Editorial to the Special Issue “Recent Advances in Hydrological Modeling”
1. Introduction
2. Historical Development and Present Status of Hydrological Modeling
3. The Current Special Issue
4. Future Perspectives and Conclusions
Funding
Conflicts of Interest
List of Contributions
- Rozos, E.; Dimitriadis, P.; Bellos, V. Machine Learning in Assessing the Performance of Hydrological Models. Hydrology 2022, 9, 5. https://doi.org/10.3390/hydrology9010005.
- Shen, H.; Lee, H.; Seo, D.-J. Adaptive Conditional Bias-Penalized Kalman Filter for Improved Estimation of Extremes and Its Approximation for Reduced Computation. Hydrology 2022, 9, 35. https://doi.org/10.3390/hydrology9020035.
- Awad, A.; El-Rawy, M.; Abdalhi, M.; Al-Ansari, N. Evaluation of the DRAINMOD Model’s Performance Using Different Time Steps in Evapotranspiration Computations. Hydrology 2022, 9, 40. https://doi.org/10.3390/hydrology9020040.
- Hatchett, B.J.; Rhoades, A.M.; McEvoy, D.J. Decline in Seasonal Snow during a Projected 20-Year Dry Spell. Hydrology 2022, 9, 155. https://doi.org/10.3390/hydrology9090155.
- Cardi, J.; Dussel, A.; Letessier, C.; Ebtehaj, I.; Gumiere, S.J.; Bonakdari, H. Modeling Hydrodynamic Behavior of the Ottawa River: Harnessing the Power of Numerical Simulation and Machine Learning for Enhanced Predictability. Hydrology 2023, 10, 177. https://doi.org/10.3390/hydrology10090177.
- Adams, R.; Quinn, P. Simulating Phosphorus Load Reductions in a Nested Catchment Using a Flow Pathway-Based Modeling Approach. Hydrology 2023, 10, 184. https://doi.org/10.3390/hydrology10090184.
- Gruss, Ł.; Wiatkowski, M.; Połomski, M.; Szewczyk, Ł.; Tomczyk, P. Analysis of Changes in Water Flow after Passing through the Planned Dam Reservoir Using a Mixture Distribution in the Face of Climate Change: A Case Study of the Nysa Kłodzka River, Poland. Hydrology 2023, 10, 226. https://doi.org/10.3390/hydrology10120226.
References
- Bowles, D.S.; O’Connell, P.E. Recent Advances in the Modeling of Hydrologic Systems; Nato Science Series C; ASIC: Sydney, Australia, 1991; Volume 345. [Google Scholar]
- Silva-Hidalgo, H.; Martin-Dominguez, I.R.; Alarcon-Herrera, M.T.; Granados-Olivas, A. Mathematical Modelling for the Integrated Management of Water Resources in Hydrological Basins. Water Resour. Manag. 2009, 23, 721–730. [Google Scholar] [CrossRef]
- Jajarmizadeh, M.; Harun, S.; Salarpour, M. A Review on Theoretical Consideration and Types of Models in Hydrology. J. Environ. Sci. Technol. 2012, 5, 249–261. [Google Scholar] [CrossRef]
- Devi, G.K.; Ganasri, B.P.; Dwarakish, G.S. A Review on Hydrological Models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Yilmaz, K.K.; Vrugt, J.A.; Gupta, H.V.; Sorooshian, S. Model Calibration in Watershed Hydrology. Adv. Data-Based Approaches Hydrol. Model. Forecast. 2010, 53–105. [Google Scholar] [CrossRef]
- Benke, K.K.; Lowell, K.E.; Hamilton, A.J. Parameter Uncertainty, Sensitivity Analysis and Prediction Error in a Water-Balance Hydrological Model. Math. Comput. Model. 2008, 47, 1134–1149. [Google Scholar] [CrossRef]
- Xu, X.; Li, J.; Tolson, B.A. Progress in Integrating Remote Sensing Data and Hydrologic Modeling. Prog. Phys. Geogr. Earth Environ. 2014, 38, 464–498. [Google Scholar] [CrossRef]
- Liu, Y.; Weerts, A.H.; Clark, M.; Hendricks Franssen, H.J.; Kumar, S.; Moradkhani, H.; Seo, D.J.; Schwanenberg, D.; Smith, P.; Van Dijk, A.I.J.M.; et al. Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci. 2012, 16, 3863–3887. [Google Scholar] [CrossRef]
- Cloke, H.L.; Pappenberger, F. Ensemble flood forecasting: A review. J. Hydrol. 2009, 375, 613–626. [Google Scholar] [CrossRef]
- Demargne, J.; Wu, L.; Regonda, S.K.; Brown, J.D.; Lee, H.; He, M.; Seo, D.J.; Hartman, R.; Herr, H.D.; Fresch, M.; et al. The science of NOAA’s operational hydrologic ensemble forecast service. Bull. Am. Meteorol. Soc. 2014, 95, 79–98. [Google Scholar] [CrossRef]
- Madadgar, S.; Moradkhani, H.; Garen, D. Towards Improved Post-Processing of Hydrologic Forecast Ensembles. Hydrol. Process. 2014, 28, 104–122. [Google Scholar] [CrossRef]
- Ibrahim, K.S.M.H.; Huang, Y.F.; Ahmed, A.N.; Koo, C.H.; El-Shafie, A. A Review of the Hybrid Artificial Intelligence and Optimization Modelling of Hydrological Streamflow Forecasting. Alex. Eng. J. 2022, 61, 279–303. [Google Scholar] [CrossRef]
- Shen, C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Asagari, M.; Yang, W.; Lindsay, J.; Tolson, B.; Dehnavi, M.M. A Review of Parallel Computing Applications in Calibration Watershed Hydrologic Models. Environ. Model. Softw. 2022, 151, 105370. [Google Scholar] [CrossRef]
- Mujumdar, P.P.; Kumar, D.N. Floods in a Changing Climate: Hydrologic Modeling; International Hydrology Series; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Beven, K. Towards Integrated Environmental Models of Everywhere: Uncertainty, Data and Modelling as a Learning Process. Hydrol. Earth Syst. Sci. 2007, 11, 460–467. [Google Scholar] [CrossRef]
- Lehmann, A.; Giuliani, G.; Ray, N.; Rahman, K.; Abbaspour, K.C.; Nativi, S.; Craglia, M.; Cripe, D.; Quevauviller, P.; Beniston, M. Reviewing Innovative Earth Observation Solutions for Filling Science-Policy Gaps in Hydrology. J. Hydrol. 2014, 518, 267–277. [Google Scholar] [CrossRef]
- Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988. [Google Scholar]
- Kent, K.M. National Engineering Handbook; Hydrology Section 4; US Soil Conservation Service: Washington, DC, USA, 1972. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Darcy, H. Les fontaines publiques de la vile de dijon. Paris Dalmont. Les Fontaines Report. 1856, 1, 3–4. [Google Scholar]
- Ampt, C.A.; Green, W.H. Studies on Soil Physics, Part 1, the Flow of Air and Water through Soils. J. Agric. Sci. 1911, 4, 1–24. [Google Scholar]
- Horton, R.E. An approach toward a physical interpretation of infiltration capacity. InSoil Sci. Soc. Am. Proc. 1940, 5, 399–417. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. In Symposia of the Society for Experimental Biology; Cambridge University Press: Cambridge, UK, 1965; Volume 19, pp. 205–234. [Google Scholar]
- Richards, L.A. Capillary conduction of liquids through porous mediums. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Nearing, G.; Cohen, D.; Dube, V.; Gauch, M.; Gilon, O.; Harrigan, S.; Hassidim, A.; Klotz, D.; Kratzert, F.; Metzger, A.; et al. Global Prediction of Extreme Floods in Ungauged Watersheds. Nature 2024, 627, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Rakovec, O.; Samaniego, L.; Hari, V.; Markonis, Y.; Moravec, V.; Thober, S.; Hanel, M.; Kumar, R. The 2018–2020 Multi-Year Drought Sets a New Benchmark in Europe. Earth’s Future 2022, 10, e2021EF002394. [Google Scholar] [CrossRef]
- Samaniego, L.; Thober, S.; Wanders, N.; Pan, M.; Rakovec, O.; Sheffield, J.; Wood, E.F.; Prudhomme, C.; Rees, G.; Houghton-Carr, H.; et al. Hydrological Forecasts and Projections for Improved Decision-Making in the Water Sector in Europe. Bull. Am. Meteorol. Soc. 2019, 100, 2451–2472. [Google Scholar] [CrossRef]
- Li, X.; Liu, F.; Ma, C.; Hou, J.; Zheng, D.; Ma, H.; Bai, Y.; Han, X.; Vereecken, H.; Yang, K.; et al. Land Data Assimilation: Harmonizing Theory and Data in Land Surface Process Studies. Rev. Geophys. 2024, 62, e2022RG000801. [Google Scholar] [CrossRef]
- Kim, S.; Shen, H.; Noh, S.; Seo, D.-J.; Welles, E.; Pelgrim, E.; Weerts, A.; Lyons, E.; Philips, B. High-Resolution Modeling and Prediction of Urban Floods Using WRF-Hydro and Data Assimilation. J. Hydrol. 2021, 598, 126236. [Google Scholar] [CrossRef]
- El Gharamti, M.; McCreight, J.L.; Noh, S.J.; Hoar, T.J.; RafieeiNasab, A.; Johnson, B.K. Ensemble Streamflow Data Assimilation Using WRF-Hydro and DART: Novel Localization and Inflation Techniques Applied to Hurricane Florence Flooding. Hydrol. Earth Syst. Sci. 2021, 25, 5315–5336. [Google Scholar] [CrossRef]
- Siqueira, V.A.; Weerts, A.; Klein, B.; Fan, F.M.; de Paiva, R.C.D.; Collischonn, W. Postprocessing Continental-Scale, Medium-Range Ensemble Streamflow Forecasts in South America Using Ensemble Model Output Statistics and Ensemble Copula Coupling. J. Hydrol. 2021, 600, 126520. [Google Scholar] [CrossRef]
- Feng, D.; Liu, J.; Lawson, K.; Shen, C. Differentiable, Learnable, Regionalized Process-Based Models With Multiphysical Outputs Can Approach State-Of-The-Art Hydrologic Prediction Accuracy. Water Resour. Res. 2022, 58, e2022WR032404. [Google Scholar] [CrossRef]
- Bertels, D.; Willems, P. Physics-Informed Machine Learning Method for Modelling Transport of a Conservative Pollutant in Surface Water Systems. J. Hydrol. 2023, 619, 129354. [Google Scholar] [CrossRef]
- Shen, C.; Appling, A.P.; Gentine, P.; Bandai, T.; Gupta, H.; Tartakovsky, A.; Baity-Jesi, M.; Fenicia, F.; Kifer, D.; Li, L.; et al. Differentiable Modelling to Unify Machine Learning and Physical Models for Geosciences. Nat. Rev. Earth Environ. 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, S.; Zheng, Y.; Han, F.; Kumar, R.; Rakovec, O.; Li, S. Distributed Hydrological Modeling With Physics-Encoded Deep Learning: A General Framework and Its Application in the Amazon. Water Resour. Res. 2024, 60, e2023WR036170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Noh, S.J.; Lee, H. Editorial to the Special Issue “Recent Advances in Hydrological Modeling”. Hydrology 2024, 11, 108. https://doi.org/10.3390/hydrology11070108
He M, Noh SJ, Lee H. Editorial to the Special Issue “Recent Advances in Hydrological Modeling”. Hydrology. 2024; 11(7):108. https://doi.org/10.3390/hydrology11070108
Chicago/Turabian StyleHe, Minxue, Seong Jin Noh, and Haksu Lee. 2024. "Editorial to the Special Issue “Recent Advances in Hydrological Modeling”" Hydrology 11, no. 7: 108. https://doi.org/10.3390/hydrology11070108
APA StyleHe, M., Noh, S. J., & Lee, H. (2024). Editorial to the Special Issue “Recent Advances in Hydrological Modeling”. Hydrology, 11(7), 108. https://doi.org/10.3390/hydrology11070108