Integrated Multi-Model Approach for Assessing Groundwater Vulnerability in Rajasthan’s Semi-Arid Zone: Incorporating DRASTIC and SINTACS Variants
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Datasets
3.1.1. Depth-to-Water Table
3.1.2. Net Recharge
3.1.3. Aquifer Media
3.1.4. Soil Media
3.1.5. Topographical Map
3.1.6. Impact of Vadose Zone Map
3.1.7. Hydraulic Conductivity Map
3.1.8. Land Use Land Cover Map
3.1.9. Temperature Map
3.2. Methodology Adopted
- Acquire the necessary data for the analysis. This includes groundwater data, digital elevation data, soil data, aquifer data, precipitation data, geology and geomorphology, land use, and temperature;
- Determine weights: assign relative importance weights to each input layer based on their relevance to the analysis. Weights can be assigned based on parameters, their role in vulnerability analysis, and their importance;
- Performed weighted overlay analysis by giving the assigned weights and ratings to the parameters and the aspects of the parameters individually and ran weighted overlay analysis. This gives us the DRASTIC AND SINTACS vulnerability zone maps;
- Then, we performed a modified weighted overlay analysis using the land use and temperature parameters, giving us the Modified DRASTIC and Modified SINTACS vulnerability zone maps;
- Categorize results into different risk levels. As in the present study, the vulnerability zones were categorized into five zones: very low; low; medium; high; and very high zones;
- The validation of the results was performed by using the well data and the four major ion data, such as the concentration of fluoride, chloride, nitrate, and TDS in the groundwater.
3.2.1. Assigning Rate and Weight to the Parameters Used
3.2.2. DRASTIC Vulnerability Index
3.2.3. SINTACS Vulnerability Index
3.2.4. Modified-DRASTIC Vulnerability Index
3.2.5. Modified-SINTACS Vulnerability Index
4. Results and Discussion
4.1. DRASTIC Vulnerability Map
4.2. SINTACS Vulnerability Map
4.3. Modified DRASTIC Vulnerability Map
4.4. Modified SINTACS Vulnerability Map
4.5. Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamrah, A.; Al-Futaisi, A.; Prathapar, S.; Harrasi, A.A. Evaluating Greywater Reuse Potential for Sustainable Water Resources Management in Oman. Environ. Monit. Assess. 2008, 137, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, P. Groundwater Quality Mapping Using Geographic Information System (GIS): A Case Study of Gulbarga City, Karnataka, India. Afr. J. Environ. Sci. Technol. 2011, 5, 1069–1084. [Google Scholar] [CrossRef]
- McLay, C.D.A.; Dragten, R.; Sparling, G.; Selvarajah, N. Predicting Groundwater Nitrate Concentrations in a Region of Mixed Agricultural Land Use: A Comparison of Three Approaches. Environ. Pollut. 2001, 115, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Shyam, M.; Meraj, G.; Kanga, S.; Sudhanshu; Farooq, M.; Singh, S.K.; Sahu, N.; Kumar, P. Assessing the Groundwater Reserves of the Udaipur District, Aravalli Range, India, Using Geospatial Techniques. Water 2022, 14, 648. [Google Scholar] [CrossRef]
- Piscopo, G. Groundwater Vulnerability Map Explanatory Notes; Castlereagh Catchment; Centre for Natural Resources NSW Department of Land and Water Conservation: Parramatta, Australia, 2001; pp. 5–13. [Google Scholar]
- Maier, D.; Montenegro, H.; Odenwald, B. Robustness and Efficiency of Iteration Schemes for Variably Saturated Flow across the Range of Soils, Initial and Boundary Conditions Found in Practice. Comput. Geosci. 2023, 27, 753–763. [Google Scholar] [CrossRef]
- Hallberg, G. Pesticides in Ground Water; Distribution, Trends, and Governing Factors. Ground Water 1997, 35, 920–922. [Google Scholar]
- Khlif, T.; Al-Aboodi, A.; Ibrahim, H. A Comparative Study of Groundwater Vulnerability Assessment Methods. Basrah J. Eng. Sci. 2022, 22, 129–138. [Google Scholar] [CrossRef]
- Ghosh, T.; Kanchan, R. Aquifer Vulnerability Assessment in the Bengal Alluvial Tract, India, Using GIS Based DRASTIC Model. Model. Earth Syst. Environ. 2016, 2, 153. [Google Scholar] [CrossRef]
- Rao, S.M.; Mamatha, P. Water Quality in Sustainable Water Management. Curr. Sci. 2004, 87, 942–947. [Google Scholar]
- Qadri, R.; Faiq, M.A. Freshwater Pollution: Effects on Aquatic Life and Human Health. In Fresh Water Pollution Dynamics and Remediation; Qadri, H., Bhat, R.A., Mehmood, M.A., Dar, G.H., Eds.; Springer: Singapore, 2020; pp. 15–26. ISBN 9789811382765. [Google Scholar]
- Prasad, R.K.; Singh, V.S.; Krishnamacharyulu, S.K.G.; Banerjee, P. Application of Drastic Model and GIS: For Assessing Vulnerability in Hard Rock Granitic Aquifer. Environ. Monit. Assess. 2011, 176, 143–155. [Google Scholar] [CrossRef]
- Secunda, S.; Collin, M.L.; Melloul, A.J. Groundwater Vulnerability Assessment Using a Composite Model Combining DRASTIC with Extensive Agricultural Land Use in Israel’s Sharon Region. J. Environ. Manag. 1998, 54, 39–57. [Google Scholar] [CrossRef]
- Majandang, J.; Sarapirome, S. Groundwater Vulnerability Assessment and Sensitivity Analysis in Nong Rua, Khon Kaen, Thailand, Using a GIS-Based SINTACS Model. Environ. Earth Sci. 2013, 68, 2025–2039. [Google Scholar] [CrossRef]
- Rezaei, F.; Ahmadzadeh, M.R.; Safavi, H.R. SOM-DRASTIC: Using Self-Organizing Map for Evaluating Groundwater Potential to Pollution. Stoch. Environ. Res. Risk Assess. 2017, 31, 1941–1956. [Google Scholar] [CrossRef]
- Sahu, I.; Prasad, A.D.; Ahmad, I. Groundwater Vulnerability Assessment Using SINTACS Model and GIS: A Case Study in Raipur City. IOP Conf. Ser. Earth Environ. Sci. 2022, 982, 012070. [Google Scholar] [CrossRef]
- Merchant, J.W. GIS-Based Groundwater Pollution Hazard Assessment, A Critical Review of the DRASTIC Model. Photogramm. Eng. Remote Sens. 1994, 60, 1117–1127. [Google Scholar]
- Kim, Y.J.; Hamm, S.-Y. Assessment of the Potential for Groundwater Contamination Using the DRASTIC/EGIS Technique, Cheongju Area, South Korea. Hydrogeol. J. 1999, 7, 227–235. [Google Scholar] [CrossRef]
- Sud, A.; Kanga, R.; Singh, S.K.; Meraj, G.; Kanga, S.; Kumar, P.; Ramanathan, A.; Sudhanshu; Bhardwaj, V. Simulating Groundwater Potential Zones in Mountainous Indian Himalayas—A Case Study of Himachal Pradesh. Hydrology 2023, 10, 65. [Google Scholar] [CrossRef]
- Joshi, P.; Gupta, P.K. Assessing Groundwater Resource Vulnerability by Coupling GIS-Based DRASTIC and Solute Transport Model in Ajmer District, Rajasthan. J. Geol. Soc. India 2018, 92, 101–106. [Google Scholar] [CrossRef]
- Babiker, I.S.; Mohamed, M.A.A.; Hiyama, T.; Kato, K. A GIS-Based DRASTIC Model for Assessing Aquifer Vulnerability in Kakamigahara Heights, Gifu Prefecture, Central Japan. Sci. Total Environ. 2005, 345, 127–140. [Google Scholar] [CrossRef]
- Sinha, K.K.; Gupta, M.K.; Banerjee, M.K.; Meraj, G.; Singh, S.K.; Kanga, S.; Farooq, M.; Kumar, P.; Sahu, N. Neural Network-Based Modeling of Water Quality in Jodhpur, India. Hydrology 2022, 9, 92. [Google Scholar] [CrossRef]
- Voudouris, K.; Kazakis, N.; Polemio, M.; Kareklas, K. Assessment of Intrinsic Vulnerability Using DRASTIC Model and GIS in Kiti Aquifer, Cyprus. Eur. Water 2010, 30, 13–24. [Google Scholar]
- Yang, Y.S.; Wang, L. Catchment-Scale Vulnerability Assessment of Groundwater Pollution from Diffuse Sources Using the DRASTIC Method: A Case Study. Hydrol. Sci. J. 2010, 55, 1206–1216. [Google Scholar] [CrossRef]
- Chitsazan, M.; Akhtari, Y. A GIS-Based DRASTIC Model for Assessing Aquifer Vulnerability in Kherran Plain, Khuzestan, Iran. Water Resour. Manag. 2009, 23, 1137–1155. [Google Scholar] [CrossRef]
- Baghapour, B. A Convolutional Auto-Encoder Regression for Parametric Modeling of Mixed Convection in Concentric Annulus. Int. J. Therm. Sci. 2023, 190, 108293. [Google Scholar] [CrossRef]
- Kumar, A.; Pramod Krishna, A. Groundwater Vulnerability and Contamination Risk Assessment Using GIS-Based Modified DRASTIC -LU Model in Hard Rock Aquifer System in India. Geocarto Int. 2020, 35, 1149–1178. [Google Scholar] [CrossRef]
- Chamanehpour, E.; Sayadi, M.H.; Yousefi, E. The Potential Evaluation of Groundwater Pollution Based on the Intrinsic and the Specific Vulnerability Index. Groundw. Sustain. Dev. 2020, 10, 100313. [Google Scholar] [CrossRef]
- Nekkoub, A.; Baali, F.; Hadji, R.; Hamed, Y. The EPIK Multi-Attribute Method for Intrinsic Vulnerability Assessment of Karstic Aquifer under Semi-Arid Climatic Conditions, Case of Cheria Plateau, NE Algeria. Arab. J. Geosci. 2020, 13, 709. [Google Scholar] [CrossRef]
- Shirazi, S.M.; Imran, H.M.; Akib, S.; Yusop, Z.; Harun, Z.B. Groundwater Vulnerability Assessment in the Melaka State of Malaysia Using DRASTIC and GIS Techniques. Environ. Earth Sci. 2013, 70, 2293–2304. [Google Scholar] [CrossRef]
- Satheeshkumar, S. Assessment of Groundwater Potential Using 1D Model of Vertical Electrical Sounding and Aquifer Protective Capacity in the Naraiyur Micro-Watershed. Model. Earth Syst. Environ. 2023. [Google Scholar] [CrossRef]
- Kanga, S.; Singh, S.K.; Meraj, G.; Kumar, A.; Parveen, R.; Kranjčić, N.; Đurin, B. Assessment of the Impact of Urbanization on Geoenvironmental Settings Using Geospatial Techniques: A Study of Panchkula District, Haryana. Geographies 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Bonte, M.; Stuyfzand, P.J.; Van Den Berg, G.A.; Hijnen, W.A.M. Effects of Aquifer Thermal Energy Storage on Groundwater Quality and the Consequences for Drinking Water Production: A Case Study from the Netherlands. Water Sci. Technol. 2011, 63, 1922–1931. [Google Scholar] [CrossRef] [PubMed]
- Stemmle, R.; Lee, H.; Blum, P.; Menberg, K. City-Scale Heating and Cooling with Aquifer Thermal Energy Storage (ATES). Hydrol. Earth Syst. Sci. Discuss. 2023. preprint. [Google Scholar]
- Saito, T.; Hamamoto, S.; Ueki, T.; Ohkubo, S.; Moldrup, P.; Kawamoto, K.; Komatsu, T. Temperature Change Affected Groundwater Quality in a Confined Marine Aquifer during Long-Term Heating and Cooling. Water Res. 2016, 94, 120–127. [Google Scholar] [CrossRef]
- Kalinski, R.J.; Kelly, W.E.; Bogardi, I.; Ehrman, R.L.; Yaniamoto, P.D. Correlation Between DRASTIC Vulnerabilities and Incidents of VOC Contamination of Municipal Wells in Nebraska. Ground Water 1994, 32, 31–34. [Google Scholar] [CrossRef]
- Khakhar, M.; Ruparelia, J.P.; Vyas, A. Sintacs Method for Assessment of Groundwater Vulnerability: A Case of Ahmedabad, India. In Geographic Information Science for Land Resource Management; Singh, S.K., Kanga, S., Meraj, G., Farooq, M., Sudhanshu, Eds.; Wiley: Hoboken, NJ, USA, 2021; pp. 373–406. ISBN 978-1-119-78632-0. [Google Scholar]
- Mensah, D.O.; Appiah-Adjei, E.K.; Asante, D. Groundwater Pollution Vulnerability Assessment in the Assin Municipalities of Ghana Using GIS-Based DRASTIC and SINTACS Methods. Model. Earth Syst. Environ. 2023, 9, 2955–2967. [Google Scholar] [CrossRef]
- Ourarhi, S.; Barkaoui, A.-E.; Zarhloule, Y.; Kadiri, M.; Bouiss, H. Groundwater Vulnerability Assessment in the Triffa Plain Based on GIS Combined with DRASTIC, SINTACS, and GOD Models. Model. Earth Syst. Environ. 2023. [Google Scholar] [CrossRef]
- Eftekhari, M.; Akbari, M. Evaluation of the SINTACS-LU Model Capability in the Analysis of Aquifer Vulnerability Potential in Semi-Arid Regions. J. Appl. Res. Water Wastewater 2020, 7, 111–119. [Google Scholar] [CrossRef]
- Razavi Dizaji, A.; Hosseini, S.A.; Rezaverdinejad, V.; Sharafati, A. Assessing Pollution Risk in Ardabil AquiferGroundwater of Iran with Arsenic and NitrateUsing the SINTACS Model. Pol. J. Environ. Stud. 2020, 29, 2609–2616. [Google Scholar] [CrossRef]
- Omeje, E.T.; Obiora, D.N.; Okeke, F.N.; Ibuot, J.C.; Ugbor, D.O.; Omeje, V.D. Investigation of Aquifer Vulnerability and Sensitivity Analysis of Modified Drastic and Sintacs Models: A Case Study of Ovogovo Area, Eastern Nigeria. Acta Geophys. 2023, 71, 2439–2464. [Google Scholar] [CrossRef]
- Rajput, H.; Goyal, R.; Brighu, U. Modification and Optimization of DRASTIC Model for Groundwater Vulnerability and Contamination Risk Assessment for Bhiwadi Region of Rajasthan, India. Environ. Earth Sci. 2020, 79, 136. [Google Scholar] [CrossRef]
- Noori, R.; Ghahremanzadeh, H.; Kløve, B.; Adamowski, J.F.; Baghvand, A. Modified-DRASTIC, Modified-SINTACS and SI Methods for Groundwater Vulnerability Assessment in the Southern Tehran Aquifer. J. Environ. Sci. Health Part A 2019, 54, 89–100. [Google Scholar] [CrossRef]
- Rahman, A. A GIS Based DRASTIC Model for Assessing Groundwater Vulnerability in Shallow Aquifer in Aligarh, India. Appl. Geogr. 2008, 28, 32–53. [Google Scholar] [CrossRef]
- Gad, M.; Saleh, A.H.; Hussein, H.; Farouk, M.; Elsayed, S. Appraisal of Surface Water Quality of Nile River Using Water Quality Indices, Spectral Signature and Multivariate Modeling. Water 2022, 14, 1131. [Google Scholar] [CrossRef]
- FAO. The Digitized Soil Map of the World and Derived Soil Properties, version 3.5; FAO Land and Water Digital Media Series 1; FAO: Rome, Italy, 2003. [Google Scholar]
Name of Dataset | Source | Spatial Resolution | Temporal Resolution | Purpose |
---|---|---|---|---|
Landsat-8 | USGS Earth Explorer | 30 m | 2021 | LULC Map |
Groundwater data | CGWB Rajasthan | 30 m | 2010–2020 | Depth-to-water table map |
Rainfall data | CHIRPS Data | 5.3 km | 2000–2020 | Net recharge map |
Aquifer data | Geological Survey of India | 1 km | - | Aquifer map |
Soil media | FAO-UNESCO Soil Map | 5 km | - | Soil map |
ASTER-DEM | NASA EARTH DATA | 15 m | - | Slope, flow direction, and drainage maps |
Geology and Geomorphology data | Geological Survey of India | 500 m | - | Impact of the vadose zone map |
Temperature data | IMD | - | 2010–2021 | Temperature map |
Contaminants concentration data | CGWB Well Data | - | 2010–2021 | Validation |
Parameter | DRASTIC | SINTACS | Modified DRASTIC | Modified SINTACS |
---|---|---|---|---|
Depth-to-water table | 5 | 5 | 5 | 5 |
Net recharge | 4 | 4 | 4 | 4 |
Aquifer media | 3 | 3 | 3 | 3 |
Soil media | 2 | 3 | 2 | 3 |
Slope Media | 1 | 3 | 1 | 3 |
Impact of vadose zone | 5 | 5 | 5 | 5 |
Hydraulic Conductivity | 4 | 3 | 4 | 3 |
LULC | -- | -- | 5 | 5 |
Temperature | -- | -- | 3 | 3 |
DRASTIC Vulnerability Zone | Area (sq. km) | Percentage (%) |
---|---|---|
Very Low | 14,257.9 | 9.02 |
Low | 59,893.9 | 37.89 |
Medium | 45,490.9 | 28.77 |
High | 24,191.9 | 15.30 |
Very High | 14,257.4 | 9.02 |
SINTACS Vulnerability Zone | Area (sq. km) | Percentage (%) |
---|---|---|
Very Low | 7157.8 | 4.53 |
Low | 44,653.2 | 28.25 |
Medium | 66,229.7 | 41.89 |
High | 27,288.5 | 17.26 |
Very High | 12,762.8 | 8.07 |
Mod- DRASTIC Vulnerability Zone | Area (sq. km) | Percentage (%) |
---|---|---|
Very Low | 12,357.0 | 7.82 |
Low | 35,577.7 | 22.50 |
Medium | 31,313.2 | 19.81 |
High | 30,578.6 | 19.34 |
Very High | 48,265.3 | 30.53 |
Mod- SINTACS Vulnerability Zone | Area (sq. km) | Percentage (%) |
---|---|---|
Very Low | 14,738.3 | 9.32 |
Low | 25,042.2 | 15.84 |
Medium | 51,049.7 | 32.29 |
High | 53,869.8 | 34.07 |
Very High | 13,392.1 | 8.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narisetty, N.G.; Tripathi, G.; Kanga, S.; Singh, S.K.; Meraj, G.; Kumar, P.; Đurin, B.; Matijević, H. Integrated Multi-Model Approach for Assessing Groundwater Vulnerability in Rajasthan’s Semi-Arid Zone: Incorporating DRASTIC and SINTACS Variants. Hydrology 2023, 10, 231. https://doi.org/10.3390/hydrology10120231
Narisetty NG, Tripathi G, Kanga S, Singh SK, Meraj G, Kumar P, Đurin B, Matijević H. Integrated Multi-Model Approach for Assessing Groundwater Vulnerability in Rajasthan’s Semi-Arid Zone: Incorporating DRASTIC and SINTACS Variants. Hydrology. 2023; 10(12):231. https://doi.org/10.3390/hydrology10120231
Chicago/Turabian StyleNarisetty, Nadha Gowrish, Gaurav Tripathi, Shruti Kanga, Suraj Kumar Singh, Gowhar Meraj, Pankaj Kumar, Bojan Đurin, and Hrvoje Matijević. 2023. "Integrated Multi-Model Approach for Assessing Groundwater Vulnerability in Rajasthan’s Semi-Arid Zone: Incorporating DRASTIC and SINTACS Variants" Hydrology 10, no. 12: 231. https://doi.org/10.3390/hydrology10120231
APA StyleNarisetty, N. G., Tripathi, G., Kanga, S., Singh, S. K., Meraj, G., Kumar, P., Đurin, B., & Matijević, H. (2023). Integrated Multi-Model Approach for Assessing Groundwater Vulnerability in Rajasthan’s Semi-Arid Zone: Incorporating DRASTIC and SINTACS Variants. Hydrology, 10(12), 231. https://doi.org/10.3390/hydrology10120231