reverse Osmosis Desalination. Compr. Membr. Sci. Eng. Second Ed. 2017, 4, 48–71. [Google Scholar] [CrossRef]
- Estay, H.; Barros, L.; Troncoso, E. Metal Sulfide Precipitation: Recent Breakthroughs and Future Outlooks. Minerals 2021, 11, 1385. [Google Scholar] [CrossRef]
- Ekubatsion, L.H.; Thriveni, T.; Ahn, J.W. Removal of Cd2+ and Pb2+ from Wastewater through Sequent Addition of KR-Slag, Ca(OH)2Derived from Eggshells and CO2Gas. ACS Omega 2021, 6, 27600–27609. [Google Scholar] [CrossRef]
- Huang, J.H.; Kargl-Simard, C.; Oliazadeh, M.; Alfantazi, A.M. PH-Controlled Precipitation of Cobalt and Molybdenum from Industrial Waste Effluents of a Cobalt Electrodeposition Process. Hydrometallurgy 2004, 75, 77–90. [Google Scholar] [CrossRef]
- Oustadakis, P.; Agatzini-Leonardou, S.; Tsakiridis, P.E. Nickel and Cobalt Precipitation from Sulphate Leach Liquor Using MgO Pulp as Neutralizing Agent. Miner. Eng. 2006, 19, 1204–1211. [Google Scholar] [CrossRef]
- Harvey, R.; Hannah, R.; Vaughan, J. Selective Precipitation of Mixed Nickel-Cobalt Hydroxide. Hydrometallurgy 2011, 105, 222–228. [Google Scholar] [CrossRef]
- Lewis, A.E. Review of Metal Sulphide Precipitation. Hydrometallurgy 2010, 104, 222–234. [Google Scholar] [CrossRef]
- Mokone, T.P.; van Hille, R.P.; Lewis, A.E. Effect of Solution Chemistry on Particle Characteristics during Metal Sulfide Precipitation. J. Colloid Interface Sci. 2010, 351, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, G.; Dey, P.; Dalal, D.; Venu-Babu, P.; Thilagaraj, W.R. A Novel Approach to Precipitation of Heavy Metals from Industrial Effluents and Single-Ion Solutions Using Bacterial Alkaline Phosphatase. Water Air Soil Pollut. 2013, 224, 1625. [Google Scholar] [CrossRef]
- Chaudhuri, G.; Shah, G.A.; Dey, P.; Ganesh, S.; Venu-Babu, P.; Thilagaraj, W.R. Enzymatically Mediated Bioprecipitation of Heavy Metals from Industrial Wastes and Single Ion Solutions by Mammalian Alkaline Phosphatase. J. Environ. Sci. Health—Part A Toxic/Hazardous Subst. Environ. Eng. 2013, 48, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, G.; Venu-Babu, P.; Dalal, D.; Thilagaraj, W.R. Application of Alkaline Phosphatase for Heavy Metals Precipitation Using Ascorbic Acid 2-Phosphate as an Effective Natural Substrate. Int. J. Environ. Sci. Technol. 2015, 12, 3877–3886. [Google Scholar] [CrossRef]
- Mokone, T.P.; van Hille, R.P.; Lewis, A.E. Metal Sulphides from Wastewater: Assessing the Impact of Supersaturation Control Strategies. Water Res. 2012, 46, 2088–2100. [Google Scholar] [CrossRef]
- Liu, Y.; Serrano, A.; Vaughan, J.; Southam, G.; Zhao, L.; Villa-Gomez, D. The Influence of Biologically Produced Sulfide-Containing Solutions on Nickel and Cobalt Precipitation Reactions and Particle Settling Properties. Hydrometallurgy 2019, 189, 105142. [Google Scholar] [CrossRef]
- Lewis, A.; van Hille, R. An Exploration into the Sulphide Precipitation Method and Its Effect on Metal Sulphide Removal. Hydrometallurgy 2006, 81, 197–204. [Google Scholar] [CrossRef]
- Seckler, M.M. Crystallization in Fluidized Bed Reactors: From Fundamental Knowledge to Full-Scale Applications. Crystals 2022, 12, 1541. [Google Scholar] [CrossRef]
- Chen, C.S.; Shih, Y.J.; Huang, Y.H. Remediation of Lead (Pb(II)) Wastewater through Recovery of Lead Carbonate in a Fluidized-Bed Homogeneous Crystallization (FBHC) System. Chem. Eng. J. 2015, 279, 120–128. [Google Scholar] [CrossRef]
- Boonrattanakij, N.; Puangsuwan, S.; Vilando, A.C.; Lu, M.C. Influence of Coexisting EDTA, Citrate, and Chloride Ions on the Recovery of Copper and Cobalt from Simulated Wastewater Using Fluidized-Bed Homogeneous Granulation Process. Process Saf. Environ. Prot. 2023, 172, 83–96. [Google Scholar] [CrossRef]
- Bayon, L.L.E.; Ballesteros, F.C.; Choi, A.E.S.; Garcia-Segura, S.; Lu, M.C. Remediation of Cobalt from Semiconductor Wastewater in the Frame of Fluidized-Bed Homogeneous Granulation Process. J. Environ. Chem. Eng. 2021, 9, 105936. [Google Scholar] [CrossRef]
- Anotai, J.; Udomphan, T.; Choi, A.E.S.; Lu, M.-C. Fluidized-Bed Homogeneous Granulation Process: Comparison of Individual and Mixed Precipitation of Cobalt and Copper. J. Environ. Chem. Eng. 2021, 9, 106644. [Google Scholar] [CrossRef]
- Alkhadra, M.A.; Su, X.; Suss, M.E.; Tian, H.; Guyes, E.N.; Shocron, A.N.; Conforti, K.M.; De Souza, J.P.; Kim, N.; Tedesco, M.; et al. Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chem. Rev. 2022, 122, 13547–13635. [Google Scholar] [CrossRef] [PubMed]
- Cao, D.; Guo, T.; Zhao, X. Treatment of Sb(V) and Co(II) Containing Wastewater by Electrocoagulation and Enhanced Sb(V) Removal with Co(II) Presence. Sep. Purif. Technol. 2019, 227, 115649. [Google Scholar] [CrossRef]
- Khalaf, H.E.; Hasieb-Hussein, A. Removal of Cobalt from Drinking Water by Alternating Current Electrocoagulation Technique. J. Appl. Sci. 2012, 12, 787–792. [Google Scholar] [CrossRef]
- Hussain, Z.; Din, M.I.; Nayab, S.; Islam, M. Recovery of Cobalt and Copper from Textile, Electroplating and Tannery Effluents Using Electrocoagulation Method. J. Waste Water Treat. Anal. 2013, 4, 147. [Google Scholar] [CrossRef]
- Santos, I.O.; Santos, I.C.A.; Pontual, L.V.; Monteiro, L.P.C.; Mainier, F.B. Electrolytic Cobalt Removal in Wastewater. J. Environ. Prot. 2016, 7, 728–733. [Google Scholar] [CrossRef]
- Widiyanto, H.; Kosimaningrum, W.E. Rahmayetty Electrodeposition for Rapid Recovery of Cobalt (II) in Industrial Wastewater. IOP Conf. Ser. Earth Environ. Sci. 2021, 623, 012054. [Google Scholar] [CrossRef]
- Mosivand, S.; Kazeminezhad, I.; Fathabad, S.P. Easy, Fast, and Efficient Removal of Heavy Metals from Laboratory and Real Wastewater Using Electrocrystalized Iron Nanostructures. Microchem. J. 2019, 146, 534–543. [Google Scholar] [CrossRef]
- Min, K.J.; Kim, J.H.; Park, K.Y. Characteristics of Heavy Metal Separation and Determination of Limiting Current Density in a Pilot-Scale Electrodialysis Process for Plating Wastewater Treatment. Sci. Total Environ. 2021, 757, 143762. [Google Scholar] [CrossRef]
- Gunatilake, S.K. Methods of Removing Heavy Metals from Industrial Wastewater. J. Multidiscip. Eng. Sci. Stud. 2015, 1, 12–18. [Google Scholar]
- Maarof, H.I.; Daud, W.M.A.W.; Aroua, M.K.D. Recent Trends in Removal and Recovery of Heavy Metals from Wastewater by Electrochemical Technologies. Rev. Chem. Eng. 2017, 33, 359–386. [Google Scholar] [CrossRef]
- Choumane, R.; Peulon, S. Development of an Efficient Electrochemical Process for Removing and Separating Soluble Pb(II) in Aqueous Solutions in Presence of Other Heavy Metals: Studies of Key Parameters. Chem. Eng. J. 2021, 423, 130161. [Google Scholar] [CrossRef]
- Choumane, R.; Peulon, S. Innovative Electrochemical Process for a Total Removal and/or Separation of Soluble Heavy Metals. J. Environ. Chem. Eng. 2022, 10, 108607. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent Trends of Heavy Metal Removal from Water/Wastewater by Membrane Technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of Heavy Metal Ions from Wastewater: A Comprehensive and Critical Review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Cirillo, A.I.; Tomaiuolo, G.; Guido, S. Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities. Micromachines 2021, 12, 820. [Google Scholar] [CrossRef]
- Trivunac, K.; Stevanovic, S. Removal of Heavy Metal Ions from Water by Complexation-Assisted Ultrafiltration. Chemosphere 2006, 64, 486–491. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.J.; Sillanpää, M.; Zhao, F. Recent Advances in Membrane Filtration for Heavy Metal Removal from Wastewater: A Mini Review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Habibu, S.; Abdullahi, S.S.A.; Mohammad, R.E.A.; Hussaini, A.; Magaji, H.; Al-dhawi, B.N.S.; Noor, A.; Jagaba, A.H. Membrane Technologies for Heavy Metals Removal from Water and Wastewater: A Mini Review. Case Stud. Chem. Environ. Eng. 2024, 9, 100538. [Google Scholar] [CrossRef]
- Kim, H.J.; Baek, K.; Kim, B.K.; Yang, J.W. Humic Substance-Enhanced Ultrafiltration for Removal of Cobalt. J. Hazard. Mater. 2005, 122, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Choo, K.H.; Kwon, D.J.; Lee, K.W.; Choi, S.J. Selective Removal of Cobalt Species Using Nanofiltration Membranes. Environ. Sci. Technol. 2002, 36, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Bouranene, S.; Fievet, P.; Szymczyk, A.; El-Hadi Samar, M.; Vidonne, A. Influence of Operating Conditions on the Rejection of Cobalt and Lead Ions in Aqueous Solutions by a Nanofiltration Polyamide Membrane. J. Memb. Sci. 2008, 325, 150–157. [Google Scholar] [CrossRef]
- Gherasim, C.-V.; Hancková, K.; Palarčík, J.; Mikulášek, P. Investigation of Cobalt(II) Retention from Aqueous Solutions by a Polyamide Nanofiltration Membrane. J. Memb. Sci. 2015, 490, 46–56. [Google Scholar] [CrossRef]
- Nguyen, N.C.; Chen, S.S.; Hsu, H.T.; Li, C.W. Separation of Three Divalent Cations (Cu2+, Co2+ and Ni2+) by NF Membranes from PHs3 to 5. Desalination 2013, 328, 51–57. [Google Scholar] [CrossRef]
- Thompson, L.A.; Linington, A.J. Potential Applications of Nanofiltration Membranes in Copper—Cobalt Processing; The Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2015; pp. 353–363. [Google Scholar]
- Lari, S.; Parsa, S.A.M.; Akbari, S.; Emadzadeh, D.; Lau, W.J. Fabrication and Evaluation of Nanofiltration Membrane Coated with Amino-Functionalized Graphene Oxide for Highly Efficient Heavy Metal Removal. Int. J. Environ. Sci. Technol. 2022, 19, 4615–4626. [Google Scholar] [CrossRef]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. Performance Evaluation of Reverse Osmosis Process in the Post-Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia. J. Water Process Eng. 2020, 34, 101116. [Google Scholar] [CrossRef]
- Kawther Hussein, T. Removal of Cobalt Ions from Wastewater by Batch and Flowing Forward Osmosis Processes. J. Ecol. Eng. 2019, 20, 121–126. [Google Scholar] [CrossRef]
- Liu, X.; Wu, J.; Liu, C.; Wang, J. Removal of Cobalt Ions from Aqueous Solution by Forward Osmosis. Sep. Purif. Technol. 2017, 177, 8–20. [Google Scholar] [CrossRef]
- Sylwan, I.; Thorin, E. Removal of Heavy Metals during Primary Treatment of Municipal Wastewater and Possibilities of Enhanced Removal: A Review. Water 2021, 13, 1121. [Google Scholar] [CrossRef]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment: A Review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, S.; Pan, S.Y.; Zhu, S.; Yu, Y.; Zheng, H. Performance Evaluation and Optimization of Flocculation Process for Removing Heavy Metal. Chem. Eng. J. 2020, 385, 123911. [Google Scholar] [CrossRef]
- Bazrafshan, E.; Mohammadi, L.; Ansari-Moghaddam, A.; Mahvi, A.H. Heavy Metals Removal from Aqueous Environments by Electrocoagulation Process—A Systematic Review. J. Environ. Health Sci. Eng. 2015, 13, 74. [Google Scholar] [CrossRef]
- Ghazy, S.; El-Morsy, S.; Ragab, A. Ion Flotation of Copper(II) and Lead(II) from Environmental Water Samples. J. Appl. Sci. Environ. Manag. 2010, 12, 55499. [Google Scholar] [CrossRef]
- Da Rosa, J.J.; Rubio, J. The FF (Flocculation-Flotation) Process. Miner. Eng. 2005, 18, 701–707. [Google Scholar] [CrossRef]
- Hua, Q.; Guo, H.; Wang, D.; Huang, Y.; Cao, Y.; Peng, W.; Fan, G. A New Strategy for Selective Recovery of Low Concentration Cobalt Ions from Wastewater: Based on Selective Chelating Precipitation-Flotation Process. J. Taiwan Inst. Chem. Eng. 2022, 141, 104605. [Google Scholar] [CrossRef]
- Schlebusch, I.; Pott, R.W.M.; Tadie, M. The Ion Flotation of Copper, Nickel, and Cobalt Using the Biosurfactant Surfactin. Discov. Chem. Eng. 2023, 3, 7. [Google Scholar] [CrossRef]
- Taseidifar, M.; Makavipour, F.; Pashley, R.M.; Rahman, A.F.M.M. Removal of Heavy Metal Ions from Water Using Ion Flotation. Environ. Technol. Innov. 2017, 8, 182–190. [Google Scholar] [CrossRef]
- Mahmoud, M.R.; Lazaridis, N.K.; Matis, K.A. Study of Flotation Conditions for Cadmium(II) Removal from Aqueous Solutions. Process Saf. Environ. Prot. 2015, 94, 203–211. [Google Scholar] [CrossRef]
- Koutlemani, M.M.; Mavros, P.; Zouboulis, A.I.; Matis, K.A. Recovery of Co2+ Ions from Aqueous Solutions by Froth Flotation. Sep. Sci. Technol. 1994, 29, 867–886. [Google Scholar] [CrossRef]
- Koutlemani, M.M.; Mavros, P.; Zouboulis, A.I. Recovery of Co2+ Ions from Aqueous Solutions by Froth Flotation. Part II. CoS Precipitation. Sep. Sci. Technol. 1995, 30, 263–284. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.; Aboulwafa, M.M.; Hassouna, N.A.H. Characterization of Surfactin Produced by Bacillus Subtilis Isolate BS5. Appl. Biochem. Biotechnol. 2008, 150, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Arutchelvi, J.; Sangeetha, J.; Philip, J.; Doble, M. Self-Assembly of Surfactin in Aqueous Solution: Role of Divalent Counterions. Colloids Surf. B Biointerfaces 2014, 116, 396–402. [Google Scholar] [CrossRef] [PubMed]
- LeVan, M.D.; Giorgio, C.; James, A.R.; Krista, S.W. Perry’s Chemical Engineers’ Handbook, 9th ed.; Green, D.W., Southard, M.Z., Eds.; McGraw-Hill Education: New York, NY, USA, 2019; Volume 16, pp. 16-1–16-66. [Google Scholar]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of Heavy Metals on Conventional and Nanostructured Materials for Wastewater Treatment Purposes: A Review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, V.; Sharma, K.; Kumar, V.; Choudhary, S.; Mankotia, P.; Kumar, B.; Mishra, H.; Moulick, A.; Ekielski, A.; et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials 2021, 14, 4702. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. State of the Art for the Biosorption Process—A Review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef]
- Al-Shahrani, S.S. Treatment of Wastewater Contaminated with Cobalt Using Saudi Activated Bentonite. Alexandria Eng. J. 2014, 53, 205–211. [Google Scholar] [CrossRef]
- Da̧browski, A.; Hubicki, Z.; Podkościelny, P.; Robens, E. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere 2004, 56, 91–106. [Google Scholar] [CrossRef]
- Bashir, A.; Malik, L.A.; Ahad, S.; Manzoor, T.; Bhat, M.A.; Dar, G.N.; Pandith, A.H. Removal of Heavy Metal Ions from Aqueous System by Ion-Exchange and Biosorption Methods. Environ. Chem. Lett. 2018, 17, 729–754. [Google Scholar] [CrossRef]
- Irshad, A.; Atif, M.; Ghani, A.; Ali, B.; Ahmad, S.A.; Alex, M. Experimental Evaluation of Cobalt Adsorption Capacity of Walnut Shell by Organic Acid Activation. Sci. Rep. 2023, 13, 7356. [Google Scholar] [CrossRef]
- Zhao, Y.; Yao, W.; Xing, S.; Guo, H.; Wang, S.; Sun, M.; Bi, J. Insights into the Synergistic, Neutral, and Antagonistic Adsorption Effects in Cobalt-Containing Wastewater Treatment. Chem. Eng. Sci. 2024, 298, 120318. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Q.; Chen, J.; Deng, Y.; Wang, X.; Niu, H.; Wu, D. Surface Chitosan-Grafting Modification of Polyimide Fibers for Cobalt Ion Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2024, 697, 133935. [Google Scholar] [CrossRef]
- Amoo, K.O.; Amoo, T.E.; Olafadehan, O.A.; Alagbe, E.E.; Adesina, A.J.; Bamigboye, M.O.; Olowookere, B.D.; Ajayi, K.D. Adsorption of Cobalt (II) Ions from Aqueous Solution Using Cow Bone and Its Derivatives: Kinetics, Equilibrium and Thermodynamic Comparative Studies. Results Eng. 2023, 20, 101635. [Google Scholar] [CrossRef]
- Chi, L.; Wang, Z.; Sun, Y.; Lu, S.; Yao, Y. Removal of Cobalt Ions from Waste Water by Friedel’s Salt. Mater. Res. Express 2019, 6, 015508. [Google Scholar] [CrossRef]
- Majidi Moghadam, R.; Khosravi-Nikou, M.R.; Anvaripour, B. Equilibrium, Kinetics and Thermodynamics Studies on Adsorptive Removal of Cobalt Ions from Wastewater Using MIL-100(Fe). Int. J. Sustain. Eng. 2019, 12, 131–140. [Google Scholar] [CrossRef]
- Van Roosendael, S.; Onghena, B.; Roosen, J.; Michielsen, B.; Wyns, K.; Mullens, S.; Binnemans, K. Recovery of Cobalt from Dilute Aqueous Solutions Using Activated Carbon-Alginate Composite Spheres Impregnated with Cyanex 272. RSC Adv. 2019, 9, 18734–18746. [Google Scholar] [CrossRef]
- Yuan, G.; Tu, H.; Li, M.; Liu, J.; Zhao, C.; Liao, J.; Yang, Y.; Yang, J.; Liu, N. Glycine Derivative-Functionalized Metal-Organic Framework (MOF) Materials for Co(II) Removal from Aqueous Solution. Appl. Surf. Sci. 2019, 466, 903–910. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.; Zhang, K.; Xuan, H.; Alsaedi, A.; Hayat, T.; Chen, C. Fabrication of Si/Ti–Based Amino-Functionalized Hybrids and Their Adsorption towards Cobalt(II). J. Mol. Liq. 2019, 289, 111051. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, L.; Hu, S.; Liu, Y. Optimized Synthesis of Novel Hydrogel for the Adsorption of Copper and Cobalt Ions in Wastewater. RSC Adv. 2019, 9, 16058–16068. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M.; Islam, A.; Asiri, A.M.; Rahman, M.M. Optimization of an Innovative Composited Material for Effective Monitoring and Removal of Cobalt(II) from Wastewater. J. Mol. Liq. 2020, 298, 112035. [Google Scholar] [CrossRef]
- Budnyak, T.M.; Piątek, J.; Pylypchuk, I.V.; Klimpel, M.; Sevastyanova, O.; Lindström, M.E.; Gun’Ko, V.M.; Slabon, A. Membrane-Filtered Kraft Lignin-Silica Hybrids as Bio-Based Sorbents for Cobalt(II) Ion Recycling. ACS Omega 2020, 5, 10847–10856. [Google Scholar] [CrossRef] [PubMed]
- Labaali, Z.; Kholtei, S.; Naja, J. Co2+ Removal from Wastewater Using Apatite Prepared through Phosphate Waste Rocks Valorization: Equilibrium, Kinetics and Thermodynamics Studies. Sci. Afr. 2020, 8, e00350. [Google Scholar] [CrossRef]
- Piątek, J.; de Bruin-Dickason, C.N.; Jaworski, A.; Chen, J.; Budnyak, T.; Slabon, A. Glycine-Functionalized Silica as Sorbent for Cobalt(II) and Nickel(II) Recovery. Appl. Surf. Sci. 2020, 530, 147299. [Google Scholar] [CrossRef]
- Montes de Oca-Palma, R.; Solache-Ríos, M.; Jiménez-Reyes, M.; García-Sánchez, J.J.; Almazán-Sánchez, P.T. Adsorption of Cobalt by Using Inorganic Components of Sediment Samples from Water Bodies. Int. J. Sediment Res. 2021, 36, 524–531. [Google Scholar] [CrossRef]
- Foroutan, R.; Peighambardoust, S.J.; Ahmadi, A.; Akbari, A.; Farjadfard, S.; Ramavandi, B. Adsorption Mercury, Cobalt, and Nickel with a Reclaimable and Magnetic Composite of Hydroxyapatite/Fe3O4/Polydopamine. J. Environ. Chem. Eng. 2021, 9, 105709. [Google Scholar] [CrossRef]
- Wang, R.; Deng, L.; Fan, X.; Li, K.; Lu, H.; Li, W. Removal of Heavy Metal Ion Cobalt (II) from Wastewater via Adsorption Method Using Microcrystalline Cellulose–Magnesium Hydroxide. Int. J. Biol. Macromol. 2021, 189, 607–617. [Google Scholar] [CrossRef]
- Wang, F.; Wu, P.; Shu, L.; Huang, D.; Liu, H. High-Efficiency Adsorption of Cd(II) and Co(II) by Ethylenediaminetetraacetic Dianhydride-Modified Orange Peel as a Novel Synthesized Adsorbent. Environ. Sci. Pollut. Res. 2022, 29, 25748–25758. [Google Scholar] [CrossRef]
- Phuong, N.T.; Thom, N.T.; Nam, P.T.; Van Trang, N.; Huong, T.T.T.; Hai, D.T.; Thu, L.P.; Osial, M.; Thanh, D.T.M. Co2+ and Cr3+ Ions Removal from Wastewater by Using Nanostructural Hydroxyapatite. Vietnam J. Chem. 2022, 60, 135–147. [Google Scholar] [CrossRef]
- Shayegan, H.; Safari Fard, V.; Taherkhani, H.; Rezvani, M.A. Efficient Removal of Cobalt(II) Ion from Aqueous Solution Using Amide-Functionalized Metal-Organic Framework. J. Appl. Organomet. Chem. 2022, 2, 109–118. [Google Scholar]
- Yang, P.; Wang, J.; Wang, S.; Yang, C.; Zhao, P.; Huang, B.; Wang, Q.; Wang, H. Study on the Adsorption Mechanism of Cobalt and Nickel in Manganese Sulfate by δ-MnO2. ACS Omega 2022, 7, 37452–37464. [Google Scholar] [CrossRef] [PubMed]
- Kadhim, H.H.; Saleh, K.A. Removing Cobalt Ions from Industrial Wastewater Using Chitosan. Iraqi J. Sci. 2022, 63, 3251–3263. [Google Scholar] [CrossRef]
- Bin Bandar, K.; Aljlil, S. Utilization of Prepared Nanocellulose as a Biopolymer for Adsorption Kinetics of Cobalt Ions from Wastewater. Polymers 2023, 15, 2143. [Google Scholar] [CrossRef] [PubMed]
- Conte, N.; Díez, E.; Almendras, B.; Gómez, J.M.; Rodríguez, A. Sustainable Recovery of Cobalt from Aqueous Solutions Using an Optimized Mesoporous Carbon. J. Sustain. Metall. 2023, 9, 266–279. [Google Scholar] [CrossRef]
- Ngo, T.S.; Tracey, C.T.; Navrotskaya, A.G.; Bukhtiyarov, A.V.; Krivoshapkin, P.V.; Krivoshapkina, E.F. Reusable Carbon Dot/Chitin Nanocrystal Hybrid Sorbent for the Selective Detection and Removal of Cr(VI) and Co(II) Ions from Wastewater. Carbohydr. Polym. 2023, 304, 120471. [Google Scholar] [CrossRef]
- Rasheed, F.A.; Sillanpää, M.; Moradi, M. Cobalt Adsorption by Ca(OH)2 Modified Quartz Rock Particles Adsorbent: Equilibrium Isotherm, Kinetics, and Thermodynamic Studies. Desalin. Water Treat. 2024, 319, 100477. [Google Scholar] [CrossRef]
- Salem, O.M.; Khalek, A.A.; Mohamed, F. Novel Biocomposites Based on Carbon Xerogel Derived from Tannin for Improved Cobalt (II) Adsorption: Practical and Theoretical Approaches. Diam. Relat. Mater. 2024, 147, 111302. [Google Scholar] [CrossRef]
- Alguacil, F.J. La Eliminación de Metales Tóxicos Presentes En Efluentes Líquidos Mediante Resinas de Cambio Iónico. Parte XI: Cobalto(II)/H+/Lewatit TP260. Rev. Metal. 2019, 55, 154. [Google Scholar] [CrossRef]
- Mnasri-ghnimi, S.; Frini-srasra, N. Applied Clay Science Removal of Heavy Metals from Aqueous Solutions by Adsorption Using Single and Mixed Pillared Clays. Appl. Clay Sci. 2019, 179, 105151. [Google Scholar] [CrossRef]
- Ferri, M.; Campisi, S.; Gervasini, A. Nickel and Cobalt Adsorption on Hydroxyapatite: A Study for the de-Metalation of Electronic Industrial Wastewaters. Adsorption 2019, 25, 649–660. [Google Scholar] [CrossRef]
- Araissi, M.; Elaloui, E.; Moussaou, Y. The Removal of Cadmium, Cobalt, and Nickel by Adsorption with Na-Y Zeolite. Iran. J. Chem. Chem. Eng. 2020, 39, 169–179. [Google Scholar]
- Salmani, M.H.; Ehrampoush, M.H.; Eslami, H.; Eftekhar, B. Synthesis, Characterization and Application of Mesoporous Silica in Removal of Cobalt Ions from Contaminated Water. Groundw. Sustain. Dev. 2020, 11, 100425. [Google Scholar] [CrossRef]
- Bekchanov, D.; Kawakita, H.; Mukhamediev, M.; Khushvaktov, S.; Juraev, M. Sorption of Cobalt (II) and Chromium (III) Ions to Nitrogen- and Sulfur-Containing Polyampholyte on the Basis of Polyvinylchloride. Polym. Adv. Technol. 2021, 32, 2700–2709. [Google Scholar] [CrossRef]
- Kuwer, P.; Yadav, A.; Labhasetwar, P.K. Adsorption of Cupric, Cadmium and Cobalt Ions from the Aqueous Stream Using the Composite of Iron(II, III) Oxide and Zeolitic Imidazole Framework-8. Water Sci. Technol. 2021, 84, 2288–2303. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Chanbasha, B.; Al-Arfaj, A.A.; Kon’kova, T.; Ali, I. Super-Fast Removal of Cobalt Metal Ions in Water Using Inexpensive Mesoporous Carbon Obtained from Industrial Waste Material. Environ. Technol. Innov. 2021, 21, 101257. [Google Scholar] [CrossRef]
- Abdelfatah, A.; Abdel-gawad, O.F.; Elzanaty, A.M.; Rabie, A.M. Fabrication and Optimization of Poly (Ortho -Aminophenol) Doped Glycerol for Efficient Removal of Cobalt Ion from Wastewater. J. Mol. Liq. 2022, 345, 117034. [Google Scholar] [CrossRef]
- Zhao, Z.; Dong, Z.; Wang, F.; Wang, F.; Xia, M. Innovative Strategy of Turning Waste into Treasure: High-Efficiency Adsorption of Heavy Metals Pollutants by Modified Amorphous Calcium Phosphate Prepared with Phosphogypsum Waste. J. Environ. Chem. Eng. 2024, 12, 112994. [Google Scholar] [CrossRef]
- Satyam, S.; Patra, S. Innovations and Challenges in Adsorption-Based Wastewater Remediation: A Comprehensive Review. Heliyon 2024, 10, e29573. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Omoarukhe, F.O.; Ojukwu, V.E.; Iwuozor, K.O.; Igwegbe, C.A. Cost of Adsorbent Preparation and Usage in Wastewater Treatment: A Review. Clean. Chem. Eng. 2022, 3, 100042. [Google Scholar] [CrossRef]
- Liu, Y.; Biswas, B.; Hassan, M.; Naidu, R. Green Adsorbents for Environmental Remediation: Synthesis Methods, Ecotoxicity, and Reusability Prospects. Processes 2024, 12, 1195. [Google Scholar] [CrossRef]
- Kuippers, G.; Bassil, N.M.; Lloyd, J.R. Microbial Colonization of Cementitious Geodisposal Facilities, and Potential “Biobarrier” Formation; Elsevier Inc.: Amsterdam, The Netherlands, 2021; ISBN 9780128186954. [Google Scholar]
- Sable, H.; Kumar, V.; Singh, V.; Rustagi, S.; Chahal, S.; Chaudhary, V. Strategically Engineering Advanced Nanomaterials for Heavy-Metal Remediation from Wastewater. Coord. Chem. Rev. 2024, 518, 216079. [Google Scholar] [CrossRef]
- Gao, X.; Meng, X. Photocatalysis for Heavy Metal Treatment: A Review. Processes 2021, 9, 1729. [Google Scholar] [CrossRef]
- Liu, N.; Sun, Z.; Zhang, H.; Klausen, L.H.; Moonhee, R.; Kang, S. Emerging High-Ammonia-nitrogen Wastewater Remediation by Biological Treatment and Photocatalysis Techniques. Sci. Total Environ. 2023, 875, 162603. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Huang, Y.; Zhang, Y.; Chen, L. Performance and Mechanism of Al, N Co-Doped Carbon/Nano-TiO2 Photocatalytic Oxidation for the Removal of Ammonia Nitrogen and Ni/Co Complexes from Ternary Precursor Wastewater. Chem. Eng. J. 2024, 479, 147829. [Google Scholar] [CrossRef]
- Wang, X.; Huang, Y.; Zhang, R.; Zhang, Y.; Chen, L. Photocatalytic Oxidation Degradability of Ammonia—Nitrogen and Ni/Co Ammonia Complexes in Ternary Precursor Wastewater by Constructing MoS2/g-C3N4 Heterojunction: Performance and Mechanism. Sep. Purif. Technol. 2024, 344, 127162. [Google Scholar] [CrossRef]
- Ngeno, E.C.; Mbuci, K.E.; Necibi, M.C.; Shikuku, V.O.; Olisah, C.; Ongulu, R.; Matovu, H.; Ssebugere, P.; Abushaban, A.; Sillanpää, M. Sustainable Re-Utilization of Waste Materials as Adsorbents for Water and Wastewater Treatment in Africa: Recent Studies, Research Gaps, and Way Forward for Emerging Economies. Environ. Adv. 2022, 9, 100282. [Google Scholar] [CrossRef]
Adsorbent | Co2+ sol. conc. (mg/L) | Dosage (g/L) | t (h) | pH | T (°C) | Sorption Capacity (mg/g) | Sorption Efficiency (%) | Year and Ref. |
---|---|---|---|---|---|---|---|---|
Adsorption | ||||||||
Friedel’s salt | 2–16 mM | 4 | 24 | 4–6 | 25 | 217.2 | > 99 | 2019 [125] |
MIL-100(Fe) | 100–200 | 1 | 1.75 | 8.9 | 38 | 119 | 93.4 | 2019 [126] |
Activated carbon–alginate-Cyanex 272 spheres | 0.5 mM | 5 | 1 | 6–7 | Ambient | 12.4 | 96.7 | 2019 [127] |
MIL-101-glycine MIL-101-diglycine MIL-101-triglycine | 10–50 | 0.1 | 24 | 8.3–9 | 25–35 | 185 227 232 | > 99 | 2019 [128] |
Si/Ti–based amino-functionalized hybrids | 10–1000 | 20 | >10 | 25–45 | 354 | N.S.* | 2019 [129] | |
Chitosan and glucose-based hydrogel | 100 | 0.2 | 3 | 7 | 20 | 286 | 74.8 | 2019 [130] |
3-(((5-ethoxy-benzene-thiol)imino)methyl)–salicylic acid immobilized onto mesoporous silica | 2–72 | 0.33 | 1–3 | 8 | N.S. | 185.23 | N.S. | 2020 [131] |
Lignin deposited on nanoporous silica | 2–200 | 2.8 | 1.5 | ~7 | 22 | 18.5 | 63 | 2020 [132] |
Apatite from phosphate waste rocks | 10–100 | 1 | 3 | 3–7 | 25 | 8.64 | 85 | 2020 [133] |
Glycine functionalized silica particles | 2–280 | 0.5 | 3 | 2–8 | 22/40/60 | 2.81 mM/g | 84.7 | 2020 [134] |
Two sediments from water bodies | 2.5–50 | 10 | 38 | 2–8 | 25–60 | 0.40/0.93 | 45/96 | 2021 [135] |
Magnetic composite of hydroxyapatite/Fe3O4/polydopamine | 5–70 | 0.25–5 | 2.2 | 2–8 | 25–50 | 49.32 | >90 | 2021 [136] |
Microcrystalline cellulose- magnesium hydroxide | 100–500 | 2.5 | 1 | 2–8 | 20–50 | 153.8 | 97.7 | 2021 [137] |
Ethylenediaminetetraacetic dianhydride-modified orange peel | 20–150 | 1 | 2 | 3–7 | Ambient | 40.48 | N.S. * | 2022 [138] |
Natural apatite (nano-structural) | 5–370 | 0.1–8 | 1 | 1.7–8 | 25–75 | 13.52 | 85 | 2022 [139] |
Amide-functionalized metal-organic framework (TMU-24) | 5–125 | 0.1 | 0.5 | 7 | Ambient | 500 | N.S. | 2022 [140] |
δ-MnO2 | 80 | 10 | 1 | 7 | 80 | N.S. | >80 | 2022 [141] |
Chitosan | 5 × 10−2–10−4 M | 2 | 0.5 | 2–6 | 25 | 62 | >99 | 2022 [142] |
Nanocellulose from discarded palm leaves | 100–600 | 20 | 1.5 | 5 | 20 | 5.98 | >99 | 2023 [143] |
Mesoporous activated carbon | 5–200 | 10 | 0.25 | 5–6 | 25 | 5.8 | 66 | 2023 [144] |
Cow bone/cow bone char/activated cow bone carbon | 100–500 | 10 | 4 | 2–8 | 30 | 52.5/58.8/ 64.5 | 49.5/53/40 | 2023 [124] |
Carbon dot/chitin nanocrystal | 0–1000 | 100 mL/L | 1 | 2–13 | 25–60 | 152 | N.S. | 2023 [145] |
Ca(OH)2 modified quartz rock | 60 | 5 | 2 | 2–10 | 25 | 47.1 | >80 | 2024 [146] |
Carbon xerogels derived from tannin | 10–50 | 1 | 0.5 | 1–11 | 25 | 9.9 | >97 | 2024 [147] |
Adsorption and/through ion exchange | ||||||||
Lewatit TP260 (Resin) | 10 | 0.07–0.5 | 5 | 1–5 | 20–60 | 62 | 99.5 | 2019 [148] |
Single and mixed pillared clays | 10–100 | 0.1 | 9 | 6–10 | 40 | 7–16 | 53 | 2019 [149] |
Hydroxyapatite | 0.25–4.2 mM | 10 | 24 | 9 | 30 | 22.5 | >90 | 2019 [150] |
Faujasite NaY (Zeolite) | 0.1–10 mM/L | 0.15 | 12 | 5–6 | 25 | 0.92 mM/g | N.S. | 2020 [151] |
Mesoporous silica | 5–50 | 0.3 | 8 | 3–9 | 25 | 6.62 | 88 | 2020 [152] |
Nitrogen and sulfur-containing PVC-based polyampholyte | 0.01–0.25 mol/L | 1 | 10 | 5 | 30–50 | 3.45 mM/g | N.S. | 2021 [153] |
Composite of Fe3O4 and zeolitic imidazole framework-8 | 5–100 | 0.1–2 | 5 | 2–7 | 28 | 71.29 | 99.2 | 2021 [154] |
Functionalized mesoporous carbon | 0.1–0.7 | 0.1–0.5 | 0.2 | 2–10 | 20–30 | 1.59 | 95.5 | 2021 [155] |
Poly(ortho-aminophenol) doped glycerol | 10–100 | 0.4–4 | 1 | 2–10 | Ambient | 117.9 | 96 | 2022 [156] |
Modified walnut shell | 3000 | 0.5 | 1 | 3–7 | Ambient | 1371 | > 86 | 2023 [121] |
Chitosan-grafted polyimide fibers | 500 | 1 | 5 | 2–7 | 20–60 | 46 | >89 | 2024 [123] |
Hydroxyapatite(HAP)/HAP dopped with 2-hydroxy-phosphonoacetic acid | 25–200 | 0.5 | 2.5 | 2–10 | 25 | 74.5/171.4 | >86 | 2024 [157] |
Method | Advantages | Limitations |
---|---|---|
Precipitation | Simple operation Technically mature and practical Applicable for a high concentration of HM Low capital cost, cost-effective operation | Subsequent separation of sludge is needed (sedimentation) Large quantities of sludge are generated Low selectivity Extra cost for chemical reagents and sludge disposal |
Electrochemical | High recovery No chemicals required No secondary pollution is generated Available for large-scale applications | Relatively expensive technology Requires (expensive) electrodes High electrical energy consumption |
Membrane separation | Mature as it is practical High metal ions extraction efficiency | Membrane fouling and biofouling Pretreatment operations are needed High costs: capital, maintenance, operation Concentrate streams for disposal/recycling/treatment |
Coagulation/ Flocculation | High efficiency Simple operation Accessible inorganic precipitants | Low selectivity Extra cost for chemical reagents and sludge disposal Other treatment is required to achieve low HM concentration |
Flotation | High efficiency Low sludge production | Toxic sludge for disposal High costs: capital, maintenance, operation Other treatment is required to achieve low HM concentration |
Adsorption | Simple operation Strong applicability Allows selectivity | Adsorbents disposal Effectiveness strongly depends on adsorbent |
Ion exchange | Low capital cost High efficiency | Varied selectivity depending on resin High maintenance and operation costs Pre-treatment needed |
Photocatalysis | No (or less) chemical consumption Eco-friendly Less sludge production Clean products | High capital and operation costs Possible formation of by-products |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobre, T.; Isopencu, G.O.; Bdaiwi Ahmed, S.; Deleanu, I.M. Heavy Metal Pollution and Solutions for Its Control: General Aspects with a Focus on Cobalt Removal and Recovery from Aqueous Systems. ChemEngineering 2024, 8, 118. https://doi.org/10.3390/chemengineering8060118
Dobre T, Isopencu GO, Bdaiwi Ahmed S, Deleanu IM. Heavy Metal Pollution and Solutions for Its Control: General Aspects with a Focus on Cobalt Removal and Recovery from Aqueous Systems. ChemEngineering. 2024; 8(6):118. https://doi.org/10.3390/chemengineering8060118
Chicago/Turabian StyleDobre, Tănase, Gabriela Olimpia Isopencu, Shaalan Bdaiwi Ahmed, and Iuliana Mihaela Deleanu. 2024. "Heavy Metal Pollution and Solutions for Its Control: General Aspects with a Focus on Cobalt Removal and Recovery from Aqueous Systems" ChemEngineering 8, no. 6: 118. https://doi.org/10.3390/chemengineering8060118
APA StyleDobre, T., Isopencu, G. O., Bdaiwi Ahmed, S., & Deleanu, I. M. (2024). Heavy Metal Pollution and Solutions for Its Control: General Aspects with a Focus on Cobalt Removal and Recovery from Aqueous Systems. ChemEngineering, 8(6), 118. https://doi.org/10.3390/chemengineering8060118