Impact of Physical Processes and Temperatures on the Composition, Microstructure, and Pozzolanic Properties of Oil Palm Kernel Ash
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Testing
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM/EDX)
3.2. X-Ray Fluorescence (XRF)
3.3. X-Ray Diffraction (XRD)
4. Conclusions
- The chemical composition and morphology of oil palm shell ash are critical elements influencing its pozzolanic reactivity and applicability in the construction industry. Therefore, a comprehensive characterization of oil palm shell ash was conducted using scanning electron microscopy (SEM). After analyzing, using scanning electron microscopy (SEM), the effect of physical processes such as cutting, grinding, and crushing, along with combustion at various temperatures, it was concluded that the sample M18A-c-m-T600°C-t1.5h-tr1h, subjected to a calcination temperature of 600 °C, along with a pre-calcination cutting and grinding process and subsequent crushing, exhibited the highest concentration of silica. For this reason, the oil palm kernel shell ash obtained at this temperature (600 °C) with the three indicated physical processes has potential use as a cementitious material.
- It was determined that the carbon, silica, and oxygen content is similar in samples subjected only to cutting and those with cutting and post-combustion crushing, while samples that also underwent milling showed a higher silica content. This highlights the influence of material fineness on its chemical behavior. Additionally, temperature emerges as a crucial factor in altering the chemical composition of the studied materials. The variation in silica concentrations indicates that thermal conditions during the calcination process have a direct effect on the redistribution and reaction of siliceous components present in the samples.
- These findings underscore the importance of carefully considering pre-calcination physical processes to optimize the quality and properties of palm kernel shell ash for industrial applications. Finally, XRD results confirm that the basic oxide content of sample M18A-c-m-T600°C-t1.5h-tr1h exceeds 70%, demonstrating its pozzolanic capacity and potential use in concrete. Moreover, the XRF results indicate that this sample is in an amorphous state. The amorphous nature of the sample suggests that its amorphous silica will chemically react with Ca(OH)2, produced during cement hydration, to form hydration products, primarily calcium silicate hydrate (C-S-H).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, S.M.; de Lima, V.E.; Basto, P.d.A.; Júnior, N.T.d.A.; Neto, A.A.d.M. Assessing the pozzolanic activity of sugarcane bagasse ash using X-ray diffraction. Constr. Build. Mater. 2020, 264, 120684. [Google Scholar] [CrossRef]
- Bonifacio, A.; Archbold, P. The effect of calcination conditions on oat husk ash pozzolanic activity. Mater. Today Proc. 2022, 65, 622–628. [Google Scholar] [CrossRef]
- Castillo, D.; Cruz, J.; Trejo-Arroyo, D.; Muzquiz, E.; Zarhri, Z.; Gurrola, M.; Vega-Azamar, R. Characterization of poultry litter ashes as a supplementary cementitious material. Case Stud. Constr. Mater. 2022, 17, e01278. [Google Scholar] [CrossRef]
- Saad, S.A.; Nuruddin, M.F.; Shafiq, N.; Ali, M. The Effect of Incineration Temperature to the Chemical and Physical Properties of Ultrafine Treated Rice Husk Ash (UFTRHA) as Supplementary Cementing Material (SCM). Procedia Eng. 2016, 148, 163–167. [Google Scholar] [CrossRef]
- Thomas, B.S.; Yang, J.; Bahurudeen, A.; Abdalla, J.A.; Haweeleh, R.A.; Hamada, H.M.; Nazar, S.; Jittin, V.; Ashish, D.K. Sugarcane bagasse ash as supplementary cementitious material in concrete—A review. Mater. Today Sustain. 2021, 15, 100086. [Google Scholar] [CrossRef]
- Hu, L.; He, Z.; Zhang, S. Sustainable use of rice husk ash in cement-based materials: Environmental evaluation and performance improvement. J. Clean. Prod. 2020, 264, 121744. [Google Scholar] [CrossRef]
- Katare, V.D.; Madurwar, M.V. Experimental characterization of sugarcane biomass ash—A review. Constr. Build. Mater. 2017, 152, 1–15. [Google Scholar] [CrossRef]
- Khalil, M.J.; Aslam, M.; Ahmad, S. Utilization of sugarcane bagasse ash as cement replacement for the production of sustainable concrete—A review. Constr. Build. Mater. 2020, 270, 121371. [Google Scholar] [CrossRef]
- Cociña, E.V.; Savastano, H.; Rodier, L.; Lefran, M.; Frías, M. Pozzolanic Characterization of Cuban Bamboo Leaf Ash: Calcining Temperature and Kinetic Parameters. Waste Biomass-Valorization 2016, 9, 691–699. [Google Scholar] [CrossRef]
- Aliu, A.O.; Olalusi, O.B.; Awoyera, P.O.; Kiliswa, M. Evaluation of pozzolanic reactivity of maize straw ash as a binder supplement in concrete. Case Stud. Constr. Mater. 2022, 18, e01790. [Google Scholar] [CrossRef]
- Barbosa, F.L.; Cordeiro, G.C. Partial cement replacement by different sugar cane bagasse ashes: Hydration-related properties, compressive strength and autogenous shrinkage. Constr. Build. Mater. 2021, 272, 121625. [Google Scholar] [CrossRef]
- Jittin, V.; Bahurudeen, A.; Ajinkya, S. Utilisation of rice husk ash for cleaner production of different construction products. J. Clean. Prod. 2020, 263, 121578. [Google Scholar] [CrossRef]
- da Silva, E.J.; de Azevedo Basto, P.E.; Araújo, F.W.C.; Miranda, L.F.R.; de Melo Neto, A.A. Evaluation by XRD analysis of the influence of grinding process in the pozolanic activity of sugar cane bagasse ash. Rev. Mater. 2019, 24, 1–10. [Google Scholar] [CrossRef]
- Amin, M.; Abdelsalam, B.A. Efficiency of rice husk ash and fly ash as reactivity materials in sustainable concrete. Sustain. Environ. Res. 2019, 29, 30. [Google Scholar] [CrossRef]
- Amin, M.N.; Hissan, S.; Shahzada, K.; Khan, K.; Bibi, T. Pozzolanic reactivity and the influence of rice husk ash on early-age autogenous shrinkage of concrete. Front. Mater. 2019, 6, 150. [Google Scholar] [CrossRef]
- Ruviaro, A.S.; Lima, G.T.d.S.; Silvestro, L.; Barraza, M.T.; Rocha, J.C.; de Brito, J.; Gleize, P.J.P.; Pelisser, F. Characterization and investigation of the use of oat husk ash as supplementary cementitious material as partial replacement of Portland cement: Analysis of fresh and hardened properties and environmental assessment. Constr. Build. Mater. 2022, 363, 129762. [Google Scholar] [CrossRef]
- Nogueira, S. Análise da Atividade Pozolânica da Cinza da Folha da Bananeira Pelos Métodos da ABNT NBR 5752:2014 e da Condutividade Elétrica; Universidade Federal do Rio Grande do Norte: Natal, Brazil, 2019. [Google Scholar]
- Bie, R.-S.; Song, X.-F.; Liu, Q.-Q.; Ji, X.-Y.; Chen, P. Studies on effects of burning conditions and rice husk ash (RHA) blending amount on the mechanical behavior of cement. Cem. Concr. Compos. 2014, 55, 162–168. [Google Scholar] [CrossRef]
- Cordeiro, G.; Filho, R.T.; Fairbairn, E. Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Constr. Build. Mater. 2009, 23, 3301–3303. [Google Scholar] [CrossRef]
- Joshaghani, A.; Moeini, M.A. Evaluating the effects of sugar cane bagasse ash (SCBA) and nanosilica on the mechanical and durability properties of mortar. Constr. Build. Mater. 2017, 152, 818–831. [Google Scholar] [CrossRef]
- Habeeb, G.A.; Bin Mahmud, H. Study on Properties of Rice Husk Ash and Its Use as Cement Replacement Material. Mater. Res. 2010, 13, 185–190. [Google Scholar] [CrossRef]
- Mboya, H.A.; King’ondu, C.K.; Njau, K.N.; Mrema, A.L. Measurement of Pozzolanic Activity Index of Scoria, Pumice, and Rice Husk Ash as Potential Supplementary Cementitious Materials for Portland Cement. Adv. Civ. Eng. 2017, 2017, 6952645. [Google Scholar] [CrossRef]
- Agwa, I.S.; Zeyad, A.M.; Tayeh, B.A.; Amin, M. Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete. J. Build. Eng. 2022, 56, 104773. [Google Scholar] [CrossRef]
- Kabir, R.; Wang, D.; Zhang, T.; Tian, R.; Donelson, R.; Tan, T.T.; Li, S. Tunable thermoelectric properties of Ca 0.9 Yb 0.1 MnO 3 through controlling the particle size via ball mill processing. Ceram. Int. 2014, 40, 16701–16706. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.D. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem. Concr. Res. 2009, 39, 110–115. [Google Scholar] [CrossRef]
- Rithuparna, R.; Jittin, V.; Bahurudeen, A. Influence of different processing methods on the recycling potential of agro-waste ashes for sustainable cement production: A review. J. Clean. Prod. 2021, 316, 128242. [Google Scholar] [CrossRef]
- Qudoos, A.; Kim, H.G.; Rehman, A.U.; Ryou, J.-S. Effect of mechanical processing on the pozzolanic efficiency and the microstructure development of wheat straw ash blended cement composites. Constr. Build. Mater. 2018, 193, 481–490. [Google Scholar] [CrossRef]
- Qudoos, A.; Kakar, E.; Rehman, A.U.; Jeon, I.K.; Kim, H.G. Influence of milling techniques on the performance of wheat straw ash in cement composites. Appl. Sci. 2020, 10, 3511. [Google Scholar] [CrossRef]
- Lin, Y.; Alengaram, U.J.; Ibrahim, Z. Effect of treated and untreated rice husk ash, palm oil fuel ash, and sugarcane bagasse ash on the mechanical, durability, and microstructure characteristics of blended concrete—A comprehensive review. J. Build. Eng. 2023, 78, 107500. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, J.; Yi, C.; Bindiganavile, V.; Li, S.; Li, T. Strength and chloride resistance of mortars blended with SCBA: The effect of calcination and particle sizing on its pozzolanic activity. J. Mater. Res. Technol. 2022, 22, 1423–1435. [Google Scholar] [CrossRef]
- Bautista-Ruiz, W.A.; Díaz-Lagos, M.; Martínez-Ovalle, S.A. Caracterización de las cenizas volantes de una planta termoeléctrica para su posible uso como aditivo en la fabricación de cemento. Rev. De Investig. Desarro. E Innovación 2017, 8, 135–146. [Google Scholar] [CrossRef]
- Saba, M.; García-Díaz, Y.; Ortega, R.T.; Quiñones-Bolaños, E.; Torres-Sanchez, J. Combined effect of nano-silica and silica fume to improve concrete workability and compressive strength: A case study and an overview of the literature. Ing. Y Compet. 2022, 25, 1–26. [Google Scholar] [CrossRef]
- Roselló, J.; Soriano, L.; Santamarina, M.P.; Akasaki, J.L.; Monzó, J.; Payá, J. Rice straw ash: A potential pozzolanic supplementary material for cementing systems. Ind. Crop. Prod. 2017, 103, 39–50. [Google Scholar] [CrossRef]
- Metha, P.K.; Monteiro, P.J.M. Monteiro, Concrete: Microstructure, Properties, and Materials, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006. [Google Scholar]
- Ouedraogo, M.; Sawadogo, M.; Sanou, I.; Barro, M.; Nassio, S.; Seynou, M.; Zerbo, L. Characterization of sugar cane bagasse ash from Burkina Faso for cleaner cement production: Influence of calcination temperature and duration. Results Mater. 2022, 14, 100275. [Google Scholar] [CrossRef]
- Tekin, I.; Dirikolu, I.; Gökçe, H. A regional supplementary cementitious material for the cement industry: Pistachio shell ash. J. Clean. Prod. 2020, 285, 124810. [Google Scholar] [CrossRef]
- Chusilp, N.; Jaturapitakkul, C.; Kiattikomol, K. Utilization of bagasse ash as a pozzolanic material in concrete. Constr. Build. Mater. 2009, 23, 3352–3358. [Google Scholar] [CrossRef]
- Xiao, R.; Chen, X.; Wang, F.; Yu, G. The physicochemical properties of different biomass ashes at different ashing temperature. Renew. Energy 2011, 36, 244–249. [Google Scholar] [CrossRef]
- Memon, S.A.; Wahid, I.; Khan, M.K.; Tanoli, M.A.; Bimaganbetova, M.; Memon, S.A.; Wahid, I.; Khan, M.K.; Tanoli, M.A.; Bimaganbetova, M.; et al. Environmentally friendly utilization of wheat straw ash in cement-based composites. Sustainability 2018, 10, 1322. [Google Scholar] [CrossRef]
- Soares, M.M.N.S.; Poggiali, F.S.J.; Bezerra, A.C.S.; Figueiredo, R.B.; Aguilar, M.T.P.; Cetlin, P.R. The effect of calcination conditions on the physical and chemical characteristics of sugar cane bagasse ash Influência das condições de queima nas características físico-químicas das cinzas de bagaço de cana-de-açúcar Civil Engeneering Engenharia Civil 34. Rev. Esc. De Minas 2014, 67, 33–39. [Google Scholar] [CrossRef]
- Ribeiro, D.V.; Morelli, M.R. Effect of calcination temperature on the pozzolanic activity of Brazilian sugar cane bagasse ash (SCBA). Mater. Res. 2014, 17, 974–981. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Mahdikhani, M.; Ahmadibeni, G.H. The effect of rice husk ash on mechanical properties and durability of sustainable concretes. Int. J. Civ. Eng. 2009, 7, 83–91. Available online: https://sid.ir/paper/271802/en (accessed on 26 May 2024).
- Reinmöller, M.; Schreiner, M.; Laabs, M.; Scharm, C.; Yao, Z.; Guhl, S.; Neuroth, M.; Meyer, B.; Gräbner, M. Formation and transformation of mineral phases in biomass ashes and evaluation of the feedstocks for application in high-temperature processes. Renew. Energy 2023, 210, 627–639. [Google Scholar] [CrossRef]
- Memon, S.A.; Khan, S.; Wahid, I.; Shestakova, Y.; Ashraf, M. Evaluating the Effect of Calcination and Grinding of Corn Stalk Ash on Pozzolanic Potential for Sustainable Cement-Based Materials. Adv. Mater. Sci. Eng. 2020, 2020, 1619480. [Google Scholar] [CrossRef]
- Tangchirapat, W.; Saeting, T.; Jaturapitakkul, C.; Kiattikomol, K.; Siripanichgorn, A. Use of waste ash from palm oil industry in concrete. Waste Manag. 2006, 27, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Tangchirapat, W.; Jaturapitakkul, C.; Chindaprasirt, P. Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete. Constr. Build. Mater. 2009, 23, 2641–2646. [Google Scholar] [CrossRef]
- Tai, Z.S.; Hubadillah, S.K.; Othman, M.H.D.; Dzahir, M.I.H.M.; Koo, K.N.; Tendot, N.I.S.T.I.; Ismail, A.F.; Rahman, M.A.; Jaafar, J.; Aziz, M.H.A. Influence of pre-treatment temperature of palm oil fuel ash on the properties and performance of green ceramic hollow fiber membranes towards oil/water separation application. Sep. Purif. Technol. 2019, 222, 264–277. [Google Scholar] [CrossRef]
- Salih, M.A.; Farzadnia, N.; Ali, A.A.A.; Demirboga, R. Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature. Constr. Build. Mater. 2015, 93, 289–300. [Google Scholar] [CrossRef]
- Elahi, M.A.; Hossain, M.; Karim, R.; Zain, M.F.M.; Shearer, C. A review on alkali-activated binders: Materials composition and fresh properties of concrete. Constr. Build. Mater. 2020, 260, 119788. [Google Scholar] [CrossRef]
- Ikubanni, P.; Oki, M.; Adediran, A.; Adesina, O. Influence of temperature on the chemical compositions and microstructural changes of ash formed from palm kernel shell. Results Eng. 2020, 8, 100173. [Google Scholar] [CrossRef]
- Bayapureddy, Y.; Muniraj, K.; Mutukuru, M.R.G. Enhancing material properties of agro-industrial waste sugarcane bagasse ash—Way towards sustainable development. Sustain. Futur. 2024, 7, 100154. [Google Scholar] [CrossRef]
- Thiedeitz, M.; Ostermaier, B.; Kränkel, T. Rice husk ash as an additive in mortar—Contribution to microstructural, strength and durability performance. Resour. Conserv. Recycl. 2022, 184, 106389. [Google Scholar] [CrossRef]
Calcination Temperature (°C) | Samples with Cutting in Electric Crusher (Process #1). Calcination in Muffle Furnace for 1.5 h | Samples with Cutting in Electric Crusher (Process #1). Calcination in Muffle Furnace for 1.5 h. Ball Milling for 1 h (Process #3) | Samples with Cutting in Electric Crusher (Process #1), Grinding in Jaw Crusher (Process #2). Calcination in Muffle Furnace for 1.5 h. Ball Milling for 1 h (Process #3) |
---|---|---|---|
500 | M11-c-T500C-t1.5h | M11A-c-T500C-t1.5h-tr1h | M17A-c-m-T500C-t1.5h-tr1h |
600 | M12-c-T600C-t1.5h | M12A-c-T600C-t1.5h-tr1h | M18A-c-m-T600C-t1.5h-tr1h |
700 | M13-c-T700C-t1.5h | M13A-c-T700C-t1.5h-tr1h | M19A-c-m-T700C-t1.5h-tr1h |
800 | M14-c-T800C-t1.5h | M14A-c-T800C-t1.5h-tr1h | M20A-c-m-T800C-t1.5h-tr1h |
900 | M15-c-T900C-t1.5h | M15A-c-T900C-t1.5h-tr1h | M21A-c-m-T900C-t1.5h-tr1h |
1000 | M16-c-T1000-t1.5h | M16A-c-T1000C-t1.5h-tr1h | M22A-c-m-T1000C-t1.5h-tr1h |
Samples | Process | Weight % | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | Cutting | Trituration | Grinding | C | O | Mg | Al | Si | K | Ca | Ti | Fe | |
M0-T100C-t24h | 100 | 58.77 | 36.17 | 0.44 | 0.14 | 2.44 | 0.7 | 0.78 | 0 | 0.57 | |||
M11-c-T500C-t1.5h | 500 | yes | 76.3 | 16 | 0.59 | 0.3 | 3.45 | 1.48 | 0.94 | 0 | 0.44 | ||
M11A-c-T500C-t1.5h-tr1h | 500 | yes | yes | 83.31 | 14.10 | 0.14 | 0.22 | 0.49 | 1.18 | 0.55 | 0 | 0 | |
M17B-c-m-T500C-t1.5h-tr1h | 500 | yes | yes | yes | 89.67 | 9.48 | 0 | 0 | 0.32 | 0.53 | 0 | 0 | 0 |
M12-c-T600C-t1.5h | 600 | yes | 42.88 | 12.86 | 0 | 0 | 0.37 | 0.59 | 4.96 | 4.42 | 1.64 | ||
M12A-c-T600C-t1.5h-tr1h | 600 | yes | yes | 85.34 | 10.93 | 0.39 | 0.21 | 1.07 | 1.30 | 0.49 | 0 | 0.26 | |
M18B-c-m-T600C-t1.5h-tr1h | 600 | yes | yes | yes | 28.3 | 39.78 | 0 | 0 | 31.92 | 0 | 0 | 0 | 0 |
M13-c-T700C-t1.5h | 700 | yes | 77.67 | 16.79 | 0.80 | 0 | 1.48 | 2.04 | 0.80 | 0 | 0.43 | ||
M13A-c-T700C-t1.5h-tr1h | 700 | yes | yes | 37.52 | 22.45 | 0.75 | 3.3 | 23.4 | 0.84 | 0 | 0.9 | 10.8 | |
M19B-c-m-T700C-t1.5h-tr1h | 700 | yes | yes | yes | 89.16 | 8.38 | 0 | 0.36 | 1.27 | 0.58 | 0 | 0 | 0.26 |
M14-c-T800C-t1.5h | 800 | yes | 77.96 | 11.35 | 0.93 | 0.24 | 1.95 | 3.34 | 1.64 | 0 | 0.93 | ||
M14A-c-T800C-t1.5h-tr1h | 800 | yes | yes | 87.76 | 8.55 | 0 | 0.21 | 2.64 | 0.56 | 0.28 | 0 | 0 | |
M20B-c-m-T800C-t1.5h-tr1h | 800 | yes | yes | yes | 84.36 | 9.82 | 0.25 | 0.59 | 1.82 | 1.29 | 0.37 | 0 | 0.67 |
M15-c-T900C-t1.5h | 900 | yes | 83.79 | 10.73 | 0.22 | 1.19 | 1.52 | 2.07 | 0.47 | 0 | 0 | ||
M15A-c-T900C-t1.5h-tr1h | 900 | yes | yes | 85.75 | 9.13 | 0.22 | 0.61 | 2.55 | 0.74 | 0.38 | 0 | 0.62 | |
M21B-c-m-T900C-t1.5h-tr1h | 900 | yes | yes | yes | 59.60 | 20.52 | 0.30 | 0.36 | 17.06 | 0.86 | 0.77 | 0 | 0.54 |
M16-c-T1000- t1.5h | 1000 | yes | 85.91 | 8.90 | 0.31 | 0.16 | 1.55 | 2.36 | 0.82 | 0 | 0 | ||
M16A-c-T1000C-t1.5h-tr1h | 1000 | yes | yes | 81.37 | 12.82 | 0.41 | 0.59 | 2.58 | 0.88 | 0.67 | 0 | 0.68 | |
M22B-c-m-T1000C-t1.5h-tr1h | 1000 | yes | yes | yes | 47.57 | 25.88 | 0.21 | 0.29 | 22.6 | 0.79 | 0.19 | 0 | 2.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Ortega, R.; Torres-Sánchez, D.; Saba, M. Impact of Physical Processes and Temperatures on the Composition, Microstructure, and Pozzolanic Properties of Oil Palm Kernel Ash. ChemEngineering 2024, 8, 122. https://doi.org/10.3390/chemengineering8060122
Torres-Ortega R, Torres-Sánchez D, Saba M. Impact of Physical Processes and Temperatures on the Composition, Microstructure, and Pozzolanic Properties of Oil Palm Kernel Ash. ChemEngineering. 2024; 8(6):122. https://doi.org/10.3390/chemengineering8060122
Chicago/Turabian StyleTorres-Ortega, Ramón, Diego Torres-Sánchez, and Manuel Saba. 2024. "Impact of Physical Processes and Temperatures on the Composition, Microstructure, and Pozzolanic Properties of Oil Palm Kernel Ash" ChemEngineering 8, no. 6: 122. https://doi.org/10.3390/chemengineering8060122
APA StyleTorres-Ortega, R., Torres-Sánchez, D., & Saba, M. (2024). Impact of Physical Processes and Temperatures on the Composition, Microstructure, and Pozzolanic Properties of Oil Palm Kernel Ash. ChemEngineering, 8(6), 122. https://doi.org/10.3390/chemengineering8060122