Constraining Geogenic Sources of Boron Impacting Groundwater and Wells in the Newark Basin, USA
Abstract
:1. Introduction
2. Geology and Regional Hydrogeology of the Newark Basin
3. Materials and Methods
4. Results
4.1. Geochemical Data
4.2. Boron Isotope
4.3. Geostatistical Analysis
4.3.1. PCA in Shale-Limestone
Variable | PC1 | PC2 |
---|---|---|
SiO2 | 0.995 | 0.06 |
Al2O3 | 0.993 | 0.021 |
Fe2O3 | −0.916 | 0.2 |
MgO | −0.987 | −0.141 |
CaO | −0.994 | −0.047 |
Na2O | 0.990 | −0.111 |
B | 0.888 | 0.08 |
Sc | −0.874 | −0.142 |
Be | 0.634 | −0.759 |
V | 0.962 | 0.059 |
Cr | 0.982 | 0.163 |
Co | 0.949 | 0.315 |
Ni | 0.602 | 0.769 |
Cu | 0.941 | −0.025 |
Zn | 0.246 | 0.966 |
As | 0.387 | 0.922 |
Sr | −0.991 | 0.036 |
Zr | 0.986 | 0.035 |
Nb | 0.989 | 0.141 |
Mo | −0.928 | −0.218 |
Ba | 0.253 | 0.96 |
Pb | 0.181 | 0.899 |
Th | 0.647 | −0.708 |
U | 0.525 | −0.844 |
TOC | 0.65 | −0.6 |
Variance (%) | 67.857 | 26.234 |
Cumul. (%) | 67.875 | 94.091 |
4.3.2. PCA in Sandstone
Variable | PC1 | PC2 |
---|---|---|
SiO2 | −0.545 | −0.835 |
Al2O3 | 0.957 | 0.26 |
Fe2O3 | 0.94 | 0.31 |
MgO | 0.335 | 0.919 |
CaO | −0.306 | 0.903 |
Na2O | 0.898 | −0.437 |
B | 0.916 | −0.268 |
Sc | 0.796 | 0.479 |
Be | 0.612 | 0.688 |
V | 0.424 | 0.893 |
Cr | 0.868 | 0.475 |
Co | 0.952 | 0.245 |
Ni | 0.692 | 0.502 |
Cu | 0.224 | 0.957 |
Zn | −0.031 | 0.568 |
As | 0.204 | 0.683 |
Sr | −0.011 | 0.987 |
Zr | 0.418 | −0.732 |
Nb | 0.971 | 0.221 |
Mo | −0.025 | 0.623 |
Sn | 0.995 | 0.051 |
Ba | −0.039 | 0.57 |
Pb | 0.061 | −0.255 |
Th | 0.959 | −0.189 |
U | 0.113 | 0.83 |
Variance (%) | 41.652 | 38.351 |
Cumul. (%) | 41.652 | 80.004 |
4.3.3. PCA in Diabase
Variable | PC1 | PC2 |
---|---|---|
SiO2 | 0.774 | 0.626 |
Al2O3 | 0.522 | 0.845 |
Fe2O3 | 0.840 | −0.541 |
MnO | −0.552 | −0.83 |
MgO | −0.807 | 0.517 |
CaO | −0.723 | −0.69 |
Na2O | −0.927 | −0.366 |
K2O | 0.635 | 0.771 |
TiO2 | 0.956 | 0.293 |
P2O5 | 0.229 | 0.898 |
B | −0.204 | 0.884 |
Sc | 0.778 | 0.614 |
V | 0.977 | −0.146 |
Cr | 0.965 | 0.254 |
Co | 0.994 | 0.112 |
Ni | 0.991 | 0.059 |
Cu | 0.357 | 0.717 |
Zn | −0.255 | 0.691 |
Ga | 0.63 | 0.774 |
Rb | 0.848 | 0.528 |
Sr | 0.356 | 0.926 |
Zr | 0.925 | 0.376 |
Nb | 0.965 | 0.258 |
Ba | 0.831 | 0.553 |
Hf | 0.965 | 0.254 |
Ta | 0.978 | 0.089 |
Tl | 0.73 | 0.671 |
Pb | 0.913 | 0.172 |
Th | 0.96 | 0.271 |
U | −0.094 | 0.816 |
Variance (%) | 59.612 | 34.148 |
Cumul. (%) | 59.612 | 93.759 |
5. Discussion
6. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240045064 (accessed on 25 March 2024).
- Voutsa, D.; Dotsika, E.; Kouras, A.; Poutoukis, D.; Kouimtzis, T. Study on distribution and origin of boron in groundwater in the area of Chalkidiki, northern Greece by employing chemical and isotopic tracers. J. Hazard. Mater. 2009, 172, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency (USEPA). Drinking Water Health Advisory for Boron; United States Environmental Protection Agency: Washinton, DC, USA, 2008. Available online: https://www.epa.gov/sites/default/files/2014-09/documents/drinking_water_health_advisory_for_boron.pdf (accessed on 25 March 2024).
- United States Environmental Protection Agency (USEPA). Summary Document from the Health Advisory for Boron and Compounds; United States Environmental Protection Agency: Washinton, DC, USA, 2008. Available online: https://www.epa.gov/sites/default/files/2014-09/documents/summary_document_from_the_ha_for_boron.pdf (accessed on 25 March 2024).
- Rockafellow-Baldoni, M.; Lubenow, B.L.; Procopio, N.A.; Gleason, J.A.; Spayd, S.E. School-based private well testing outreach event for arsenic and boron in New Jersey. J. Environ. Health 2020, 83, 26–32. [Google Scholar]
- Spayd, S. Elevated boron associated with lithium, sodium, sulfate, and arsenic in Newark basin private wells. In Proceedings of the Northeast GSA Section Meeting, Oregon, OR, USA, 17–19 March 2019. [Google Scholar]
- Agency for Toxic Substances and Disease Registry (ATSDR); Public Health Service; U.S. Department of Health and Human Services. Toxicological Profile for Boron; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2010. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=453&tid=80 (accessed on 28 March 2024).
- Senior, L.A.; Sloto, R.A. Arsenic, boron, and fluoride in groundwater in and near diabase intrusions, Newark basin, southeastern Pennsylvania. U.S. Geol. Surv. Sci. Investig. Rep. 2006, 2006–5261, 105. [Google Scholar]
- Rddad, L. Fixation and redistribution of arsenic during early and late diagenesis in the organic matter-rich members of the Lockatong formation, Newark basin, USA: Implications for the quality of groundwater. Atlant. Geol. 2017, 53, 253–268. [Google Scholar] [CrossRef]
- Olsen, P.E.; Kent, D.V.; Cornet, B.; Witte, W.K.; Schlische, R.W. High-resolution stratigraphy of the more than 5000 m Newark rift section (early Mesozoic, eastern North America). Geol. Soc. Am. Bull. 1996, 108, 40–77. [Google Scholar] [CrossRef]
- Olsen, P.E. Milankovitch cycles in early Mesozoic rift basins of eastern north America provide physical stratigraphy and time scale for understanding basin evolution. Lamont 1986, 13, 5–6. [Google Scholar]
- Rddad, L.; Kraemer, D.; Walter, B.F.; Darling, R.; Cousens, B. Unravelling the fluid flow evolution and precipitation mechanisms recorded in calcite veins in relation to Pangea rifting—Newark basin, USA. Geochemistry 2022, 82, 125918. [Google Scholar] [CrossRef]
- Olsen, P.E. Triassic and Jurassic formations of the Newark basin. In Field Studies in New Jersey Geology and Guide to Field Trips, Proceedings of the 52nd Annual Meeting of the New York State Geological Association, 10–12 October, New York, NY, USA; Manspeizer, W., Ed.; Newark College of Arts and Sciences, Newark, Rutgers University: New Brunswick, NJ, USA, 1980; pp. 2–39. [Google Scholar]
- Nance, R.D.; Gutiérrez-Alonso, G.; Keppie, J.D.; Linnemann, U.; Murphy, J.B.; Quesada, C.; Strachan, R.A.; Woodcock, N.H. Evolution of the Rheic ocean. Gondwana Res. 2010, 17, 194–222. [Google Scholar] [CrossRef]
- Manspeizer, W. Triassic—Jurassic Rifting, Continental Breakup, and the Formation of the Atlantic Ocean and Passive Margins; Manspeizer, W., Ed.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 41–79. [Google Scholar] [CrossRef]
- Ratcliffe, N.M.; Burton, W.C.; D’Angelo, R.M.; Costain, J.K. Low-angle extensional faulting, reactivated mylonites, and seismic reflection geometry of the Newark basin margin in eastern Pennsylvania. Geology 1986, 14, 766–770. [Google Scholar] [CrossRef]
- Schlische, R.W.; Withjack, M.O.; Olsen, P.E. Relative timing of CAMP, rifting, continental breakup, and basin inversion: Tectonic significance. In The Central Atlantic Magmatic Province, Insights from Fragments of Pangea; Geophysical Monograph; Hames, W.E., McHone, J.G., Renne, P.R., Ruppel, C., Eds.; American Geophysical Union: Washington, DC, USA, 2003; Volume 136, pp. 33–59. [Google Scholar] [CrossRef]
- Herman, G.C. Steeply-dipping extension fractures in the Newark basin, New Jersey. J. Struct. Geol. 2009, 31, 996–1011. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill International Book Company: New York, NY, USA, 1979; 567p. [Google Scholar]
- Herman, G.C. Hydrogeology and borehole geophysics of fractured-bedrock aquifers, Newark basin, New Jersey. In Contributions to the Geology and Hydrogeology of the Newark Basin; Herman, G.C., Serfes, M.E., Eds.; NJ Geological Survey Bulletin 77; New Jersey Geological Survey: Trenton, NJ, USA, 2010; Chapter F; pp. F1–F45. [Google Scholar]
- Longerich, H.P.; Jackson, S.E.; Günther, D. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. J. Anal. At. Spectrom. 1996, 11, 899–904. [Google Scholar] [CrossRef]
- Lemarchand, D.; Gaillardet, J.; Göpel, C.; Manhès, G. An optimized procedure for boron separation and mass spectrometry analysis for river samples. Chem. Geol. 2002, 182, 323–334. [Google Scholar] [CrossRef]
- Akbar, T.A.; Javed, A.; Ullah, S.; Ullah, W.; Pervez, A.; Akbar, R.A.; Javed, M.F.; Mohamed, A.; Mohamed, A.M. Principal component analysis (PCA)—Geographic information system (GIS) modeling for groundwater and associated health risks in Abbottabad, Pakistan. Sustainability 2022, 14, 14572. [Google Scholar] [CrossRef]
- Schiavo, M.; Giambastiani, B.M.S.; Greggio, N.; Colombani, N.; Mastrocicco, M. Geostatistical assessment of groundwater arsenic contamination in the Padana plain. Sci. Total Environ. 2024, 931, 172998. [Google Scholar] [CrossRef] [PubMed]
- Serfes, M. Sources, mobilization and transport of arsenic in groundwater in the Passaic and Lockatong formations of the Newark basin, NJ. Soc. Bull. 2010, 77, 1–40. [Google Scholar]
- Foster, G.L.; Pogge von Strandmann, P.A.E.; Rae, J.W.B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 2010, 11, Q08015. [Google Scholar] [CrossRef]
- Keren, R.; Mezuman, U. Boron adsorption by clay minerals using a phenomenological equation. Clay Miner. 1981, 29, 198–204. [Google Scholar] [CrossRef]
- Goldberg, S.; Forster, H.S.; Heick, E.L. Boron adsorption mechanisms on oxides, clay minerals, and soils inferred from ionic strength effects. Soil Sci. Soc. Am. J. 1993, 57, 704–708. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behavior and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- Karahan, S.; Yurdakoç, M.; Seki, Y.; Yurdakoç, K. Removal of boron from aqueous solution by clays and modified clays. J. Colloid Interface Sci. 2006, 293, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Demetriou, A.; Pashalidis, I. Adsorption of boron on iron-oxide in aqueous solutions. Desalin. Water Treat. 2012, 37, 315–320. [Google Scholar] [CrossRef]
- Mather, J.D.; Porteous, N.C. The geochemistry of boron and its isotopes in groundwaters from marine and non-marine sandstone aquifers. Appl. Geochem. 2001, 16, 821–834. [Google Scholar] [CrossRef]
- Disnar, J.R. Étude Expérimentale de la Fixation de Divers Métaux sur une Matière Organique Sédimentaire d’Origine Algaire: Maturation Thermique des Composés Formés. Thèse de Doctorat Es-Sci, Université d’Orléans, Orléans, France, 1982; 283p. [Google Scholar]
- Goldberg, S.; Glaubig, R.A. Boron and silicon adsorption on an aluminum oxide. Soil Sci. Soc. Am. J. 1988, 62, 87–91. [Google Scholar] [CrossRef]
- Gize, A.P.; Barnes, H.L.; Bell, J.S. A critical evaluation of organic processes in Mississippi valley type ore genesis. In Source, Transport and Deposition of Metals; Pagel, M., Leroy, J., Eds.; Balkema: Rotterdam, The Netherlands, 1991; pp. 527–530. [Google Scholar]
- Disnar, J.R. A comparison of mineralization histories for two MVT deposits, Trèves and Les Malines (Causses basin, France), based on the geochemistry of associated organic matter. Ore Geol. Rev. 1996, 11, 133–156. [Google Scholar] [CrossRef]
- Yi, Y.; Xiao, M.; Mostofa, K.M.G.; Xu, S.; Wang, Z. Spatial variations of trace metals and their complexation behavior with DOM in the water of Dianchi lake, China. Int. J. Environ. Res. Public Health 2019, 16, 4919. [Google Scholar] [CrossRef] [PubMed]
- Rddad, L.; Jemmali, N.; Carranza, E.J.M.; Wälle, M. Organic matter and metal contents within the Cretaceous rocks of the Slata-Guern Halfaya area, north-central Tunisia: Implication for genesis. Ore Geol. Rev. 2019, 113, 103070. [Google Scholar] [CrossRef]
Sample | Formation | Mineral/Rock | Core/Outcrop | Coordinates | Depth (m) |
---|---|---|---|---|---|
PN33a | Passaic | Calcite/Sandstone | |||
PN33b | Calcite/Sandstone | Outcrop | 40.338500° N, 74.792700° W | 0 | |
PN33c | Calcite/Sandstone | ||||
N430.3 | Lockatong | Black shale | Nursery | 40.300861° N, 74.824230° W | 131.2 |
N362.4b | Limestone | Nursery | 110.5 | ||
T2671b | Black shale | Titusville | 40.326379° N, 74.850545° W | 814.1 | |
T2671L | Limestone | Titusville | |||
PN104a | Calcite | Outcrop | |||
PN104b | Calcite | 40.338500° N, 74.792700° W | 0 | ||
PN104c | Calcite | ||||
CaMDn1, 1a | Stockton | Calcite/Sandstone | Racer | 40.265096° N, 74.805383° W | 61 |
CaMDn2, 2a | Calcite/Sandstone | Racer | 40.265096° N, 74.805383° W | 73.8 |
Sample | Rock | Formation | SiO2 | Al2O3 | Fe2O3(T) | MnO | MgO | CaO | Na2O | K2O | TiO2 | P2O5 | LOI | TOC * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CaMDn1 | Sandstone | Stockton | 73 | 9.13 | 2.94 | 0.089 | 1.59 | 3.3 | 4.01 | 0.11 | 0.467 | <0.01 | 4.13 | |
CaMDn2 | Sandstone | Stockton | 77.45 | 7.7 | 1.08 | 0.03 | 0.61 | 2.09 | 3.57 | 0.31 | 0.316 | 0.02 | 4.11 | |
N430.3 | Black shale | Locktong | 44.89 | 14.18 | 5.85 | 0.093 | 5.29 | 6.21 | 3.4 | 5.88 | 0.624 | 0.04 | 11.67 | 0.79 |
N362.4b | Black shale | Locktong | 41.98 | 13.36 | 4.92 | 0.087 | 6.73 | 7.69 | 3.54 | 4.43 | 0.497 | 0.08 | 11.85 | 2.72 |
T2671b | Black shale | Locktong | 48.09 | 15.79 | 5.48 | 0.062 | 5.12 | 4.21 | 4.13 | 5.34 | 0.619 | 0.1 | 11.99 | 1.90 |
T2671L | Limestone | Locktong | 17.33 | 5.25 | 7.25 | 0.263 | 13.48 | 20.9 | 1.4 | 2.17 | 0.187 | 0.03 | 3.21 | 0.50 |
PN33a | Sandstone | Passaic | 55.95 | 19.02 | 7.63 | 0.036 | 2.42 | 1.03 | 6.8 | 2.62 | 0.821 | 0.09 | 2.87 | |
PN33b | Sandstone | Passaic | 56.98 | 18.42 | 7.41 | 0.033 | 2.71 | 0.73 | 6.54 | 2.71 | 0.794 | 0.14 | 2.45 |
Sample | Rock | Formation | B | Sc | Be | V | Cr | Co | Ni | Cu | Zn | As | Sr | Zr | Nb | Mo | Ag | Sn | Sb | Ba | Tl | Pb | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CaMDn1 | Sandstone | Stockton | 24 | 9 | 1 | 36 | 20 | 10 | <20 | 10 | <30 | <5 | 87 | 144 | 5.1 | <2 | <0.5 | 1 | <0.2 | 67 | 0.1 | 7 | 6.3 | 1.5 |
CaMDn2 | Sandstone | Stockton | 31 | 2 | <1 | 30 | <20 | 3 | 30 | <10 | 220 | <5 | 75 | 86 | 4 | <2 | <0.5 | <1 | <0.5 | 569 | <0.1 | 33 | 4.3 | 1 |
N430.3 | Black shale | Lockatong | 36 | 14 | 2 | 165 | 80 | 18 | 70 | 60 | 1470 | 30 | 608 | 73 | 10 | 3 | <0.5 | 2 | <0.2 | 3027 | 1 | 20 | 5 | 6.1 |
N362.4b | Black shale | Lockatong | 42 | 19 | 3 | 173 | 70 | 15 | 50 | 70 | 110 | 8 | 659 | 66 | 9 | 30 | <0.5 | 2 | <0.5 | 254 | 0.3 | 16 | 7 | 11 |
T2671b | Black shale | Locktaong | 32 | 12 | 3 | 162 | 80 | 16 | 40 | 60 | 90 | 7 | 322 | 82 | 10 | >100 | <0.5 | 2 | 0.9 | 372 | 0.7 | 12 | 9.1 | 13 |
T2671L | Limestone | Lockatong | 16 | 24 | 2 | 116 | 30 | 7 | 30 | 30 | 120 | <5 | 1679 | 25 | 3 | 70 | <0.5 | <1 | <0.5 | 346 | 0.2 | 14 | 4.8 | 7.2 |
PN33a | Sandstone | Passaic | 101 | 16 | 2 | 87 | 90 | 21 | 50 | <10 | 110 | 9 | 97 | 146 | 13 | <2 | <0.5 | 3 | 0.8 | 892 | 0.6 | 25 | 14 | 1.8 |
PN33h | Sandstone | Passaic | 121 | 17 | 2 | 94 | 90 | 24 | 60 | 20 | 140 | 8 | 75 | 144 | 14 | <2 | <0.5 | 4 | 0.9 | 344 | <0.1 | 26 | 13 | 1.9 |
Sample | SiO2 | Al2O3 | Fe2O3(T) | MnO | MgO | CaO | Na2O | K2O | TiO2 | P2O5 | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|
DoP 1 | 43.26 | 14.19 | 13.52 | 0.11 | 10.21 | 3.22 | 1.39 | 2.56 | 1.338 | 0.11 | 10.68 |
DoP 2 | 38.59 | 12.71 | 13.07 | 0.128 | 10.85 | 7.25 | 1.68 | 1.11 | 1.08 | 0.10 | 12.16 |
DoP 3 | 41.98 | 14.14 | 12.99 | 0.108 | 11.1 | 3.68 | 1.49 | 2.44 | 1.222 | 0.11 | 10.4 |
DoP 4 | 42.5 | 14.54 | 12.88 | 0.108 | 11.02 | 3.75 | 1.53 | 2.6 | 1.205 | 0.12 | 10.11 |
Sample | B | Sc | Be | V | Cr | Co | Ni | Cu | Zn | As | Rb | Sr | Zr | Nb | Mo | Ag | Sn | Sb | Ba | Pb | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DoP 1 | 25 | 42 | <1 | 318 | 310 | 55 | 110 | 110 | 80 | <5 | 79 | 103 | 112 | 7.8 | <2 | <0.5 | 1 | <0.2 | 1307 | 10 | 2.45 | 0.72 |
DoP 2 | 23.9 | 34 | <1 | 264 | 240 | 46 | 80 | 100 | 80 | <5 | 30 | 90 | 91 | 6.2 | <2 | <0.5 | 1 | <0.2 | 338 | 6 | 1.88 | 0.71 |
DoP 3 | 27.9 | 41 | <1 | 273 | 280 | 50 | 90 | 120 | 80 | <5 | 63 | 109 | 103 | 7.1 | <2 | <0.5 | 1 | <0.2 | 1003 | 9 | 2.16 | 0.8 |
DoP 4 | 35.6 | 40 | <1 | 273 | 270 | 49 | 90 | 110 | 90 | <5 | 65 | 109 | 103 | 6.9 | <2 | <0.5 | 1 | <0.2 | 1058 | 7 | 2.16 | 0.76 |
Sample | Location | 11B/10B | δ11B (‰) | 2σ (ppm) | B (ppm) | 2σ (‰) |
---|---|---|---|---|---|---|
AT18MS | Hunterdon Plateau | 4.18 | 32.7 | 0.5 | 15.3 | 0.5 |
L247SF | Adjacent to diabase, Lambertville | 4.11 | 16.7 | 0.7 | 7.67 | 0.03 |
Seawater average | 4.20 | 39.6 | 0.5 | |||
Published value | 4.20 | 39.61 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rddad, L.; Spayd, S. Constraining Geogenic Sources of Boron Impacting Groundwater and Wells in the Newark Basin, USA. Hydrology 2024, 11, 107. https://doi.org/10.3390/hydrology11070107
Rddad L, Spayd S. Constraining Geogenic Sources of Boron Impacting Groundwater and Wells in the Newark Basin, USA. Hydrology. 2024; 11(7):107. https://doi.org/10.3390/hydrology11070107
Chicago/Turabian StyleRddad, Larbi, and Steven Spayd. 2024. "Constraining Geogenic Sources of Boron Impacting Groundwater and Wells in the Newark Basin, USA" Hydrology 11, no. 7: 107. https://doi.org/10.3390/hydrology11070107
APA StyleRddad, L., & Spayd, S. (2024). Constraining Geogenic Sources of Boron Impacting Groundwater and Wells in the Newark Basin, USA. Hydrology, 11(7), 107. https://doi.org/10.3390/hydrology11070107