The Seasonal Variability and Environmental Factors Influencing the Transpiration of Western Juniper (Juniperus occidentalis) Saplings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sap Flow Measurements and Estimation of Transpiration
2.3. Environmental Variable Measurements
2.4. Data Analysis
3. Results
3.1. Environmental Conditions
3.2. Seasonal Variation of Juniper Saplings’ Transpiration in Different Years
3.3. Environmental Controls on Transpiration
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. 2013, 13, 10081–10094. [Google Scholar] [CrossRef]
- Yin, L.; Tao, F.; Chen, Y.; Liu, F.; Hu, J. Improving terrestrial evapotranspiration estimation across China during 2000–2018 with machine learning methods. J. Hydrol. 2021, 600, 126538. [Google Scholar] [CrossRef]
- Yu, L.; Qiu, G.Y.; Yan, C.; Zhao, W.; Zou, Z.; Ding, J.; Qin, L.; Xiong, Y. A global terrestrial evapotranspiration product based on the three-temperature model with fewer input parameters and no calibration requirement. Earth Syst. Sci. Data. 2022, 14, 3673–3693. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Q.; He, K.; Wang, Z. The accuracy improvement of sap flow prediction in Picea crassifolia Kom. based on the back-propagation neural network model. Hydrol. Process. 2022, 36, e14490. [Google Scholar] [CrossRef]
- Yang, J.; He, Z.; Lin, P.; Du, J.; Tian, Q.; Feng, J.; Liu, Y.; Guo, L.; Wang, G.; Yan, J.; et al. Variability in Minimal-Damage Sap Flow Observations and Whole-Tree Transpiration Estimates in a Coniferous Forest. Water 2022, 14, 2551. [Google Scholar] [CrossRef]
- Bosch, D.D.; Marshall, L.K.; Teskey, R. Forest transpiration from sap fux density measurements in a Southeastern Coastal Plain riparian bufer system. Agric. For. Meteorol. 2014, 187, 72–82. [Google Scholar] [CrossRef]
- Lyu, J.; He, Q.Y.; Yang, J.; Chen, Q.W.; Cheng, R.R.; Yan, M.J.; Yamanaka, N.; Du, S. Sap flow characteristics in growing and non-growing seasons in three tree species in the semiarid Loess Plateau region of China. Trees 2020, 34, 943–955. [Google Scholar] [CrossRef]
- Xu, S.; Yu, Z. Environmental control on transpiration: A case study of a desert ecosystem in northwest China. Water 2020, 12, 1211. [Google Scholar] [CrossRef]
- Liu, H.; Li, L.; Wang, S.; Yang, Q.; Zhao, W. Soil-moisture dynamics and tree-water status in a Picea crassifolia forest, Qilian Mountains, China. Sci. Cold Arid. Reg. 2020, 12, 34–46. [Google Scholar]
- Yu, S.; Guo, J.; Liu, Z.; Wang, Y.; Ma, J.; Li, J.; Liu, F. Assessing the impact of soil moisture on canopy transpiration using a modified Jarvis-Stewart model. Water 2021, 13, 2720. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Xu, H.; Kong, Z.; Xu, Z.; Liu, Q.; Liu, P. Zhang, Z. Biophysical regulations of transpiration and water use strategy in a mature Chinese pine (Pinus tabulaeformis) forest in a semiarid urban environment. Hydrol. Process. 2022, 36, e14485. [Google Scholar] [CrossRef]
- Shen, Q.; Gao, G.; Fu, B.; Lü, Y. Sap flow and water use sources of shelter-belt trees in an arid inland river basin of Northwest China. Ecohydrology 2015, 8, 1446–1458. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Hanson, P.J. Sensitivity of canopy transpiration to altered precipitation in an upland oak forest: Evidence from a long-term field manipulation study. Glob. Chang. Biol. 2006, 12, 97–109. [Google Scholar] [CrossRef]
- Liu, J.; Cheng, F.; Munger, W.; Jiang, P.; Whitby, T.G.; Chen, S.; Ji, W.; Man, X. Precipitation extremes influence patterns and partitioning of evapotranspiration and transpiration in a deciduous boreal larch forest. Agric. For. Meteorol. 2020, 287, 107936. [Google Scholar] [CrossRef]
- Han, C.; Chen, N.; Zhang, C.; Liu, Y.; Khan, S.; Lu, K.; Li, Y.; Dong, X.; Zhao, C. Sap flow and responses to meteorological about the Larix principis-rupprechtii plantation in Gansu Xinlong mountain, northwestern China. For. Ecol. Manag. 2019, 451, 117519. [Google Scholar] [CrossRef]
- Niu, Z.; He, H.; Zhu, G.; Ren, X.; Zhang, L.; Zhang, K.; Yu, G.; Ge, R.; Li, P.; Zeng, N.; et al. An increasing trend in the ratio of transpiration to total terrestrial evapotranspiration in China from 1982 to 2015 caused by greening and warming. Agric. For. Meteorol. 2019, 279, 107701. [Google Scholar] [CrossRef]
- Juice, S.M.; Templer, P.H.; Phillips, N.G.; Ellison, A.M.; Pelini, S.L. Ecosystem warming increases sap flow rates of northern red oak trees. Ecosphere 2016, 7, e01221. [Google Scholar] [CrossRef]
- Angulo, M.A.; Ninot, J.M.; Peñuelas, J.; Cornelissen, J.H.; Grau, O. Tree sapling responses to 10 years of experimental manipulation of temperature, nutrient availability, and Shrub cover at the Pyrenean treeline. Front. Plant Sci. 2019, 9, 1871. [Google Scholar] [CrossRef]
- Keles, S.O. How anatomical and morphological characteristics affect the flexural properties of two angiosperm species at the sapling stage. BioResources 2020, 15, 5843–5858. [Google Scholar] [CrossRef]
- Zafar, Z.; Rasheed, F.; Abdullah, M.; Salam, M.M.A.; Mohsin, M. Effects of water deficit on growth and physiology of Young Conocarpus erectus L. and Ficus benjamina L. saplings. Bangladesh J. Bot. 2019, 48, 1215–1221. [Google Scholar] [CrossRef]
- Sabir, M.A.; Rasheed, F.; Zafar, Z.; Khan, I.; Nawaz, M.F.; ul Haq, I.; Bilal, M. A consistent CO2 assimilation rate and an enhanced root development drives the tolerance mechanism in Ziziphus jujuba under soil water deficit. Arid. Land. Res. Manag. 2020, 34, 392–404. [Google Scholar] [CrossRef]
- Wullschleger, S.D.; Hanson, P.J.; Tschaplinski, T.J. Whole-plant water flux in understory red maple exposed to altered precipitation regimes. Tree Physiol. 1998, 18, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Oberhuber, W.; Hammerle, A.; Kofler, W. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Front. Plant Sci. 2015, 6, 703. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.E. Determining water use by trees and forests from isotopic, energy balance and transpiration analyses: The roles of tree size and hydraulic lift. Tree Physiol. 1996, 16, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.F.; Bates, J.D.; Svejcar, T.J.; Pierson, F.B.; Eddleman, L.E. Biology, Ecology, and Management of Western Juniper (Juniperus occidentalis); Oregon State University: Corvallis, OR, USA, 2005. [Google Scholar]
- Davies, K.W.; Bates, J.D. Restoring big sagebrush after controlling encroaching western juniper with fire: Aspect and subspecies effects. Restor. Ecol. 2017, 25, 33–41. [Google Scholar] [CrossRef]
- Ochoa, C.G.; Caruso, P.; Ray, G.; Deboodt, T.; Jarvis, W.T.; Guldan, S.J. Ecohydrologic connections in semiarid watershed systems of central Oregon USA. Water 2018, 10, 181. [Google Scholar] [CrossRef]
- Ray, G.; Ochoa, C.G.; Deboodt, T.; Mata-Gonzalez, R. Overstory–understory vegetation cover and soil water content observations in western juniper woodlands: A paired watershed study in Central Oregon, USA. Forests 2019, 10, 151. [Google Scholar] [CrossRef]
- Bates, J.D.; Svejcar, T.; Miller, R.; Davies, K.W. Plant community dynamics 25 years after juniper control. Rangel. Ecol. Manag. 2017, 70, 356–362. [Google Scholar] [CrossRef]
- Abdallah, M.A.; Durfee, N.; Mata-Gonzalez, R.; Ochoa, C.G.; Noller, J.S. Water use and soil moisture relationships on western juniper trees at different growth stages. Water 2020, 12, 1596. [Google Scholar] [CrossRef]
- Mata-González, R.; Abdallah, M.A.; Ochoa, C.G. Water use by mature and sapling western juniper (Juniperus occidentalis) trees. Rangel. Ecol. Manag. 2021, 74, 110–113. [Google Scholar] [CrossRef]
- Durfee, N.; Ochoa, C.G.; Mata-Gonzalez, R. The use of low-altitude UAV imagery to assess western juniper density and canopy cover in treated and untreated stands. Forests 2019, 10, 296. [Google Scholar] [CrossRef]
- Abdallah, M.A.; Mata-González, R.; Noller, J.S.; Ochoa, C.G. Ecosystem carbon in relation to woody plant encroachment and control: Juniper systems in Oregon, USA. Agric. Ecosyst. Environ. 2020, 290, 106762. [Google Scholar] [CrossRef]
- Fisher, M. Analysis of Hydrology and Erosion in Small, Paired Watersheds in a Juniper-Sagebrush Area of Central Oregon. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, September 2004. [Google Scholar]
- Kirmse, R.D.; Norton, B.E. Comparison of the reference unit method and dimensional analysis methods for two large shrubby species in the Caatinga woodlands. J. Range Manag. 1985, 38, 425–428. [Google Scholar] [CrossRef]
- Chang, X.X.; Zhao, W.Z.; He, Z.B. Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce (Picea crassifolia) in the upper Heihe River Basin of arid northwestern China. Agric. For. Meteorol. 2014, 187, 14–21. [Google Scholar] [CrossRef]
- Rahman, M.A.; Moser, A.; Rötzer, T.; Pauleit, S. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 2017, 232, 443–456. [Google Scholar] [CrossRef]
- Hayat, M.; Zha, T.; Jia, X.; Iqbal, S.; Qian, D.; Bourque, C.P.A.; Khan, A.; Tian, Y.; Bai, Y.; Liu, P.; et al. A multiple-temporal scale analysis of biophysical control of sap flow in Salix psammophila growing in a semiarid shrubland ecosystem of northwest China. Agric. For. Meteorol. 2020, 288, 107985. [Google Scholar] [CrossRef]
- Liu, X.; Nie, Y.; Luo, T.; Yu, J.; Shen, W.; Zhang, L. Seasonal shift in climatic limiting factors on tree transpiration: Evidence from sap flow observations at alpine treelines in southeast Tibet. Front. Plant Sci. 2016, 7, 1018. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, B.; Zhuang, J.Y.; Han, C.; Zhai, L.; Zhao, W.R.; Zhang, J.C. The relationship between sap flow density and environmental factors in the Yangtze River delta region of China. Forests 2017, 8, 74. [Google Scholar] [CrossRef]
- Liu, X.; Biondi, F. Transpiration drivers of high-elevation five-needle pines (Pinus longaeva and Pinus flexilis) in sky-island ecosystems of the North American Great Basin. Sci. Total Environ. 2020, 739, 139861. [Google Scholar] [CrossRef]
- Zhang, F.; Biederman, J.A.; Dannenberg, M.P.; Yan, D.; Reed, S.C.; Smith, W.K. Five decades of observed daily precipitation reveal longer and more variable drought events across much of the western United States. Geophys. Res. Lett. 2021, 48, e2020GL092293. [Google Scholar] [CrossRef]
- Hayat, M.; Xiang, J.; Yan, C.; Xiong, B.; Wang, B.; Qin, L.; Saeed, S.; Hussain, A.; Zou, Z.; Qiu, G.Y. Environmental control on transpiration and its cooling effect of Ficus concinna in a subtropical city Shenzhen, southern China. Agric. For. Meteorol. 2022, 312, 108715. [Google Scholar] [CrossRef]
- Wu, S.H.; Jansson, P.E.; Kolari, P. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem. Agric. For. Meteorol. 2012, 156, 85–103. [Google Scholar] [CrossRef]
- Wieser, G.; Grams, T.E.E.; Matyssek, R.; Oberhuber, W.; Gruber, A. Soil warming increased whole-tree water use of Pinus cembra at the treeline in the Central Tyrolean Alps. Tree Physiol. 2015, 35, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.F.; Shultz, L.M. Water relations and leaf morphology of Juniperus occidentalis in the northern Great Basin. For. Sci. 1987, 33, 690–706. [Google Scholar]
- Zhu, S.; Chen, H.; Dai, Y.; Lu, X.; Shangguan, W.; Yuan, H.; Wei, N. Evaluation of the effect of low soil temperature stress on the land surface energy fluxes simulation in the site and global offline experiments. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002403. [Google Scholar] [CrossRef]
- Nagasuga, K.; Murai-Hatano, M.; Kuwagata, T. Effects of low root temperature on dry matter production and root water uptake in rice plants. Plant Prod. Sci. 2011, 14, 22–29. [Google Scholar] [CrossRef]
- Ni, J.; Cheng, Y.; Wang, Q.; Ng, C.W.W.; Garg, A. Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. J. Hydrol. 2019, 571, 494–502. [Google Scholar] [CrossRef]
- McCormick, E.L.; Dralle, D.N.; Hahm, W.J.; Tune, A.K.; Schmidt, L.M.; Chadwick, K.D.; Rempe, D.M. Widespread woody plant use of water stored in bedrock. Nature 2021, 597, 225–229. [Google Scholar] [CrossRef]
- Jarecke, K.M.; Hawkins, L.R.; Bladon, K.D.; Wondzell, S.M. Carbon uptake by Douglas-fir is more sensitive to increased temperature and vapor pressure deficit than reduced rainfall in the western Cascade Mountains, Oregon, USA. Agric. For. Meteorol. 2023, 329, 109267. [Google Scholar] [CrossRef]
- Sulman, B.N.; Roman, D.T.; Yi, K.; Wang, L.; Phillips, R.P.; Novick, K.A. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 2016, 43, 9686–9695. [Google Scholar] [CrossRef]
- Grossiord, C.; Sevanto, S.; Borrego, I.; Chan, A.M.; Collins, A.D.; Dickman, L.T.; Hudson, P.J.; McBranch, N.; Michaletz, S.T.; Pockman, W.T.; et al. Tree water dynamics in a drying and warming world. Plant Cell Environ. 2017, 40, 1861–1873. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wei, W.; Tong, B.; Chen, L. Effects of soil moisture and vapor pressure deficit on canopy transpiration for two coniferous forests in the Loess Plateau of China. Agric. For. Meteorol. 2023, 339, 109581. [Google Scholar] [CrossRef]
- Du, J.; Dai, X.; Huo, Z.; Wang, X.; Wang, S.; Wang, C.; Zhang, C.; Huang, G. Stand transpiration and canopy conductance dynamics of Populus popularis under varying water availability in an arid area. Sci. Total Environ. 2023, 892, 164397. [Google Scholar] [CrossRef]
- Wang, H.; Tetzlaff, D.; Dick, J.J.; Soulsby, C. Assessing the environmental controls on Scots pine transpiration and the implications for water partitioning in a boreal headwater catchment. Agric. For. Meteorol. 2017, 240–241, 58–66. [Google Scholar] [CrossRef]
- Oogathoo, S.; Houle, D.; Duchesne, L.; Kneeshaw, D. Vapour pressure deficit and solar radiation are the major drivers of transpiration of balsam fir and black spruce tree species in humid boreal regions, even during a short-term drought. Agric. For. Meteorol. 2020, 291, 108063. [Google Scholar] [CrossRef]
- Ghimire, C.P.; van Meerveld, H.I.; Zwartendijk, B.W.; Bruijnzeel, A.L.; Ravelona, M.; Lahitiana, J.; Lubczynski, M.W. Vapour pressure deficit and solar radiation are the major drivers of transpiration in montane tropical secondary forests in eastern Madagascar. Agric. For. Meteorol. 2022, 326, 109159. [Google Scholar] [CrossRef]
- Beegum, S.; Timlin, D.; Reddy, K.R.; Reddy, V.; Sun, W.; Wang, Z.; Fleisher, D.; Ray, C. Improving the cotton simulation model, GOSSYM, for soil, photosynthesis, and transpiration processes. Sci. Rep. 2023, 13, 7314. [Google Scholar] [CrossRef]
- Vesala, T.; Sevanto, S.; Grönholm, T.; Salmon, Y.; Nikinmaa, E.; Hari, P.; Hölttä, T. Effect of leaf water potential on internal humidity and CO2 dissolution: Reverse transpiration and improved water use efficiency under negative pressure. Front. Plant Sci. 2017, 8, 54. [Google Scholar] [CrossRef]
- Tian, Q.; He, Z.; Xiao, S.; Du, J.; Peng, X.; Chen, L.; Lin, P.; Zhu, X.; Ding, A. Growing season stem water status assessment of Qinghai Spruce through the sap flow and stem radial variations in the Qilian Mountains of China. Forests 2018, 9, 2. [Google Scholar] [CrossRef]
- Chia, S.Y.; Lim, M.W. A critical review on the influence of humidity for plant growth forecasting. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1257, 012001. [Google Scholar] [CrossRef]
Year | Annual Precipitation (mm) | Difference (%) |
---|---|---|
2017 | 327 | +6.5 |
2018 | 244 | −20.5 |
2019 | 253 | −17.6 |
2020 | 211 | −31.3 |
2021 | 198 | −35.5 |
2022 | 278 | −9.4 |
Site | (Mays-East) | (Mays-West) | ||
---|---|---|---|---|
Tree No. | 1 | 2 | 3 | 4 |
Height (m) | 1.55 | 1.30 | 1.50 | 1.40 |
Maximum Width (m) | 0.70 | 1.05 | 0.80 | 0.52 |
Equipped Stem/Branch Diameter (mm) | 15 | 21 | 28 | 28 |
Equipped Stem/Branch Area (mm2) | 177 | 346 | 615 | 615 |
(Mays-East) Location | (Mays-West) Location | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Years | SR (MJ m−2) | AT (°C) | RH (%) | VPD (KPa) | Pr (mm) | SM0.2 (%) | SM0.5 (%) | SM0.8 (%) | ST0.2 (°C) | ST0.5 (°C) | ST0.8 (°C) | SM0.2 (%) | SM0.5 (%) | SM0.8 (%) | ST0.2 (°C) | ST0.5 (°C) | ST0.8 (°C) |
2017 | 21.4 A | 14.1 CD | 50.0 AB | 0.96 CD | 77 | 14.5 B | 20.1 A | 14.2 A | 20.6 AB | 18.9 B | 17.5 BC | N/A | N/A | N/A | N/A | N/A | N/A |
2018 | 21.2 A | 15.5 B | 49.2 B | 1.03 BC | 106 | 14.4 B | 17.7 C | 13.1 B | 20.6 AB | 19.1 AB | 17.7 AB | 6.0 D | 7.3 D | 8.1 C | 10.7 D | 12.1 D | 12.6 D |
2019 | 21.1 A | 13.7 D | 51.7 A | 0.88 D | 58 | 17.8 A | 20.6 A | 13.4 B | 19.6 C | 17.8 C | 16.4 D | 17.9 A | 12.6 A | 15.8 A | 15.5 C | 14.0 C | 13.3 C |
2020 | 20.7 A | 14.7 BC | 43.8 C | 1.10 B | 59 | 14.5 B | 18.6 B | 14.6 A | 20.2 BC | 18.5 BC | 17.1 C | 10.1 C | 8.6 B | 9.2 B | 16.5 B | 14.8 B | 13.9 B |
2021 | 21.5 A | 14.8 BC | 45.0 C | 1.10 B | 79 | 13.1 C | 16.8 D | 13.2 B | 21.3 A | 19.6 A | 18.2 A | 11.4 B | 8.2 C | 9.1 B | 18.7 A | 16.2 A | 14.9 A |
2022 | 21.2 A | 16.5 A | 43.8 C | 1.27 A | 111 | 13.3 C | 15.7 E | 12.7 C | 20.3 BC | 18.5 BC | 17.0 C | N/A | N/A | N/A | N/A | N/A | N/A |
Sig | ns | *** | *** | *** | *** | *** | *** | ns | * | ** | *** | *** | *** | *** | *** | *** |
SR | AT | RH | VPD | Pr | SM0.2 | SM0.5 | SM0.8 | ST0.2 | ST0.5 | ST0.8 | |
---|---|---|---|---|---|---|---|---|---|---|---|
SR | 1.00 | ||||||||||
AT | 0.71 | 1.00 | |||||||||
RH | −0.63 | −0.92 | 1.00 | ||||||||
VPD | 0.65 | 0.97 | −0.96 | 1.00 | |||||||
Pr | −0.15 | −0.29 | 0.41 | −0.33 | 1.00 | ||||||
SM0.2 | 0.34 | −0.19 | 0.30 | −0.27 | 0.17 | 1.00 | |||||
SM0.5 | 0.44 | −0.08 | 0.20 | −0.17 | 0.15 | 0.97 | 1.00 | ||||
SM0.8 | 0.37 | −0.13 | 0.24 | −0.21 | 0.17 | 0.97 | 0.98 | 1.00 | |||
ST0.2 | 0.76 | 0.96 | −0.87 | 0.92 | −0.27 | −0.15 | −0.02 | −0.07 | 1.00 | ||
ST0.5 | 0.57 | 0.91 | −0.86 | 0.90 | −0.29 | −0.43 | −0.31 | −0.35 | 0.95 | 1.00 | |
ST0.8 | 0.36 | 0.81 | −0.80 | 0.82 | −0.29 | −0.65 | −0.54 | −0.56 | 0.83 | 0.96 | 1.00 |
Years | Pr | Station | SM0.2 | SM0.5 | SM0.8 | SMtot | ST0.2 | ST0.5 | ST0.8 | STtot |
---|---|---|---|---|---|---|---|---|---|---|
2017 | −0.41 *** | Mays-East | 0.37 ** | 0.36 ** | 0.35 ** | 0.37 ** | 0.42 *** | 0.44 *** | 0.46 *** | 0.45 *** |
2018 | −0.56 *** | Mays-East | 0.84 *** | 0.80 *** | 0.70 *** | 0.83 *** | 0.54 *** | 0.36 *** | 0.19 ns | 0.41 *** |
Mays-West | 0.25 ns | 0.27 ns | 0.41 * | 0.49 * | 0.39 ns | 0.38 ns | 0.44 * | 0.49 * | ||
2019 | −0.13 ns | Mays-East | 0.43 *** | 0.46 *** | 0.42 *** | 0.46 *** | 0.60 *** | 0.47 *** | 0.34 *** | 0.50 *** |
Mays-West | −0.36 *** | −0.07 ns | −0.07 ns | −0.28 ** | 0.55 *** | 0.44 *** | 0.40 *** | 0.48 *** | ||
2021 | −0.45 *** | Mays-West | 0.12 ns | −0.23 ** | −0.17 * | −0.33 *** | 0.72 *** | 0.50 *** | 0.27 *** | 0.59 *** |
2022 | −0.28 ns | Mays-West | 0.34 * | −0.13 ns | −0.35 * | −0.02 ns | 0.02 ns | −0.42 ** | −0.58 *** | −0.30 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ochoa, C.G.; Abdallah, M.A.B. The Seasonal Variability and Environmental Factors Influencing the Transpiration of Western Juniper (Juniperus occidentalis) Saplings. Hydrology 2023, 10, 232. https://doi.org/10.3390/hydrology10120232
Ochoa CG, Abdallah MAB. The Seasonal Variability and Environmental Factors Influencing the Transpiration of Western Juniper (Juniperus occidentalis) Saplings. Hydrology. 2023; 10(12):232. https://doi.org/10.3390/hydrology10120232
Chicago/Turabian StyleOchoa, Carlos G., and Mohamed A. B. Abdallah. 2023. "The Seasonal Variability and Environmental Factors Influencing the Transpiration of Western Juniper (Juniperus occidentalis) Saplings" Hydrology 10, no. 12: 232. https://doi.org/10.3390/hydrology10120232
APA StyleOchoa, C. G., & Abdallah, M. A. B. (2023). The Seasonal Variability and Environmental Factors Influencing the Transpiration of Western Juniper (Juniperus occidentalis) Saplings. Hydrology, 10(12), 232. https://doi.org/10.3390/hydrology10120232