A Graphic Review of Studies on Ocean and Mediterranean Sea Environment Quality
Abstract
:1. Introduction
2. Materials and Methods
- For world ocean studies: “water quality” AND (“ocean *” OR “sea” OR “gulf” OR “bay” OR “bight” OR “sound” OR “strait”) NOT (“river” OR “stream *” OR “brook” OR “creek” OR “tributary” OR “groundwater” OR “ground water” OR “aquifer” OR “runoff” OR “lake” OR “pond” OR “reservoir”);
- For Mediterranean Sea studies: “water quality” AND (“Mediterranean Sea” OR “Libyan Sea” OR “Levantine Sea” OR “Aegean Sea” OR “Ionian Sea” OR “Adriatic Sea” OR “Tyrrhenian Sea” OR “Sea of Sardinia” OR “Ligurian Sea” OR “Alboran Sea” OR “Sea of Marmara” OR “Gulf of Gabes” OR “Gulf of Sidra” OR “Gulf of Lion”) AND (“sea” OR “gulf” OR “bay” OR “bight” OR “sound” OR “strait”) NOT (“river” OR “stream*” OR “brook” OR “creek” OR “tributary” OR “groundwater” OR “ground water” OR “aquifer” OR “runoff” OR “lake” OR “pond” OR “reservoir”); one can observe that we included in this search the name of the main water bodies in the Mediterranean Sea in order to increase the number of the relevant papers.
- Three-field plots (Sankey diagrams), by using the top 10 countries (middle column) that generated relevant scientific content; the citing/cited authors’ countries are linked to the authors’ keywords (left column) and to the KeyWords Plus field (KeyWords Plus are generated by a custom Clarivate algorithm from the cited titles of the selected papers by using the words or phrases that frequently appear in the mentioned titles, but not in the title of the citing papers);
- Trend topics plots, by using the authors’ keywords that had a minimum frequency of at least 80 occurrences in total (for the world ocean studies; 10 occurrences for the smaller list of Mediterranean studies—the numbers were empirically chosen to ensure similar outputs) and that occurred at least twice per year;
- Countries’ production and collaboration world maps, by using a social structure analysis that involved the country of the corresponding author’s institution and the national scientific productivity;
- Thematic evolution graphs, resulting from the conceptual structure of the selected articles—this analysis took into account the abstracts and composed trigrams (groups of three connected words) if the words to be grouped had a minimum of 100 occurrences; the clustering used the edge betweenness algorithm (this algorithm estimates the number of the shortest paths that go through an edge in a network [26]); the inclusion index was weighted by word occurrences (minimum weight of 0.1); the minimum cluster frequency per thousand documents was set as the default 5; and the number of labels/trigrams per cluster is 1 (these numbers were chosen empirically to avoid overcrowding the graphic representation with secondary words).
3. Results and Discussion
3.1. Temporal, Spatial, and Thematic Overview
3.2. The Relationship and Evolution of the Research Themes
- The first/red cluster (23 items)—it contains ecosystem, process, assessment, management, development, use, aquaculture, and climate change; part of this group is also the spatial reference item “China”;
- The second/green cluster (21 items): concentration, temperature, salinity, variation, chlorophyll, nitrogen, coastal water, organic matter, and phosphorus; it also contains time descriptors such as a month or a season;
- The third/blue cluster (12 items): species, abundance, habitat, growth, and reduction; spatial reference items: USA and Chesapeake Bay;
- The first/red cluster (24 items): tool, management, development, evaluation, mussel, and WFD; spatial reference items: Ionian Sea, Italy, Greece, and France;
- The second/green cluster (20 items): chlorophyll, temperature, nutrient, bay, salinity, satellite, seasonal variation, and TRIX (trophic index, an indicator of trophic status with a formula using the deviation from saturation of the dissolved oxygen and the concentrations of chlorophyll a, nitrogen, and phosphorus [64]);
- The third/blue cluster (18 items): abundance, structure, relation, diversity, coastal ecosystem, phytoplankton, phosphate, and diatom (this type of microalga plays a major role in seawaters by consuming both CO2 and HCO3− [65]); spatial reference items: Aegean Sea, Marmara Sea, and Turkey;
- The fourth/yellow cluster (13 items): biomass, density, growth, habitat improvement, seagrass, and Posidonia oceanica; spatial reference item: northern Adriatic Sea.
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Canto, M.M.; Fabricius, K.E.; Logan, M.; Lewis, S.; McKinna, L.I.W.; Robson, B.J. A benthic light index of water quality in the Great Barrier Reef, Australia. Mar. Pollut. Bull. 2021, 169, 112539. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Williams, I.D.; Hudson, M.D.; Osborne, P.E.; Zapata-Restrepo, L.M. The impact of an annual major recreational boating event on water quality in the Solent Strait. Mar. Pollut. Bull. 2023, 186, 114450. [Google Scholar] [CrossRef] [PubMed]
- Eljaiek-Urzola, M.; Romero-Sierra, N.; Segrera-Cabarcas, L.; Valdelamar-Martínez, D.; Quiñones-Bolaños, É. Oil and grease as a water quality index parameter for the conservation of marine Biota. Water 2019, 11, 856. [Google Scholar] [CrossRef]
- Feo, M.L.; Bagnati, R.; Passoni, A.; Riva, F.; Salvagio Manta, D.; Sprovieri, M.; Traina, A.; Zuccato, E.; Castiglioni, S. Pharmaceuticals and other contaminants in waters and sediments from Augusta Bay (southern Italy). Sci. Total Environ. 2020, 739, 139827. [Google Scholar] [CrossRef]
- Hermsen, E.; Mintenig, S.M.; Besseling, E.; Koelmans, A.A. Quality criteria for the analysis of microplastic in Biota samples: A critical review. Environ. Sci. Technol. 2018, 52, 10230–10240. [Google Scholar] [CrossRef]
- Sutton, R.; Mason, S.A.; Stanek, S.K.; Willis-Norton, E.; Wren, I.F.; Box, C. Microplastic contamination in the San Francisco bay, California, USA. Mar. Pollut. Bull. 2016, 109, 230–235. [Google Scholar] [CrossRef]
- Brach, L.; Deixonne, P.; Bernard, M.-F.; Durand, E.; Desjean, M.-C.; Perez, E.; van Sebille, E.; Ter Halle, A. Anticyclonic eddies increase accumulation of microplastic in the North Atlantic subtropical gyre. Mar. Pollut. Bull. 2018, 126, 191–196. [Google Scholar] [CrossRef]
- Ory, N.C.; Sobral, P.; Ferreira, J.L.; Thiel, M. Amberstripe scad Decapterus muroadsi (Carangidae) fish ingest blue microplastics resembling their copepod prey along the coast of Rapa Nui (Easter Island) in the South Pacific subtropical gyre. Sci. Total Environ. 2017, 586, 430–437. [Google Scholar] [CrossRef]
- Narloch, I.; Gackowska, A.; Wejnerowska, G. Microplastic in the Baltic Sea: A review of distribution processes, sources, analysis methods and regulatory policies. Environ. Pollut. 2022, 315, 120453. [Google Scholar] [CrossRef]
- Hisano, T.; Hayase, T. Countermeasures against water pollution in enclosed coastal seas in Japan. Mar. Pollut. Bull. 1991, 23, 479–484. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, L. Exploring the dynamic linkages between tourism growth and environmental pollution: New evidence from the Mediterranean countries. Curr. Issues Tour. 2021, 24, 49–65. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, V.; Chatterjee, S. Microplastics in the Mediterranean Sea: Sources, pollution intensity, sea health, and regulatory policies. Front. Mar. Sci. 2021, 8, 634934. [Google Scholar] [CrossRef]
- Mohseni, F.; Saba, F.; Mirmazloumi, S.M.; Amani, M.; Mokhtarzade, M.; Jamali, S.; Mahdavi, S. Ocean water quality monitoring using remote sensing techniques: A review. Mar. Environ. Res. 2022, 180, 105701. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.J.; Coffey, R.; Stamp, J.; Johnson, T. A review of water quality responses to air temperature and precipitation changes 1: Flow, water temperature, saltwater intrusion. J. Am. Water Resour. Assoc. 2019, 55, 824–843. [Google Scholar] [CrossRef]
- Lyu, P.; Liu, X.; Yao, T. A bibliometric analysis of literature on bibliometrics in recent half-century. J. Inf. Sci. 2023, 01655515231191233. [Google Scholar] [CrossRef]
- Chen, T.; Wang, M.; Su, J.; Li, J. Unlocking the positive impact of bio-Swales on hydrology, water quality, and biodiversity: A bibliometric review. Sustainability 2023, 15, 8141. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.; Zhang, D. Opportunities and challenges in green stormwater infrastructure (GSI): A comprehensive and bibliometric review of ecosystem services from 2000 to 2021. Environ. Res. 2023, 236, 116701. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, S.; Li, D.; Jiang, H.; Deng, G.; Wen, Y.; He, C.; Cao, Y. Bibliometric analysis of climate change and water quality. Hydrobiologia 2023, 850, 3441–3459. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Li, G. A scientometric review of the research on the impacts of climate change on water quality during 1998–2018. Environ. Sci. Pollut. Res. Int. 2020, 27, 14322–14341. [Google Scholar] [CrossRef]
- Sebastiá-Frasquet, M.-T.; Aguilar-Maldonado, J.-A.; Herrero-Durá, I.; Santamaría-del-Ángel, E.; Morell-Monzó, S.; Estornell, J. Advances in the monitoring of algal blooms by remote sensing: A bibliometric analysis. Appl. Sci. 2020, 10, 7877. [Google Scholar] [CrossRef]
- Xie, Z.-J.; Ye, C.; Li, C.-H.; Shi, X.-G.; Shao, Y.; Qi, W. The global progress on the non-point source pollution research from 2012 to 2021: A bibliometric analysis. Environ. Sci. Eur. 2022, 34, 121. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometics. 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pippal, P.S.; Kumar, R.; Kumar, P.; Singh, A.; Sharma, P. The global scenario of hydrogeochemical research on glacier meltwater: A bibliometric and visualization analysis. Environ. Sci. Pollut. Res. Int. 2023, 30, 74612–74627. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Bravo-Montero, L. Worldwide research on Socio-hydrology: A bibliometric analysis. Water 2021, 13, 1283. [Google Scholar] [CrossRef]
- Girvan, M.; Newman, M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA. 2002, 99, 7821–7826. [Google Scholar] [CrossRef]
- Briciu, A.-E. A graphic review of studies on microplastic in water. Georeview 2023, 33, 85–94. [Google Scholar] [CrossRef]
- Dhavalikar, A.S.; Choudhari, P.C. Modelling and remote sensing of oil spill in the Mediterranean Sea: A case study on baniyas power plant oil spill. J. Indian Soc. Remote Sens. 2023, 51, 135–148. [Google Scholar] [CrossRef]
- Axiak, V.; Pavlakis, P.; Sieber, A.J.; Tarchi, D. Re-assessing the extent of impact of Malta’s (central Mediterranean) major sewage outfall using ERS SAR. Mar. Pollut. Bull. 2000, 40, 734–738. [Google Scholar] [CrossRef]
- Powley, H.R.; Dürr, H.H.; Lima, A.T.; Krom, M.D.; Van Cappellen, P. Direct discharges of domestic wastewater are a major source of phosphorus and nitrogen to the Mediterranean Sea. Environ. Sci. Technol. 2016, 50, 8722–8730. [Google Scholar] [CrossRef]
- Ardila, P.A.R.; Alonso, R.Á.; Valsero, J.J.D.; García, R.M.; Cabrera, F.Á.; Cosío, E.L.; Laforet, S.D. Assessment of heavy metal pollution in marine sediments from southwest of Mallorca Island, Spain. Environ. Sci. Pollut. Res. Int. 2023, 30, 16852–16866. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Taljaard, S.; van Niekerk, L.; Lemley, D.A. Nutrient enrichment as a threat to the ecological resilience and health of South African microtidal estuaries. Afr. J. Aquat. Sci. 2020, 45, 23–40. [Google Scholar] [CrossRef]
- Oduor, N.A.; Munga, C.N.; Ong’anda, H.O.; Botwe, P.K.; Moosdorf, N. Nutrients and harmful algal blooms in Kenya’s coastal and marine waters: A review. Ocean. Coast. Manag. 2023, 233, 106454. [Google Scholar] [CrossRef]
- Burkholder, J.M.; Tomasko, D.A.; Touchette, B.W. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 2007, 350, 46–72. [Google Scholar] [CrossRef]
- Oliver, E.C.J.; Benthuysen, J.A.; Darmaraki, S.; Donat, M.G.; Hobday, A.J.; Holbrook, N.J.; Schlegel, R.W.; Sen Gupta, A. Marine heatwaves. Annu. Rev. Mar. Sci. 2021, 13, 313–342. [Google Scholar] [CrossRef]
- Young, C.S.; Peterson, B.J.; Gobler, C.J. The bloom-forming macroalgae, Ulva, outcompetes the seagrass, Zostera marina, under high CO2 conditions. Estuaries Coasts J. Estuar. Res. Fed. 2018, 41, 2340–2355. [Google Scholar] [CrossRef]
- Valdez, S.R.; Zhang, Y.S.; van der Heide, T.; Vanderklift, M.A.; Tarquinio, F.; Orth, R.J.; Silliman, B.R. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 2020, 7, 91. [Google Scholar] [CrossRef]
- Occhipinti-Ambrogi, A.; Savini, D. Biological invasions as a component of global change in stressed marine ecosystems. Mar. Pollut. Bull. 2003, 46, 542–551. [Google Scholar] [CrossRef]
- Tiquio, M.G.J.P.; Marmier, N.; Francour, P. Management frameworks for coastal and marine pollution in the European and South East Asian regions. Ocean Coast. Manag. 2017, 135, 65–78. [Google Scholar] [CrossRef]
- Hering, D.; Borja, A.; Carstensen, J.; Carvalho, L.; Elliott, M.; Feld, C.K.; Heiskanen, A.-S.; Johnson, R.K.; Moe, J.; Pont, D. The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Sci. Total Environ. 2010, 408, 4007–4019. [Google Scholar] [CrossRef]
- Montefalcone, M. Ecosystem health assessment using the Mediterranean seagrass Posidonia oceanica: A review. Ecol. Indic. 2009, 9, 595–604. [Google Scholar] [CrossRef]
- Gobert, S.; Sartoretto, S.; Rico-Raimondino, V.; Andral, B.; Chery, A.; Lejeune, P.; Boissery, P. Assessment of the ecological status of Mediterranean French coastal waters as required by the Water Framework Directive using the Posidonia oceanica Rapid Easy Index: PREI. Mar. Pollut. Bull. 2009, 58, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Grosholz, E.D.; Crafton, R.E.; Fontana, R.E.; Pasari, J.R.; Williams, S.L.; Zabin, C.J. Aquaculture as a vector for marine invasions in California. Biol. Invasions 2015, 17, 1471–1484. [Google Scholar] [CrossRef]
- Wu, Q.; Ma, H.; Su, Z.; Lu, W.; Ma, B. Impact of marine aquaculture wastewater discharge on microbial diversity in coastal waters. Reg. Stud. Mar. Sci. 2022, 56, 102702. [Google Scholar] [CrossRef]
- Asif, M.B.; Hai, F.I.; Price, W.E.; Nghiem, L.D. Impact of pharmaceutically active compounds in marine environment on aquaculture. In Sustainable Aquaculture; Springer: Berlin/Heidelberg, Germany, 2018; pp. 265–299. [Google Scholar]
- Lothmann, R.; Sewilam, H. Potential of innovative marine aquaculture techniques to close nutrient cycles. Rev. Aquac. 2023, 15, 947–964. [Google Scholar] [CrossRef]
- Ma, J.; Ma, R.; Pan, Q.; Liang, X.; Wang, J.; Ni, X. A global review of progress in remote sensing and monitoring of marine pollution. Water 2023, 15, 3491. [Google Scholar] [CrossRef]
- Nair, A.; Sathyendranath, S.; Platt, T.; Morales, J.; Stuart, V.; Forget, M.-H.; Devred, E.; Bouman, H. Remote sensing of phytoplankton functional types. Remote Sens. Environ. 2008, 112, 3366–3375. [Google Scholar] [CrossRef]
- Slišković, M.; Piria, M.; Nerlović, V.; Ivelja, K.P.; Gavrilović, A.; Mrčelić, G.J. Non-indigenous species likely introduced by shipping into the Adriatic Sea. Mar. Policy 2021, 129, 104516. [Google Scholar] [CrossRef]
- Coll, M.; Piroddi, C.; Steenbeek, J.; Kaschner, K.; Ben Rais Lasram, F.; Aguzzi, J.; Ballesteros, E.; Bianchi, C.N.; Corbera, J.; Dailianis, T.; et al. The biodiversity of the Mediterranean sea: Estimates, patterns, and threats. PLoS ONE 2010, 5, e11842. [Google Scholar] [CrossRef]
- Adyasari, D.; Pratama, M.A.; Teguh, N.A.; Sabdaningsih, A.; Kusumaningtyas, M.A.; Dimova, N. Anthropogenic impact on Indonesian coastal water and ecosystems: Current status and future opportunities. Mar. Pollut. Bull. 2021, 171, 112689. [Google Scholar] [CrossRef]
- Schiedek, D.; Sundelin, B.; Readman, J.W.; Macdonald, R.W. Interactions between climate change and contaminants. Mar. Pollut. Bull. 2007, 54, 1845–1856. [Google Scholar] [CrossRef] [PubMed]
- Suikkanen, S.; Pulina, S.; Engström-Öst, J.; Lehtiniemi, M.; Lehtinen, S.; Brutemark, A. Climate Change and Eutrophication Induced Shifts in Northern Summer Plankton Communities. PLoS ONE 2013, 8, e66475. [Google Scholar] [CrossRef] [PubMed]
- Warrick, J.A.; Farnsworth, K.L. Coastal river plumes: Collisions and coalescence. Prog. Oceanogr. 2017, 151, 245–260. [Google Scholar] [CrossRef]
- Nunziata, F.; Buono, A.; Migliaccio, M. COSMO–SkyMed Synthetic Aperture Radar data to observe the Deepwater Horizon oil spill. Sustainability 2018, 10, 3599. [Google Scholar] [CrossRef]
- Üstün Odabaşı, S.; Ceylan, Z.; Şentürk, İ.; Akbal, F.; Bakan, G.; Büyükgüngör, H. Investigation of spatial and seasonal variation of water quality along the mid-Black Sea coast (from Sinop to Ordu) of Turkey, by multivariate statistical techniques. Reg. Stud. Mar. Sci. 2022, 50, 102169. [Google Scholar] [CrossRef]
- Dzierzbicka-Głowacka, L.; Janecki, M.; Dybowski, D.; Szymczycha, B.; Obarska-Pempkowiak, H.; Wojciechowska, E.; Zima, P.; Pietrzak, S.; Pazikowska-Sapota, G.; Jaworska-Szulc, B.; et al. A new approach for investigating the impact of pesticides and nutrient flux from agricultural holdings and land-use structures on Baltic sea coastal waters. Pol. J. Environ. Stud. 2019, 28, 2531–2539. [Google Scholar] [CrossRef]
- Xing, Q.; Tosi, L.; Braga, F.; Gao, X.; Gao, M. Interpreting the progressive eutrophication behind the world’s largest macroalgal blooms with water quality and ocean color data. Nat. Hazards 2015, 78, 7–21. [Google Scholar] [CrossRef]
- Simon-Sánchez, L.; Grelaud, M.; Franci, M.; Ziveri, P. Are research methods shaping our understanding of microplastic pollution? A literature review on the seawater and sediment bodies of the Mediterranean Sea. Environ. Pollut. 2022, 292, 118275. [Google Scholar] [CrossRef]
- Fear, J.; Gallo, T.; Hall, N.; Loftin, J.; Paerl, H. Predicting benthic microalgal oxygen and nutrient flux responses to a nutrient reduction management strategy for the eutrophic Neuse River Estuary, North Carolina, USA. Estuar. Coast. Shelf Sci. 2004, 61, 491–506. [Google Scholar] [CrossRef]
- Sohma, A.; Sekiguchi, Y.; Nakata, K. Modeling and evaluating the ecosystem of sea-grass beds, shallow waters without sea-grass, and an oxygen-depleted offshore area. J. Mar. Syst. J. Eur. Assoc. Mar. Sci. Tech. 2004, 45, 105–142. [Google Scholar] [CrossRef]
- Paerl, H.W. Assessing and managing nutrient-enhanced eutrophication in estuarine and coastal waters: Interactive effects of human and climatic perturbations. Ecol. Eng. 2006, 26, 40–54. [Google Scholar] [CrossRef]
- Wulff, F.; Eyre, B.D.; Johnstone, R. Nitrogen versus phosphorus limitation in a subtropical coastal embayment (Moreton Bay; Australia): Implications for management. Ecol. Model. 2011, 222, 120–130. [Google Scholar] [CrossRef]
- Lai, J.; Jiang, F.; Ke, K.; Xu, M.; Lei, F.; Chen, B. Nutrients distribution and trophic status assessment in the northern Beibu Gulf, China. Zhongguo Hai Yang Hu Zhao Xue Bao. Chin. J. Oceanol. Limnol. 2014, 32, 1128–1144. [Google Scholar] [CrossRef]
- Matsuda, Y.; Nakajima, K.; Tachibana, M. Recent progresses on the genetic basis of the regulation of CO2 acquisition systems in response to CO2 concentration. Photosynth. Res. 2011, 109, 191–203. [Google Scholar] [CrossRef]
- Valiela, I.; Alber, M.; LaMontagne, M. Fecal coliform loadings and stocks in buttermilk bay, Massachusetts, USA, and management implications. Environ. Manag. 1991, 15, 659–674. [Google Scholar] [CrossRef]
- Butler, T.; Ferson, M.J. Faecal pollution of ocean swimming pools and stormwater outlets in eastern Sydney. Aust. N. Z. J. Public Health 1997, 21, 567–571. [Google Scholar] [CrossRef]
- Sánchez-Ruiz, C.; Martínez-Royano, S.; Tejero-Monzón, I. An evaluation of the efficiency and impact of raw wastewater disinfection with peracetic acid prior to ocean discharge. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 1995, 32, 159–166. [Google Scholar] [CrossRef]
- Villacorte, L.O.; Tabatabai, S.A.A.; Anderson, D.M.; Amy, G.L.; Schippers, J.C.; Kennedy, M.D. Seawater reverse osmosis desalination and (harmful) algal blooms. Desalination 2015, 360, 61–80. [Google Scholar] [CrossRef]
- Varela, R.; de Castro, M.; Dias, J.M.; Gómez-Gesteira, M. Coastal warming under climate change: Global, faster and heterogeneous. Sci. Total Environ. 2023, 886, 164029. [Google Scholar] [CrossRef]
- Venegas, R.M.; Acevedo, J.; Treml, E.A. Three decades of ocean warming impacts on marine ecosystems: A review and perspective. Deep-Sea Research. Part II Top. Stud. Oceanogr. 2023, 212, 105318. [Google Scholar] [CrossRef]
- Veettil, B.K.; Ward, R.D.; Lima, M.D.A.C.; Stankovic, M.; Hoai, P.N.; Quang, N.X. Opportunities for seagrass research derived from remote sensing: A review of current methods. Ecol. Indic. 2020, 117, 106560. [Google Scholar] [CrossRef]
- Shen, L.; Xu, H.; Guo, X. Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework. Sensors 2012, 12, 7778–7803. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Li, J.; Sheng, C.; Xu, J.; Wu, L. A review of wetland remote sensing. Sensors 2017, 17, 777. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.J.; Borum, J.; Hasler-Sheetal, H.; Shields, E.C.; Sand-Jensen, K.; Moore, K.A. High temperatures cause reduced growth, plant death and metabolic changes in eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 2018, 604, 121–132. [Google Scholar] [CrossRef]
- Diggles, B.K. Historical epidemiology indicates water quality decline drives loss of oyster (Saccostrea glomerata) reefs in Moreton Bay, Australia. N. Z. J. Mar. Freshw. Res. 2013, 47, 561–581. [Google Scholar] [CrossRef]
- Nair, A.R.; Muthukumaravel, S.; Sudhakar, T. What Limits Our Understanding of Oceans? Challenges in Marine Instrumentation. IETE J. Educ. 2020, 61, 8–15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Briciu, A.-E. A Graphic Review of Studies on Ocean and Mediterranean Sea Environment Quality. Hydrology 2024, 11, 175. https://doi.org/10.3390/hydrology11100175
Briciu A-E. A Graphic Review of Studies on Ocean and Mediterranean Sea Environment Quality. Hydrology. 2024; 11(10):175. https://doi.org/10.3390/hydrology11100175
Chicago/Turabian StyleBriciu, Andrei-Emil. 2024. "A Graphic Review of Studies on Ocean and Mediterranean Sea Environment Quality" Hydrology 11, no. 10: 175. https://doi.org/10.3390/hydrology11100175
APA StyleBriciu, A. -E. (2024). A Graphic Review of Studies on Ocean and Mediterranean Sea Environment Quality. Hydrology, 11(10), 175. https://doi.org/10.3390/hydrology11100175