Simulation of Flow and Salinity in a Large Seasonally Managed Wetland Complex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrological Model WARMF
2.3. Wetland Hydrology in WARMF
2.4. Model Parameterization
2.5. Model Evaluation
3. Results
3.1. Pond Depth Profiles
3.2. Approach 1
3.3. Approach 2
4. Discussion
4.1. Simulation of Hydrology and Salinity in Seasonal Managed Wetlands in the GEA
4.2. Recommended Revision to Simulate Retention of Precipitation
4.3. Recommendations for Application
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitsch, W.J.; Bernal, B.; Hernandez, M.E. Ecosystem Services of Wetlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 1–4. [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon Storage and Fluxes within Freshwater Wetlands: A Critical Review. Wetlands 2010, 30, 111–124. [Google Scholar] [CrossRef]
- Erwin, K.L. Wetlands and Global Climate Change: The Role of Wetland Restoration in a Changing World. Wetl. Ecol. Manag. 2009, 17, 71–84. [Google Scholar] [CrossRef]
- Zedler, J.B. Wetlands at Your Service: Reducing Impacts of Agriculture at the Watershed Scale. Front. Ecol. Environ. 2003, 1, 65–72. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934–941. [Google Scholar] [CrossRef]
- Kingsford, R.T.; Basset, A.; Jackson, L. Wetlands: Conservation’s Poor Cousins. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016, 916, 892–916. [Google Scholar] [CrossRef]
- Yi, Q.; Huixin, G.; Yaomin, Z.; Jinlian, S.; Xingyu, Z.; Huize, Y.; Jiaxin, W.; Zhenguo, N.; Liping, L.; Shudong, W.; et al. Global Conservation Priorities for Wetlands and Setting Post-2025 Targets. Commun. Earth Environ. 2024, 5, 4. [Google Scholar] [CrossRef]
- Chausson, A.; Turner, B.; Seddon, D.; Chabaneix, N.; Girardin, C.A.J.; Kapos, V.; Key, I.; Roe, D.; Smith, A.; Woroniecki, S.; et al. Mapping the Effectiveness of Nature-Based Solutions for Climate Change Adaptation. Glob. Change Biol. 2020, 26, 6134–6155. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, X.; Li, X.; Tian, C. Geoderma Soil Organic Carbon Changes Following Wetland Restoration: A Global Meta- Analysis. Geoderma 2019, 353, 89–96. [Google Scholar] [CrossRef]
- Herbert, E.R.; Boon, P.; Burgin, A.J.; Neubauer, S.C.; Franklin, R.B.; Ardon, M.; Hopfensperger, K.N.; Lamers, L.P.M.; Gell, P.; Langley, J.A.A. Global Perspective on Wetland Salinization: Ecological Consequences of a Growing Threat to Freshwater Wetlands. Ecosphere 2015, 6, 1–43. [Google Scholar] [CrossRef]
- Oppenheimer, E.I.; Grober, L.F. Total Maximum Daily Load for Salinity and Boron in the Lower San Joaquin River; California Regional Water Quality Control Board: Sacramento, CA, USA, 2002.
- Isayenkov, S.V.; Maathuis, F.J.M. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef]
- Stirling, E.; Fitzpatrick, R.W.; Mosley, L.M. Drought Effects on Wet Soils in Inland Wetlands and Peatlands. Earth-Science Rev. 2020, 210, 103387. [Google Scholar] [CrossRef]
- Hanak, E.; Escriva-Bou, A.; Gray, B.; Green, S.; Harter, T.; Jezdimirovic, J.; Lund, J.; Medellin-Azuara, J.; Moyle, P.; Seavy, N. Water and the Future of the San Joaquin Valley. In Technical Appendix A: Updated Assessment of the San Joaquin Valley’s Water Balance; Public Policy Institute of California: San Francisco, CA, USA, 2019. [Google Scholar]
- Medellín-Azuara, J.; MacEwan, D.; Howitt, R.E.; Koruakos, G.; Dogrul, E.C.; Brush, C.F.; Kadir, T.N.; Harter, T.; Melton, F.; Lund, J.R. Hydro-Economic Analysis of Groundwater Pumping for Irrigated Agriculture in California’s Central Valley, USA. Hydrogeol. J. 2015, 23, 1205–1216. [Google Scholar] [CrossRef]
- Quinn, N.W.T. Environmental Decision Support System Development for Seasonal Wetland Salt Management in a River Basin Subjected to Water Quality Regulation. Agric. Water Manag. 2009, 96, 247–254. [Google Scholar] [CrossRef]
- Quinn, N.W.T. Policy Innovation and Governance for Irrigation Sustainability in the Arid, Saline San Joaquin River Basin. Sustainability 2020, 12, 4733. [Google Scholar] [CrossRef]
- Quinn, N.W.T.; Karkoski, J. Real-Time Management of Water Quality in the San Joaquin River Basin, California. J. Am. Water Resour. Assoc. 1998, 34, 1473–1486. [Google Scholar] [CrossRef]
- Quinn, N.W.T.; Hanna, W.M. A Decision Support System for Adaptive Real-Time Management of Seasonal Wetlands in California. Environ. Model. Softw. 2003, 18, 503–511. [Google Scholar] [CrossRef]
- Quinn, N.W.T.; Tansey, M.K.; Lu, T.J. Comparison of Deterministic and Statistical Models for Water Quality Compliance Forecasting in the San Joaquin River Basin, California. Water 2021, 13, 2661. [Google Scholar] [CrossRef]
- Janse, J.H.; van Dam, A.A.; Hes, E.M.A.; de Klein, J.J.M.; Finlayson, C.M.; Janssen, A.B.G.; van Wijk, D.; Mooij, W.M.; Verhoeven, J.T.A. Towards a Global Model for Wetlands Ecosystem Services. Curr. Opin. Environ. Sustain. 2019, 36, 11–19. [Google Scholar] [CrossRef]
- Dodds, W.K.; Perkin, J.S.; Gerken, J.E. Human Impact on Freshwater Ecosystem Services: A Global Perspective. Environ. Sci. Technol. 2013, 47, 9061–9068. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.N.; Gallo, K. Structuring Expert Input for a Knowledge-Based Approach to Watershed Condition Assessment for the Northwest Forest Plan, USA. Environ. Monit. Assess. 2011, 172, 643–661. [Google Scholar] [CrossRef]
- Voinov, A.; Bousquet, F. Modelling with Stakeholders. Environ. Model. Softw. 2010, 25, 1268–1281. [Google Scholar] [CrossRef]
- Quinn, N.W.T.; Helmrich, S.; Herr, J.; Van Werkhoven, K. Decision Support for Control of Salt and Methylmercury Export from Managed Seasonal Wetlands. In Proceedings of the 9th International Congress on Environmental Modeling and Software “Modeling for Sustainable Food-Energy-Water Systems”, Fort Collins, CO, USA, 24–28 June 2018. [Google Scholar]
- Wagner, R.J.; Boulger, R.W.J.; Oblinger, C.J.; Smith, B.A. Guidelines and Standard Procedures for Continuous Water-Quality Monitors: Station Operation, Record Computation, and Data Reporting: U.S. Geological Survey Techniques and Methods, Reston, U.S. 1–D3; USGS: Reston, VA, USA, 2006. [CrossRef]
- Anderson, M. Hydroclimate Report Water Year 2019; California Department of Water Resources: Sacramento, CA, USA, 2019.
- Anderson, M. Hydroclimate Report Water Year 2020; California Department of Water Resources: Sacramento, CA, USA, 2020.
- Chen, C.; Herr, J.W.; Goldstein, R.A. Model Calculations of Total Maximum Daily Loads of Mercury for Drainage Lakes. J. Am. Water Resour. Assoc. 2008, 44, 1295–1307. [Google Scholar] [CrossRef]
- Chen, C.W.; Shubinski, R.P. Computer Simulation of Urban Storm Water Runoff. J. Hydraul. Div. 1971, 97, 289–301. [Google Scholar] [CrossRef]
- Gherini, S.A.; Mok, L.; Hudson, R.J.M.; Davis, G.F.; Chen, C.W.; Goldstein, R.A. The ILWAS Model: Formulation and Application BT-Integrated Lake-Watershed Acidification; Springer: Dordrecht, The Netherlands, 1985; pp. 425–459. [Google Scholar] [CrossRef]
- Chen, C.; Herr, J.W. Simulating the Effect of Sulfate Addition on Methylmercury Output from a Wetland. J. Environ. Eng. 2010, 136, 354–362. [Google Scholar] [CrossRef]
- Chen, C.; Herr, J.W.; Tsai, W. Enhancement of Watershed Analysis Risk Management Framework (WARMF) for Mercury Watershed Management and Total Maximum Daily Loads (TMDLs); Electric Power Research Institute: Palo Alto, CA, USA; Minnesota Power: Duluth, MN, USA, 2006. [Google Scholar]
- Van Werkhoven, K. Technical Memorandum. Task C3.1. WARMF Model Upgrade to Simulate Managed Wetland Operations; US Bureau of Reclamation: Sacramento, CA, USA, 2015.
- Herr, J.; Researcher, I.; Chen, C.W. WARMF: Model Use, Calibration, and Validation. Am. Soc. Agric. Biol. Eng. 2012, 55, 1387–1394. [Google Scholar] [CrossRef]
- Quinn, N.W.T.; Ortega, R.; Rahilly, P.; Johnson, C.B. Wetland Flow and Salinity Budgets and Elements of a Decision Support System toward Implementation of Real-Time Seasonal Wetland Salinity Management; University of California: Merced, CA, USA, 2011. [Google Scholar]
- Rodríguez, J.F.; Saco, P.M.; Sandi, S.; Saintilan, N.; Riccardi, G. Potential Increase in Coastal Wetland Vulnerability to Sea-Level Rise Suggested by Considering Hydrodynamic Attenuation Effects. Nat. Commun. 2017, 8, 16094. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.L.; Lück-Vogel, M. Comparative Assessment of the GIS Based Bathtub Model and an Enhanced Bathtub Model for Coastal Inundation. J. Coast. Conserv. 2020, 24, 23. [Google Scholar] [CrossRef]
- Li, S.; Wu, M.; Jia, Z.; Luo, W.; Fei, L.; Li, J. Influence of Different Controlled Drainage Strategies on the Water and Salt Environment of Ditch Wetland: A Model-Based Study. Soil Tillage Res. 2021, 208, 104894. [Google Scholar] [CrossRef]
- Evenson, G.R.; Jones, C.N.; McLaughlin, D.L.; Golden, H.E.; Lane, C.R.; DeVries, B.; Alexander, L.C.; Lang, M.W.; McCarty, G.W.; Sharifi, A. A Watershed-Scale Model for Depressional Wetland-Rich Landscapes. J. Hydrol. X 2018, 1, 100002. [Google Scholar] [CrossRef]
- Arnold, J.G.; Allen, P.M.; Morgan, D.S. Hydrologic Model for Design and Constructed Wetlands. Wetlands 2001, 21, 167–178. [Google Scholar] [CrossRef]
- Kang, M.S.; Park, S.W.; Lee, J.J.; Yoo, K.H. Applying SWAT for TMDL Programs to a Small Watershed Containing Rice Paddy Fields. Agric. Water Manag. 2006, 79, 72–92. [Google Scholar] [CrossRef]
- Eichelmann, E.; Hemes, K.S.; Knox, S.H.; Oikawa, P.Y.; Chamberlain, S.D.; Sturtevant, C.; Verfaillie, J.; Baldocchi, D.D. The Effect of Land Cover Type and Structure on Evapotranspiration from Agricultural and Wetland Sites in the Sacramento–San Joaquin River Delta, California. Agric. For. Meteorol. 2018, 256, 179–195. [Google Scholar] [CrossRef]
- Myšiak, J.; Brown, J.D. Environmental Policy Aid under Uncertainty. In Developments in Integrated Environmental Assessment; Elsevier: Amsterdam, The Netherlands, 2008; pp. 87–100. [Google Scholar] [CrossRef]
Shared Assumptions | Approach 1 | Approach 2 | |
---|---|---|---|
Pond depth profile | Maximum pond depth of 0.75 feet, depth during drawdown | During flood-up: monitored pond depth of seven individual ponds + transformation | During flood-up: based on flood-up schedule of multiple ponds that are aggregated in one model compartment |
Assumed primary water source | - | Main conveyance structures (Delta Mendota Canal, Mendota Pool) | Nearest major canal within wetland complex (Santa Fe Canal, San Luis Canal), starting in 2019: water from recirculation system |
Inflow | Maintenance flows during winter | Data from CVO, USBR, and USFWS Water Acquisition Program from 2003 to 2013 | Assumptions: No deliveries in summer, maximum available flow during flood-up |
Approach | Variable | MAPE * (%) | MSE † ((units)2) | RMSE ‡ (units) |
---|---|---|---|---|
1 | Outflow (cfs) | 86 | 938 | 31 |
EC (µmho/cm) | 55 | 1,126,872 | 1062 | |
Salt Load (t/day) | 70 | 4844 | 70 | |
2 | Outflow (cfs) | 73 | 609 | 25 |
EC (µmho/cm) | 19 | 164,719 | 406 | |
Salt Load (t/day) | 58 | 2837 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helmrich, S.; Quinn, N.W.T.; Beutel, M.W.; O’Day, P.A. Simulation of Flow and Salinity in a Large Seasonally Managed Wetland Complex. Hydrology 2024, 11, 117. https://doi.org/10.3390/hydrology11080117
Helmrich S, Quinn NWT, Beutel MW, O’Day PA. Simulation of Flow and Salinity in a Large Seasonally Managed Wetland Complex. Hydrology. 2024; 11(8):117. https://doi.org/10.3390/hydrology11080117
Chicago/Turabian StyleHelmrich, Stefanie, Nigel W. T. Quinn, Marc W. Beutel, and Peggy A. O’Day. 2024. "Simulation of Flow and Salinity in a Large Seasonally Managed Wetland Complex" Hydrology 11, no. 8: 117. https://doi.org/10.3390/hydrology11080117
APA StyleHelmrich, S., Quinn, N. W. T., Beutel, M. W., & O’Day, P. A. (2024). Simulation of Flow and Salinity in a Large Seasonally Managed Wetland Complex. Hydrology, 11(8), 117. https://doi.org/10.3390/hydrology11080117