Photo-Oxidation of Various Organic Compounds, Including Pollutants, by Europium (III) in Fuel Cell Systems
Abstract
:1. Introduction
- Proton-exchange membrane fuel cells (PEMFCs);
- o
- Low-temperature-PEMFC;
- o
- High-temperature-PEMFC;
- Direct methanol fuel cell (DMFC);
- Phosphoric acid fuel cell (PAFC);
- Molten carbonate fuel cell (MCFC);
- Solid oxide fuel cell (SOFC);
- Alkaline fuel cell (AFC).
2. Materials and Methods
2.1. Description of the Self-Constructed Photo Fuel Cell
2.2. Analysis of Various Possible Fuels for the Planned Fuel Cell Application
2.3. Product Extraction with Toluene
2.4. Qualitative Analysis of Intermediate and End Products Occurring in the Described Fuel Cell Application
2.5. Theoretical Estimation of the Eu (III)/Eu (II) Ratio
3. Results
3.1. Overview of Selected Performance Parameters of the Fuel Cell as a Function of the Substrates Examined
3.2. Results of the Product Analysis for the Conversion of the Examined Substrates Using Eu3+
3.2.1. Results of the Product Analysis for the Implementation of Ethanol
3.2.2. Results of the Product Analysis for the Implementation of Ouzo
- -
- Xylene;
- -
- Methylbenzene;
- -
- Ethylbenzene;
- -
- 1,3-Cyclohexanedione enol;
- -
- 1-Ethyl-5,2-cyclohexene-1-one;
- -
- Bicyclo(2,2,2)octane-2,6-dione;
- -
- 1H- Xanthene-1,8-(2H)dione-3,4,5,6,7,9-hexahydrate.
3.2.3. Results of the Product Analysis for the Implementation of Acetic Acid
3.2.4. Results of the Product Analysis for the Implementation of Glucose
4. Discussion
4.1. Discussion of the Reaction of the These Substances with Eu3+ in the Fuel Cell
4.1.1. Discussion of the Reaction of Ethanol and Acetic Acid with Eu3+ in the Fuel Cell
4.1.2. Discussion of the Reaction of Ouzo with Eu3+ in the Fuel Cell
4.1.3. Discussion of the Reaction of Glucose with Eu3+ in the Fuel Cell
4.2. Comparison of the Electrical Power with That Already Described for Photo Fuel Cells
4.3. Discussion of the Observed Power Fluctuations for the Tested Substrates
5. Conclusions
- The quantity of Eu(II) ions undergoing oxidation at the anode (donating electrons to it) rather than causing secondary photo- or thermochemical reactions in solution;
- A variety of photoreactions involving Eu(II) ions and different organic compounds;
- Previously unidentified side reactions potentially occurring at the anode or cathode.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Substrate | Current | Voltage | ||||
---|---|---|---|---|---|---|
Min. [μA] | Max. [μA] | Ø [μA] | Min. [mV] | Max. [mV] | Ø [mV] | |
EtOH 10.00% | 10.86 | 28.66 | 26.40 | 3.26 | 8.60 | 7.92 |
EtOH 99.95% | 1.22 | 28.64 | 5.62 | 0.37 | 8.59 | 2.59 |
Ouzo | 1.17 | 21.71 | 12.01 | 6.35 | 6.51 | 3.60 |
Acetic acid 25% | 6.03 | 216.47 | 125.91 | 1.81 | 64.94 | 37.77 |
Glucose | 23.88 | 30.38 | 26.15 | 7.16 | 9.11 | 7.86 |
Appendix C
Appendix D
References
- Kurzweil, P. Brennstoffzellentechnik: Grundlagen, Komponenten, Systeme, Anwendungen; Springer Vieweg: Wiesbaden, Germany, 2013. [Google Scholar]
- Sena, I.C.; Sales, D.d.O.; Andrade, T.S.; Rodriguez, M.; Da Silva, A.C.; Nogueira, F.G.E.; Rodrigues, J.L.; de Mesquita, J.P.; Pereira, M.C. Photoassisted chemical energy conversion into electricity using a sulfite-iron photocatalytic fuel cell. J. Electroanal. Chem. 2021, 881, 114940. [Google Scholar] [CrossRef]
- Onishi, T.; Fujishima, M.; Tada, H. Solar-Driven One-Compartment Hydrogen Peroxide-Photofuel Cell Using Bismuth Vanadate Photoanode. ACS Omega 2018, 3, 12099–12105. [Google Scholar] [CrossRef] [PubMed]
- Akita, A.; Masuda, T.; Fujiwara, K.; Fujishima, M.; Tada, H. One-Compartment Hydrogen Peroxide-Photofuel Cell Using TiO2 Photoanode and Prussian Blue Cathode. J. Electrochem. Soc. 2018, 165, F300–F304. [Google Scholar] [CrossRef]
- Kaneko, M.; Nemoto, J.; Ueno, H.; Gokan, N.; Ohnuki, K.; Horikawa, M.; Saito, R.; Shibata, T. Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem. Commun. 2006, 8, 336–340. [Google Scholar] [CrossRef]
- Iyatani, K.; Horiuchi, Y.; Moriyasu, M.; Fukumoto, S.; Cho, S.-H.; Takeuchi, M.; Matsuoka, M.; Anpo, M. Development of separate-type Pt-free photofuel cells based on visible-light responsive TiO2 photoanode. J. Mater. Chem. 2012, 22, 10460. [Google Scholar] [CrossRef]
- Masuda, T.; Fujishima, M.; Tada, H. Photo-effect on the electromotive force in two-compartment hydrogen peroxide-photofuel cell. Electrochem. Commun. 2018, 93, 31–34. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, S.; Fan, W.; Ma, W.; Liang, Z.; Shi, J.; Liao, S.; Li, C. Photoassisted Oxygen Reduction Reaction in H2–O2 Fuel Cells. Angew. Chem. 2016, 128, 14968–14971. [Google Scholar] [CrossRef]
- Sfaelou, S.; Lianos, P. Photoactivated Fuel Cells (PhotoFuelCells). An alternative source of renewable energy with environmental benefits. AIMS Mater. Sci. 2016, 3, 270–288. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Yang, H.; Ouyang, D.; Liu, T.; Liu, D.; Zhao, X. Construction of electron transfer chains with methylene blue and ferric ions for direct conversion of lignocellulosic biomass to electricity in a wide pH range. Appl. Catal. B Environ. 2020, 265, 118578. [Google Scholar] [CrossRef]
- Matsumoto, A.; Azuma, N. Photodecomposition of europium(III) acetate and formate in aqueous solutions. J. Phys. Chem. 1988, 92, 1830–1835. [Google Scholar] [CrossRef]
- Lui, G.; Jiang, G.; Fowler, M.; Yu, A.; Chen, Z. A high performance wastewater-fed flow-photocatalytic fuel cell. J. Power Sources 2019, 425, 69–75. [Google Scholar] [CrossRef]
- Blind, F. Orientierende Untersuchungen zur Platinmetall-freien Aktivierung von CH-Bindungen für Europium-basierte Brennstoffzellenanwendungen. Master’s Thesis, TU Dresden, Dresden, Germany, June 2018. [Google Scholar]
- Grove, W.R. The Correlation of Physical Forces; Longmans, Green: London, UK, 1874. [Google Scholar]
- Schönbein, C.F. Neuen Beobachtungen über die Volta’sche Polarisation fester und flüssiger Leiter. Ann. Phys. Chem. 1839, 123, 101. [Google Scholar] [CrossRef]
- Morss, L.R. Thermochemical properties of yttrium, lanthanum, and the lanthanide elements and ions. Chem. Rev. 1976, 76, 827–841. [Google Scholar] [CrossRef]
- Cokal, E.J. Electroanalytical Chemistry of the Rare-Earths; The University of Arizona: Tucson, AZ, USA, 1963. [Google Scholar]
- Arman, M.Ö.; Geboes, B.; van Hecke, K.; Binnemans, K.; Cardinaels, T. Kinetics of electrochemical Eu3+ to Eu2+ reduction in aqueous media. Electrochim. Acta 2024, 484, 144055. [Google Scholar] [CrossRef]
- Andrade, T.S.; Dracopoulos, V.; Keramidas, A.; Pereira, M.C.; Lianos, P. Charging a vanadium redox battery with a photo(catalytic) fuel cell. Sol. Energy Mater. Sol. Cells 2021, 221, 110889. [Google Scholar] [CrossRef]
- Andrade, T.S.; Dracopoulos, V.; Pereira, M.C.; Lianos, P. Unmediated photoelectrochemical charging of a Zn-air battery: The realization of the photoelectrochemical battery. J. Electroanal. Chem. 2020, 878, 114709. [Google Scholar] [CrossRef]
- Andrade, T.S.; Pereira, M.C.; Lianos, P. High voltage gain in photo-assisted charging of a metal-air battery. J. Electroanal. Chem. 2020, 878, 114559. [Google Scholar] [CrossRef]
- Andrade, T.S.; Sá, B.A.C.; Sena, I.C.; Neto, A.R.S.; Nogueira, F.G.E.; Lianos, P.; Pereira, M.C. A photoassisted hydrogen peroxide fuel cell using dual photoelectrodes under tandem illumination for electricity generation. J. Electroanal. Chem. 2021, 881, 114948. [Google Scholar] [CrossRef]
- Tennakone, K.; Ketipearachchi, U.S. The catalysis of hydrogen photogeneration from aqueous solutions of alcohols by the samarium(III) and europium(III) ions. Chem. Phys. Lett. 1990, 167, 524–526. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, F.; Yan, W.; Dong, W.; Zhou, J.; Zhang, W.; Xin, F.; Jiang, M. Perspectives for the microbial production of ethyl acetate. Appl. Microbiol. Biotechnol. 2020, 104, 7239–7245. [Google Scholar] [CrossRef]
- van Wettere, B.; Aghakhani, S.; Lauwaert, J.; Thybaut, J.W. Ethyl acetate synthesis by direct addition of acetic acid to ethylene on a silicotungstic acid catalyst: Experimental assessment of the kinetics. Appl. Catal. A Gen. 2022, 646, 118849. [Google Scholar] [CrossRef]
- Anli, R.E.; Bayram, M. Traditional Aniseed-Flavored Spirit Drinks. Food Rev. Int. 2010, 26, 246–269. [Google Scholar] [CrossRef]
- Haas, Y.; Stein, G.; Tenne, R. The Photochemistry of Solutions of Eu(III) and Eu(II). Isr. J. Chem. 1972, 10, 529–536. [Google Scholar] [CrossRef]
- Davis, D.D.; Stevenson, K.L.; King, G.K. Photolysis of europium(II) perchlorate in aqueous acidic solution. Inorg. Chem. 1977, 16, 670–673. [Google Scholar] [CrossRef]
- Shu, D.; Wu, J.; Gong, Y.; Li, S.; Hu, L.; Yang, Y.; He, C. BiOI-based photoactivated fuel cell using refractory organic compounds as substrates to generate electricity. Catal. Today 2014, 224, 13–20. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, W.; Yao, T.; Liao, S.; Li, A.; Li, D.; Liu, M.; Shi, J.; Liao, S.; Li, C. Design and Fabrication of a Dual-Photoelectrode Fuel Cell towards Cost-Effective Electricity Production from Biomass. ChemSusChem 2017, 10, 99–105. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Chen, Q.; Bai, J.; Zhou, B. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. J. Hazard. Mater. 2013, 262, 304–310. [Google Scholar] [CrossRef]
- Bai, J.; Wang, R.; Li, Y.; Tang, Y.; Zeng, Q.; Xia, L.; Li, X.; Li, J.; Li, C.; Zhou, B. A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. J. Hazard. Mater. 2016, 311, 51–62. [Google Scholar] [CrossRef]
- He, Y.; Yuan, R.; Leung, M.K. Highly efficient AgBr/BiVO4 photoanode for photocatalytic fuel cell. Mater. Lett. 2019, 236, 394–397. [Google Scholar] [CrossRef]
- He, Y.; Zhang, C.; Hu, J.; Leung, M.K. NiFe-layered double hydroxide decorated BiVO4 photoanode based bi-functional solar-light driven dual-photoelectrode photocatalytic fuel cell. Appl. Energy 2019, 255, 113770. [Google Scholar] [CrossRef]
Substrate | Concentration | Conductive Salt | Eu(III)-Triflate 5 | Total Volume |
---|---|---|---|---|
Ethanol 1 | 10.0% (v/v) | TBA-TFB 4 | 2 mM | 2 L |
Ouzo (Ethanol) | 70.0% (v/v) | |||
Ethanol 1 | 99.5% (v/v) | |||
Acetic acid 2 | 25.0% (v/v) | |||
Glucose 3 | 20 mM |
Substrate | Ratio Eu3+/Eu2+ | c(Eu2+) [mM] | c(Eu3+) [mM] |
---|---|---|---|
EtOH 10.00% | 1.075 × 107 | 2.326 × 10−7 | Ca. 2.5 |
EtOH 99.95% | 1.074 × 107 | 2.326 × 10−7 | |
Ouzo | 9.784 × 106 | 2.556 × 10−7 | |
Acetic acid 25% | 1.343 × 108 | 1.861 × 10−6 | |
Glucose | 1.100 × 107 | 2.273 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blind, F.; Fränzle, S. Photo-Oxidation of Various Organic Compounds, Including Pollutants, by Europium (III) in Fuel Cell Systems. ChemEngineering 2024, 8, 121. https://doi.org/10.3390/chemengineering8060121
Blind F, Fränzle S. Photo-Oxidation of Various Organic Compounds, Including Pollutants, by Europium (III) in Fuel Cell Systems. ChemEngineering. 2024; 8(6):121. https://doi.org/10.3390/chemengineering8060121
Chicago/Turabian StyleBlind, Felix, and Stefan Fränzle. 2024. "Photo-Oxidation of Various Organic Compounds, Including Pollutants, by Europium (III) in Fuel Cell Systems" ChemEngineering 8, no. 6: 121. https://doi.org/10.3390/chemengineering8060121
APA StyleBlind, F., & Fränzle, S. (2024). Photo-Oxidation of Various Organic Compounds, Including Pollutants, by Europium (III) in Fuel Cell Systems. ChemEngineering, 8(6), 121. https://doi.org/10.3390/chemengineering8060121