Overview of Coastal Vulnerability Indices with Reference to Physical Characteristics of the Croatian Coast of Istria
Abstract
:1. Introduction
2. Coastal Vulnerability Index (CVI) Methodology Overview
2.1. Coastal Vulnerability Variables
2.1.1. Physical Coastal Characteristic Variables
2.1.2. Coastal Forcing Variables
2.1.3. Socio-Economic Variables
2.2. Data and Rank Ranges
2.3. Calculating Coastal Vulnerability Index
3. Physical Characteristics of the Coast in the Pilot Area
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kaniewski, D.; Marriner, N.; Morhange, C.; Faivre, S.; Otto, T.; Van Campo, E. Solar pacing of storm surges, coastal flooding and agricultural losses in the Central Mediterranean. Sci. Rep. 2016, 6, 25197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faivre, S.; Pahernik, M.; Maradin, M. The gully of Potovošća on the island of Krk—The effects of a short-term rainfall event. Geol. Cro. 2011, 64, 67–80. [Google Scholar] [CrossRef]
- Faivre, S.; Mićunović, M. Rekonstrukcija recentnih morfoloških promjena žala uz pomoć metode ponovljene fotografije–primjer žala Zogon na otoku Hvaru (Srednji Jadran). Geoadria 2018, 22, 165–192. [Google Scholar] [CrossRef] [Green Version]
- Mićunović, M.; Faivre, S.; Gašparović, M. Assessment of Remote Sensing Techniques Applicability for Beach Morphology Mapping: A Case Study of Hvar Island, Central Adriatic, Croatia. JMSE 2021, 9, 1407. [Google Scholar] [CrossRef]
- Gornitz, V. Global coastal hazards from future sea level rise. Palaeogeogr. Palaeoclimatol. Palaeoecol. (Glob. Planet. Change Sect.) 1991, 89, 379–398. [Google Scholar] [CrossRef]
- Nicholls, R.J.; Wong, P.; Burkett, V.; Codignotto, J.; Hay, J.; McLean, R.; Ragoonaden, S.; Woodroffe, C. Coastal systems and low-lying areas. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Parry, M., Canziani, O., Palutikof, J., van der Linden, P., Hanson, C., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 315–356. [Google Scholar]
- Hay, C.C.; Morrow, E.; Kopp, R.E.; Mitrovica, J.X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 2015, 517, 481–484. [Google Scholar] [CrossRef]
- Lambeck, K.; Antonioli, F.; Anzidei, M.; Ferranti, L.; Leoni, G.; Scicchitano, G.; Silenzi, S. Sea level change along the Italian coast during the Holocene and projections for the future. Quat. Int. 2011, 232, 250–257. [Google Scholar] [CrossRef]
- Faivre, S.; Bakran-Petricioli, T.; Barešić, J.; Horvatić, D. Lithophyllum rims as biological markers for constraining palaeoseismic events and relative sea-level variations during the last 3.3 ka on Lopud Island, southern Adriatic, Croatia. Glob. Planet. Change 2021, 202, 103517. [Google Scholar] [CrossRef]
- Faivre, S.; Bakran-Petricioli, T.; Barešić, J.; Horvatić, D.; Macario, K. Relative sea-level change and climate change in the Northeastern Adriatic during the last 1.5 ka (Istria, Croatia). Quat. Sci. Rev. 2019, 222, 105909. [Google Scholar] [CrossRef]
- Faivre, S.; Bakran-Petricioli, T.; Herak, M.; Barešić, J.; Borković, D. Late Holocene interplay between coseismic uplift events and interseismic subsidence at Koločep island and Grebeni islets in the Dubrovnik archipelago (southern Adriatic, Croatia). Quat. Sci. Rev. 2021, 274, 107284. [Google Scholar] [CrossRef]
- Le Cozannet, G.; Garcin, M.; Bulteau, T.; Mirgon, C.; Yates, M.L.; Méndez, M.; Baills, A.; Idier, D.; Oliveros, C. An AHP-derived method for mapping the physical vulnerability of coastal areas at regional scales. Nat. Hazards Earth Syst. Sci. 2013, 13, 1209–1227. [Google Scholar] [CrossRef] [Green Version]
- Cazenave, A.; Palanisamy, H.; Ablain, M. Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges? Adv. Space Res. 2018, 62, 1639–1653. [Google Scholar] [CrossRef]
- Antonellini, M.; Mollema, P.; Giambastiani, B.; Bishop, K.; Caruso, L.; Minchio, A.; Pellegrini, L.; Sabia, M.; Ulazzi, E.; Gabbianelli, G. Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy. Hydrogeol. J. 2008, 16, 1541–1556. [Google Scholar] [CrossRef]
- Chang, S.W.; Clement, T.P.; Simpson, M.J.; Lee, K.-K. Does sea-level rise have an impact on saltwater intrusion? Adv. Water Resour. 2011, 34, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Terzić, J.; Marković, T.; Pekaš, Ž. Influence of sea-water intrusion and agricultural production on the Blato Aquifer, Island of Korčula, Croatia. Environ. Geol. 2008, 54, 719–729. [Google Scholar] [CrossRef]
- Brkić, Ž.; Kuhta, M.; Hunjak, T.; Larva, O. Regional Isotopic Signatures of Groundwater in Croatia. Water 2020, 12, 1983. [Google Scholar] [CrossRef]
- Kulp, S.A.; Strauss, B.H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 2019, 10, 4844. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; White, N.J.; Coleman, R.; Lambeck, K.; Mitrovica, J.X. Estimates of the Regional Distribution of Sea Level Rise over the 1950–2000 Period. J. Clim. 2004, 17, 2609–2625. [Google Scholar] [CrossRef]
- Surić, M.; Juračić, M. Late Pleistocene–Holocene environmental changes–records from submerged speleothems along the Eastern Adriatic coast (Croatia). Geol. Cro. 2010, 63, 155–169. [Google Scholar] [CrossRef]
- Kaniewski, D.; Marriner, N.; Cheddadi, R.; Morhange, C.; Vacchi, M.; Rovere, A.; Faivre, S.; Otto, T.; Luce, F.; Carre, M.-B.; et al. Coastal submersions in the north-eastern Adriatic during the last 5200 years. Glob. Planet. Change 2021, 204, 103570. [Google Scholar] [CrossRef]
- Fouache, E.; Faivre, S.; Dufaure, J.J. Tassaux, Francis New observation on the evolution of the Croatian shoreline between Porec and Zadar over the past 2000 years. Z. Geomorphol. 2000, S122, 33–46. [Google Scholar]
- Fouache, E.; Faivre, S.; Dufaure, J.J.; Tassaux, F.; Tronche, P. Morska razina u rimsko doba na području Istre (Sea level in Roman times in Istria). Vjesn. Arheol. Muz. U Zagreb. 2004, 37, 173–190. [Google Scholar]
- Istarska Županija, Historic Overview-More Details. 2020. Available online: https://www.istra-istria.hr/index.php?id=860 (accessed on 17 March 2020).
- Državni Zavod za Statistiku. Available online: https://www.dzs.hr/ (accessed on 19 March 2020).
- Baric, A.; Grbec, B.; Bogner, D. Potential Implications of Sea-Level Rise for Croatia. J. Coast. Res. 2008, 242, 299–305. [Google Scholar] [CrossRef] [Green Version]
- Domazetović, F.; Lončar, N.; Šiljeg, A. Kvantitativna analiza utjecaja porasta razine Jadranskog mora na hrvatsku obalu: GIS pristup. Naše More 2017, 64, 33–43. [Google Scholar] [CrossRef]
- Orlić, M.; Pasarić, Z. Semi-empirical versus process-based sea-level projections for the twenty-first century. Nat. Clim. Change 2013, 3, 735–738. [Google Scholar] [CrossRef]
- Bevacqua, A.; Yu, D.; Zhang, Y. Coastal vulnerability: Evolving concepts in understanding vulnerable people and places. Environ. Sci. Policy 2018, 82, 19–29. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Natesan, U. Coastal vulnerability assessment: A case study on erosion and coastal change along Tuticorin, Gulf of Mannar. Nat. Hazards 2015, 75, 1713–1729. [Google Scholar] [CrossRef]
- Kantamaneni, K. Coastal infrastructure vulnerability: An integrated assessment model. Nat. Hazards 2016, 84, 139–154. [Google Scholar] [CrossRef] [Green Version]
- Ramieri, E.; Hartley, A.; Barbanti, A.; Duarte Santos, F.; Gomes, A.; Hilden, M.; Laihonen, P.; Marinova, N.; Santini, M. Methods for assessing coastal vulnerability to climate change. ETC CCA Tech. Pap. 2011, 1, 1–93. [Google Scholar] [CrossRef]
- Pendleton, E.A. Coastal Vulnerability Assessment of the Northern Gulf of Mexico to Sea-Level Rise and Coastal Change; U.S. Geological Survey: Reston, VA, USA, 2010. [Google Scholar]
- Hamid, A.I.A.; Din, A.H.M.; Yusof, N.; Abdullah, N.M.; Omar, A.H.; Abdul Khanan, M.F. Coastal vulnerability index development: A review. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2019, XLII-4/W16, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Mclaughlin, S.; Cooper, J.A.G. A multi-scale coastal vulnerability index: A tool for coastal managers? Environ. Hazards 2010, 9, 233–248. [Google Scholar] [CrossRef]
- Williams, A.T.; Davies, P.; Curr, R.; Koh, A.; Bodere, J.C.; Hallegouet, B.; Meur, C.; Yoni, C. A Checklist assessment of dune vulnerability and protection in Devon and Cornwall, UK. In Coastal Zone: Proceedings of the Symposium on Coastal and Ocean Management; ASCE: New York, NY, USA; New Orleans, LA, USA, 1993; Volume 3, pp. 3394–3408. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0027261696&partnerID=40&md5=d5ed83e5b249f14b8d634e0f8b9059fc (accessed on 29 December 2023).
- Quelennec, R.-E. Corine “coastal erosion project”. Identification of coastal erosion problems and data base on the littoral environment of eleven European countries. In Coastal Zone: Proceedings of the Symposium on Coastal and Ocean Management; ASCE: New York, NY, USA; Charleston, SC, USA, 1989; Volume 5, pp. 4594–4601. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-0024861140&partnerID=40&md5=1d81e33c7bafe3ed98e3bf3c676de856 (accessed on 29 December 2023).
- Szlafsztein, C.; Sterr, H. A GIS-based vulnerability assessment of coastal natural hazards, state of Pará, Brazil. J. Coast Conserv. 2007, 11, 53–66. [Google Scholar] [CrossRef]
- McLaughlin, S.; McKenna, J.; Cooper, J.A.G. Socio-economic data in coastal vulnerability indices: Constraints and opportunities. J. Coast. Res. 2002, 36, 487–497. [Google Scholar] [CrossRef]
- Palmer, B.J.; Van der Elst, R.; Mackay, F.; Mather, A.; Smith, A.; Bundy, S.; Thackeray, Z.; Leuci, R.; Parak, O. Preliminary coastal vulnerability assessment for KwaZulu-Natal, South Africa. J. Coast. Res. 2011, 7, 1390–1395. [Google Scholar]
- Mani Murali, R.; Ankita, M.; Amrita, S.; Vethamony, P. Coastal vulnerability assessment of Puducherry coast, India, using the analytical hierarchical process. Nat. Hazards Earth Syst. Sci. 2013, 13, 3291–3311. [Google Scholar] [CrossRef] [Green Version]
- Hammar-Klose, E.S.; Thieler, R.E. Coastal Vulnerability to Sea-Level Rise: A Preliminary Database for the US Atlantic Coast; US Geological Survey, Coastal and Marine Geology Program; Open-File Report 99-593, 1 shee 1; U.S. Geological Survey: Reston, VA, USA, 1999. [Google Scholar]
- Kantamaneni, K.; Phillips, M.; Thomas, T.; Jenkins, R. Assessing coastal vulnerability: Development of a combined physical and economic index. Ocean. Coast. Manag. 2018, 158, 164–175. [Google Scholar] [CrossRef]
- Tragaki, A.; Gallousi, C.; Karymbalis, E. Coastal Hazard Vulnerability Assessment Based on Geomorphic, Oceanographic and Demographic Parameters: The Case of the Peloponnese (Southern Greece). Land 2018, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef] [Green Version]
- Juračić, M.; Benac, Č.; Pikelj, K.; Ilić, S. Comparison of the vulnerability of limestone (karst) and siliciclastic coasts (example from the Kvarner area, NE Adriatic, Croatia). Geomorphology 2009, 107, 90–99. [Google Scholar] [CrossRef]
- Ružić, I.; Dugonjić Jovančević, S.; Benac, Č.; Krvavica, N. Assessment of the Coastal Vulnerability Index in an Area of Complex Geological Conditions on the Krk Island, Northeast Adriatic Sea. Geosciences 2019, 9, 219. [Google Scholar] [CrossRef] [Green Version]
- Ružić, I.; Benac, Č. RanJivost obala otoka Raba zbog rasta razine mora. Hrvat. Vode 2016, 24, 203–214. [Google Scholar]
- Furlan, E.; Pozza, P.D.; Michetti, M.; Torresan, S.; Critto, A.; Marcomini, A. Development of a Multi-Dimensional Coastal Vulnerability Index: Assessing vulnerability to inundation scenarios in the Italian coast. Sci. Total Environ. 2021, 772, 144650. [Google Scholar] [CrossRef]
- Scopus-Document Search|Signed in. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 17 December 2022).
- Clarivate. Available online: https://access.clarivate.com/login?app=wos&alternative=true&shibShireURL=https:%2F%2Fwww.webofknowledge.com%2F%3Fauth%3DShibboleth&shibReturnURL=https:%2F%2Fwww.webofknowledge.com%2F&roaming=true (accessed on 17 December 2022).
- Google Znalac. Available online: https://scholar.google.com/ (accessed on 17 December 2022).
- Početna-CROSBI. Available online: https://www.bib.irb.hr/ (accessed on 17 December 2022).
- Croatian Digital Dissertations Repository|National and University Library in Zagreb. Available online: https://dr.nsk.hr/en (accessed on 17 December 2022).
- Digital Academic Archives and Repositories|Dabar. Available online: https://dabar.srce.hr/en (accessed on 17 December 2022).
- Boruff, B.J.; Emrich, C.; Cutter, S.L. Erosion Hazard Vulnerability of US Coastal Counties. J. Coast. Res. 2005, 215, 932–942. [Google Scholar] [CrossRef] [Green Version]
- Bukvic, A.; Rohat, G.; Apotsos, A.; de Sherbinin, A. A Systematic Review of Coastal Vulnerability Mapping. Sustainability 2020, 12, 2822. [Google Scholar] [CrossRef]
- Kantamaneni, K.; Sudha Rani, N.N.V.; Rice, L.; Sur, K.; Thayaparan, M.; Kulatunga, U.; Rege, R.; Yenneti, K.; Campos, L. A Systematic Review of Coastal Vulnerability Assessment Studies along Andhra Pradesh, India: A Critical Evaluation of Data Gathering, Risk Levels and Mitigation Strategies. Water 2019, 11, 393. [Google Scholar] [CrossRef] [Green Version]
- Koroglu, A.; Ranasinghe, R.; Jiménez, J.A.; Dastgheib, A. Comparison of Coastal Vulnerability Index applications for Barcelona Province. Ocean. Coast. Manag. 2019, 178, 104799. [Google Scholar] [CrossRef]
- Shaw, J.; Taylor, R.B.; Forbes, D.L.; Ruz, M.H.; Solomon, S. Sensitivity of the Coasts of Canada to Sea-Level Rise; Geological Survey of Canada: Ottawa, ON, Canada, 1998; p. 505. [Google Scholar] [CrossRef]
- López Royo, M.; Ranasinghe, R.; Jiménez, J.A. A Rapid, Low-Cost Approach to Coastal Vulnerability Assessment at a National Level. J. Coast. Res. 2016, 320, 932–945. [Google Scholar] [CrossRef]
- Özyurt, G.; Ergin, A. Improving Coastal Vulnerability Assessments to Sea-Level Rise: A New Indicator-Based Methodology for Decision Makers. J. Coast. Res. 2010, 262, 265–273. [Google Scholar] [CrossRef]
- Yin, J.; Yin, Z.; Wang, J.; Xu, S. National assessment of coastal vulnerability to sea-level rise for the Chinese coast. J. Coast Conserv. 2012, 16, 123–133. [Google Scholar] [CrossRef]
- Mohamad, M.F.; Lee, L.H.; Samion, M.K.H. Coastal Vulnerability Assessment towards Sustainable Management of Peninsular Malaysia Coastline. IJESD 2014, 5, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Loinenak, F.A.; Hartoko, A.; Muskananfola, M.R. Mapping of Coastal Vulnerability using the Coastal Vulnerability Index and Geographic Information System. IJTech 2015, 6, 819. [Google Scholar] [CrossRef]
- Petal, M.A.; Izadkhah, Y.O. Concept Note: Formal and Informal Education for Disaster Risk Reduction. In A Contribution from Risk RED; 2008; p. 5. Available online: https://www.academia.edu/1083253/Concept_note_Formal_and_informal_education_for_disaster_risk_reduction (accessed on 29 December 2023).
- Gornitz, V.; Beaty, T.; Daniels, R. A Coastal Hazards Data Base for the U.S. West Coast; NDP-043C; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1997. [CrossRef] [Green Version]
- Gornitz, V.; White, T.W. A Coastal Hazards Data Base for the U.S. East Coast; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1992.
- Rizzo, A.; Vandelli, V.; Buhagiar, G.; Micallef, A.S.; Soldati, M. Coastal Vulnerability Assessment along the North-Eastern Sector of Gozo Island (Malta, Mediterranean Sea). Water 2020, 12, 1405. [Google Scholar] [CrossRef]
- Addo, K.A. Assessing Coastal Vulnerability Index to Climate Change: The Case of Accra–Ghana. J. Coast. Res. 2013, 165, 1892–1897. [Google Scholar] [CrossRef]
- Doukakis, E. Coastal Vulnerability and Risk Parameters. Eur. Water 2005, 11, 3–7. [Google Scholar]
- Wu, S.; Yarnal, B.; Fisher, A. Vulnerability of coastal communities to sea-level rise: A case study of Cape May County, New Jersey, USA. Clim. Res. 2002, 22, 255–270. [Google Scholar] [CrossRef] [Green Version]
- Gaki-Papanastassiou, K.; Karymbalis, E.; Poulos, S.E.; Seni, A.; Zouva, C. Coastal vulnerability assessment to sea-level rise bαsed on geomorphological and oceanographical parameters: The case of Argolikos Gulf, Peloponnese, Greece. Hell. J. Geosci. 2010, 45, 109–122. [Google Scholar]
- Pikelj, K.; Juračić, M. Eastern Adriatic Coast (EAC): Geomorphology and Coastal Vulnerability of a Karstic Coast. J. Coast. Res. 2013, 289, 944–957. [Google Scholar] [CrossRef]
- Faivre, S.; Bakran-Petricioli, T.; Horvatinčić, N.; Sironić, A. Distinct phases of relative sea level changes in the central Adriatic during the last 1500 years—Influence of climatic variations? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 369, 163–174. [Google Scholar] [CrossRef]
- Faivre, S.; Butorac, V. Recently submerged tidal notches in the wider Makarska area (Central Adriatic, Croatia). Quat. Int. 2018, 494, 225–235. [Google Scholar] [CrossRef]
Author | Year | Total | Group of Variables | ||
---|---|---|---|---|---|
Physical Coastal Characteristic | Coastal Forcing Characteristic | Socio-Economic Characteristic | |||
Gornitz [5] | 1991 | 7 | 4 | 3 | / |
Hammar-Klose and Thieler [42] 1 | 1999 | 6 | 3 | 3 | |
Szlafsztein and Sterr [38] | 2007 | 15 | 7 | / | 8 |
Pendleton et al. [33] | 2010 | 6 | 3 | 3 | / |
McLaughlin and Cooper [35] (N) 2 | 2010 | 17 | 7 | 4 | 6 |
McLaughlin and Cooper [35] (R) 3 | 2010 | 13 | 4 | 3 | 6 |
McLaughlin and Cooper [35] (L) 4 | 2010 | 10 | 4 | 2 | 4 |
Özyurt and Ergin [62] | 2010 | 19 | 9 | 3 | 7 |
Palmer et al. [40] | 2011 | 11 | 5 | / | 6 |
Yin et al. [63] | 2012 | 8 | 5 | 3 | / |
Mani Mural et al. [41] | 2013 | 11 | 4 | 3 | 4 |
Mohamad et al. [64] | 2014 | 6 | 2 | 4 | / |
Loinenak et al. [65] | 2015 | 6 | 3 | 3 | |
Kantamaneni et al. [43] | 2018 | 13 | 5 | / | 8 |
Pantusa et al. [45] | 2018 | 10 | 6 | 4 | / |
Tragaki et al. [44] | 2018 | 12 | 3 | 3 | 6 |
Ružić et al. [47] | 2019 | 5 | 3 | 1 | 1 |
Furlan et al. [49] | 2021 | 13 | 8 | 1 | 4 |
Author | Scale | Area | Physical Coastal Characteristics |
---|---|---|---|
Gornitz [5] | Global | North America | Relief, Rock-type (relative resistance to erosion), Landform, Shoreline displacement |
Hammar-Klose and Thieler [42] | Regional | Gulf of Mexico, US; US Pacific Coast; US Atlantic Coast | Geomorphology, Coastal slope, Shoreline erosion/accretion |
Szlafsztein and Sterr [38] | Regional | State of Pará, Brazil | Coastline Length, Continentality, Coastline complexity, Coastal features, Coastal protection measures, Fluvial drainage, Flooding areas |
Pendleton et al. [33] | Regional | Northern Gulf of Mexico | Geomorphology, Coastal slope, Shoreline erosion/accretion, |
McLaughlin and Cooper [35] (N) | National/Regional | Northern Ireland | Shoreline type, Rivers, Solid geology, Drift geology, Elevation, Orientation, Inland buffer |
McLaughlin and Cooper [35] (R) | Regional | Northern Antrim coast | Landform, Elevation, Rivers, Inland buffer |
McLaughlin and Cooper [35] (L) | Local | East Strand at Portrush | Landform, Elevation, Rivers, Inland buffer |
Özyurt and Ergin [62] | Regional | Göksu Delta | Geomorphology, Coastal slope, Sediment Budget, Proximity to Coast, Type of Aquifer, Hydraulic Conductivity, Depth to groundwater level above the sea, River Discharge, Water Depth at the downstream |
Palmer et al. [40] | Local | Relative Physical CVI KwaZulu-Natal, South Africa | Beach width, Dune width, Distance to 20m isobath, Distance of vegetation behind the back beach, Percentage outcrop |
Yin et al. [63] | Regional | South China | Geomorphology, Coastal elevation, Coastal slope, Shoreline erosion, Coastal land use, |
Mani Mural et al. [41] | Local | Puducherry coast, India | Coastal slope, Geomorphology, Elevation, Shoreline change |
Mohamad et al. [64] | Regional | Peninsular Malaysia | Geomorphology, Shoreline change rate, |
Loinenak et al. [65] | Local | Doreri Bay | Geomorphology, Coastline changes, Coastline slope, |
Kantamaneni et al. [43] | National/Local | 11 locations along Great Britain’s coast | Beach width, Dune width, Coastal slope, Distance of vegetation behind the back beach, Rocky outcrop |
Pantusa et al. [45] | Local | Apulian Coastline, Italy | Geomorphology, Shoreline erosion/accretion, Coastal slope, Emerged beach width, Dune width, Width of vegetation behind the beach, |
Tragaki et al. [44] | Regional | South Greece | Geomorphology, Shoreline erosion/accretion, Coastal slope |
Ružić et al. [47] | Local | Krk Island, Northeast Adriatic | Geologic fabric, Coastal slope, Beach width, |
Furlan et al. [49] | National/Regional | Italian coast | Shoreline evolution trend, Distance from shoreline, Elevation, Coastal slope, Geological coastal type, Land roughness, Conservation designation, Coastal protection structures |
Author | Scale | Area | Coastal Forcing Characteristics |
---|---|---|---|
Gornitz [5] | Global | North America | Vertical movement (RSL change), Tidal range, Wave height |
Hammar-Klose and Thieler [42] | Regional | Gulf of Mexico, US; US Pacific Coast; US Atlantic Coast | Mean tide range, Mean wave height, Relative sea-level change |
Szlafsztein and Sterr [38] | Regional | State of Pará, Brazil | / |
Pendleton et al. [33] | Regional | Northern Gulf of Mexico | Mean tide range, Mean wave height, Relative sea-level change |
McLaughlin and Cooper [35] (N) | National/Regional | Northern Ireland | Significant wave height, Tidal range, Difference in modal and storm waves, Frequency of onshore storms |
McLaughlin and Cooper [35] (R) | Regional | Northern Antrim coas | Tidal range, Storm probability (based on coastal orientation), Morphodynamic state (Dean’s parameter) |
McLaughlin and Cooper [35] (L) | Local | East Strand at Portrush | Storm probability (based on coastal orientation), Morphodynamic state (Dean’s parameter) |
Özyurt and Ergin [62] | Regional | Göksu Delta | Rate of RSL, Significant wave height, Tidal range |
Palmer et al. [40] | Local | Relative Physical CVI KwaZulu-Natal, South Africa | / |
Yin et al. [63] | Regional | South China | Sea-level rise, Mean tide range, Mean wave height (m) |
Mani Mural et al. [41] | Local | Puducherry coast, India | Sea-level change, Significant wave height, Tidal range |
Mohamad et al. [64] | Regional | Peninsular Malaysia | Maximum current speed, Maximum tidal range, Significant wave height, Sea-level rise |
Loinenak et al. [65] | Local | Doreri Bay | Trend relative sea surface increase, Average wave height, Average tidal range |
Kantamaneni et al. [43] | National/Local | 11 locations along Great Britain’s coast | / |
Pantusa et al. [45] | Local | Apulian Coastline, Italy | Mean tide range, Mean significant wave height, Relative sea-level change, Posidonia oceanica (Presence/Absence) |
Tragaki et al. [44] | Regional | South Greece | Mean tide range, Mean wave height, Relative sea-level change |
Ružić et al. [47] | Local | Krk Island, Northeast Adriatic | Significant wave height |
Furlan et al. [49] | National/Regional | Italian coast | Extreme sea-level |
Author | Scale | Area | Socio-Economic Characteristics |
---|---|---|---|
Gornitz [5] | Global | North America | / |
Hammar-Klose and Thieler [42] | Regional | Gulf of Mexico, US; US Pacific Coast; US Atlantic Coast | / |
Szlafsztein and Sterr [38] | Regional | State of Pará, Brazil | Emergency relief—historical cases, Demographics, Population density, Children Population (0–4 years-old population), Elderly population (population older than 70 years old), ‘Non-local’ population or people born in a different place that they live now, Poverty, Municipal wealth |
Pendleton et al. [33] | Regional | Northern Gulf of Mexico | / |
McLaughlin and Cooper [35] (N) | National/Regional | Northern Ireland | Settlement, Cultural heritage, Roads, Railways, Land use, Conservation designation |
McLaughlin and Cooper [35] (R) | Regional | Northern Antrim coast | Cultural heritage, Land use, Population, Roads, Railways, Conservation designation |
McLaughlin and Cooper [35] (L) | Local | East Strand at Portrush | Cultural heritage, Land use, Population, Roads |
Özyurt and Ergin [62] | Regional | Göksu Delta | Reduction of sediment supply, River flow regulation, Engineered frontage, Groundwater consumption, Land use pattern, Natural protection degradation, Coastal protection structures |
Palmer et al. [40] | Local | Relative Physical CVI KwaZulu-Natal, South Africa | Economic & commercial activities, Strategic Infrastructure, Recreational areas, Subsistence sites, Important Ecological areas, Residential properties |
Yin et al. [63] | Regional | South China | / |
Mani Mural et al. [41] | Local | Puducherry coast, India | Population, Land use/land cover, Road network, Cultural heritage |
Mohamad et al. [64] | Regional | Peninsular Malaysia | / |
Loinenak et al. [65] | Local | Doreri Bay | / |
Kantamaneni et al. [43] | National/Local | 11 locations along Great Britain’s coast | Distance of built structures behind the back beach, Sea defences, Commercial properties, Residential properties, Economic value of site, Population, Coastal erosion, Flood (event) impact |
Pantusa et al. [45] | Local | Apulian Coastline, Italy | / |
Tragaki et al. [44] | Regional | South Greece | Population density, Share of women in total population, Share of persons above 65 in total population, Share of children below 5 in total population, Share of foreign-born in total population, Share of low educated in total population |
Ružić et al. [47] | Local | Krk Island, Northeast Adriatic | Land use |
Furlan et al. [49] | National/Regional | Italian coast | Number of population < 5, Number of population > 65 |
Author | Variable | 1 Very Low | 2 Low | 3 Moderate | 4 High | 5 Very High |
---|---|---|---|---|---|---|
Hammar-Klose and Thieler [42] | Geomorphology | Rocky, cliffed coasts, Fiords Fiards | Medium cliffs, Indented coasts | Low cliffs, Glacial drift, Alluvial plains | Cobble beaches, Estuary, Lagoon | Barrier beaches, Sand Beaches, Salt marsh, Mud flats, Deltas, Mangrove, Coral reefs |
Hammar-Klose and Thieler [42] | Relative sea-level change (mm/yr) | <1.8 | 1.8–2.5 | 2.5–3.0 | 3.0–3.4 | >3.4 |
Mohamad et al. [64] | Maximum current speed (m/s) | 0–0.2 | 0.2 > 0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1 |
McLaughlin and Cooper [35] | Roads | Absent | Footpaths | Minor access roads | B-class roads | A-class roads |
Mani Mural et al. [41] | Population (number) | <50,000 | >50,000 and <100,000 | >100,000 and <200,000 | >200,000 | |
Özyurt and Ergin [62] | Type of Aquifer | Leaky confined | Confined | Unconfined | ||
Pantusa et al. [45] | Posidonia oceanica | Present | Absent |
Author | Formula |
---|---|
Gornitz [5] | Ai: variable and n: total number of variable present (1. Relief, 2. Rock type (relative resistance to erosion), 3. Landform, 4. Mean tide range, 5. Maximum wave height, 6. Relative sea-level change, and 7. Shoreline displacement) |
Hammar-Klose and Thieler [42] | a: Geomorphology, b: Coastal slope, c: Relative sea-level rise rate, d: Shoreline erosion/accretion rate, e: Mean tide range, and f: Mean wave height |
Szlafsztein and Sterr [38] | |
Pendleton et al. [33] | a: Geomorphology, b: Shoreline erosion/accretion rate (or land area loss), c: Coastal slope, d: Relative sea-level rise rate (or vertical movement rate), e: Mean significant wave height, and f: Tidal range. |
McLaughlin and Cooper [35] (N) | CCSI—Coastal Characteristic Sub-Index, Coastal Forcing Sub-Index and Socio-economic Sub-Index. Variables of Sub-Indices are summed up. In order to merge all three sub-indices in CVI their scores are normalised. |
McLaughlin and Cooper [35] (R) | CVIimpact: Physical impact sub-index, PP: Physical parameters, HP: Human influence parameters, R: Rank of parameters, CVIleast vulnerable: Calculated least vulnerable case for a particular physical impact |
McLaughlin and Cooper [35] (L) | a: Beach width vulnerability score, b: Dune width vulnerability score, c: Distance to 20m isobath vulnerability score, d: Percentage outcrop vulnerability score, e: Distance of vegetation behind the back beach vulnerability score, f: Additional weighting of highly vulnerable sites (if a, b, and c = 4), and g: Additional weighting if the cell intersects an estuarine area. |
Özyurt and Ergin [62] | Fi: Vulnerability ranking of factor i and Wi: weight of factor i.Oceanic variables: Sea-level rise, Mean tide range, Mean wave height and Terrestrial variables: Geomorphology, Coastal elevation, Coastal slope, Shoreline erosion, and Coastal land use) |
Palmer et al. [40] | PVI: Physical Vulnerability Index (X1: Tidal range, X2: Significant wave height, X3: Sea-level, X4: Shoreline change, X5: Elevation, X6: Geomorphology and X7: Slope), SVI: Social Vulnerability Index (X1: Cultural heritage, X2: Road networks, X3: Land use/Land cover, and X4: Population) and Wn: Weight value of each variable. |
Yin et al. [63] | a1: Geomorphology, a2: Shoreline change rate, a3: Maximum current speed, a4: Maximum tidal range, a5: Significant wave height, and a6: Sea-level rise in Peninsular Malaysia. |
Mani Mural et al. [41] | a: Geomorphology, b: Coastline changes due to accretion and erosion, c: Coastline slope, d: Sea surface increase, e: Average wave height, and f: Average tidal range. |
Mohamad et al. [64] | a: Beach width, b: Dune width, c: Coastal slope, d: Distance of vegetation behind the back beach, e: Distance of built structures behind the back beach, f: Rocky outcrop, and g: Sea Defences a: Commercial properties, b: Residential properties, c: Economic value of a site, d: Population, and e: Coastal erosion, f: Flood (event) impact N: number of cells contributing to total PCVI and FCVI scores, respectively |
Loinenak et al. [65] | a: Geomorphology, b: Coastal slope, c: Shoreline erosion/accretion rates, d: Emerged beach width, e: Dune width, f: Relative sea-level change, g: Mean significant wave height, and h: Mean tide. range, i: Width of vegetation behind the beach, l: Posidonia oceanica. |
Kantamaneni et al. [43] | a: Geomorphology, b: Shoreline erosion/accretion rate, c: Coastal slope, d: Relative sea-level rise rate, e: Mean significant wave height, and f: Mean tide range. SVIi scores are classified based on standard deviations from the mean into five categories, ranging from less than -1σ on the lower end to more than +1σ on the upper end |
Pantusa et al. [45] | a: Geological fabric, b: Coastal slope, c: Emerged beach width, d: Significant wave height, and e: Land use. |
Tragaki et al. [44] | = is the score resulting from each sub-index a (i.e., CF,ENV,SOC,ECO sub—indices) at time t (either reference or future scenario) in the province p. n (1,…,N) is the number of indicators included in the computation of each sub-index (N = 1 for the CF sub-index; N = 8 for the ENV sub-index; N = 2 for the SOC subindex; N = 2 for the ECO sub-index). is the score of the indicator n for the sub-index a at time t, for the province p. M = is the maximum value assumed by each sub-index at time t (either reference or future scenario) in the province p. m = is the minimum value assumed by each sub-index at time t (either reference or future scenario) in the province p. = is the score (s) for the Coastal Vulnerability Index in province p at time t (either reference or future scenario). = is the score (s) for each sub-index (CF, ENV, SOC, ECO) at time t in province p. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimac, Z.; Lončar, N.; Faivre, S. Overview of Coastal Vulnerability Indices with Reference to Physical Characteristics of the Croatian Coast of Istria. Hydrology 2023, 10, 14. https://doi.org/10.3390/hydrology10010014
Šimac Z, Lončar N, Faivre S. Overview of Coastal Vulnerability Indices with Reference to Physical Characteristics of the Croatian Coast of Istria. Hydrology. 2023; 10(1):14. https://doi.org/10.3390/hydrology10010014
Chicago/Turabian StyleŠimac, Zaviša, Nina Lončar, and Sanja Faivre. 2023. "Overview of Coastal Vulnerability Indices with Reference to Physical Characteristics of the Croatian Coast of Istria" Hydrology 10, no. 1: 14. https://doi.org/10.3390/hydrology10010014
APA StyleŠimac, Z., Lončar, N., & Faivre, S. (2023). Overview of Coastal Vulnerability Indices with Reference to Physical Characteristics of the Croatian Coast of Istria. Hydrology, 10(1), 14. https://doi.org/10.3390/hydrology10010014