Incorporating Antecedent Soil Moisture into Streamflow Forecasting
Abstract
:1. Introduction
2. Watershed Description
3. Data
3.1. Streamflow Data
3.2. Snow Water Equivalent (SWE) Data
3.3. Precipitation Data
3.4. Antecedent Soil Moisture Data
4. Forecast Methodology
4.1. Current NRCS Methods
4.2. Identifying Predictors
4.3. Applying Current NRCS Methods Incorporating ASM
4.4. Decision System Incorporating ASM
4.5. “Poor” NRCS Forecasts
4.6. Statistical Analysis
5. Results
5.1. Identifying Predictors
5.2. Comparison of Current NRCS Methods with and without ASM
5.3. Decision System Incorporating Antecedent Soil Moisture
5.4. Improving Poor Forecasts
6. Conclusions & Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pagano, T.C.; Pasteris, P.; Dettinger, M.; Cayan, D.; Redmond, K.T. Water year 2004: Western water managers feel the heat. EOS Trans. Am. Geophys. Union 2004, 85, 385–400. [Google Scholar] [CrossRef]
- Hartmann, H.C.; Pagano, T.C.; Sorooshian, S.; Bales, R. Confidence builders: Evaluating seasonal climate forecasts from user perspectives. Bull. Am. Meteorol. Soc. 2002, 83, 683–698. [Google Scholar] [CrossRef]
- Pagano, T.C.; Garen, D.C. Climate variations, climate change, and water resources engineering. In Integration of Climate Information and Forecasts into Western US Water Supply Forecasts; ASCE Publications: Reston, VA, USA, 2006; pp. 86–102. [Google Scholar]
- Garen, D.C. Improved techniques in regression-based streamflow volume forecasting. J. Water Resour. Plan. Manag. 1992, 118, 654–670. [Google Scholar] [CrossRef]
- Stedinger, J.R.; Grygier, J.; Yin, H. Seasonal streamflow forecasts based upon regression. In Computerized Decision Support Systems for Water Managers, Proceedings of the 3rd Water Resources Operations and Management Workshop, Fort Collins, CO, USA, 27–30 June 1988; ASCE: New York, NY, USA, 1988; pp. 266–279. [Google Scholar]
- Koch, R.W. Influences of Climate Variability on Streamflow Variability: Implications in Streamflow Prediction and Forecasting; Final Report for Grant Award 14-08-0001-G1316; U.S. Geological Survey: Washington, DC, USA, 1990.
- Pagano, T.C.; Erxleben, J.; Perkins, T. Operational simulation modeling at the NRCS National Water and Climate Center. In Proceedings of the Western Snow Conference, Great Falls, MT, USA, 11–14 April 2005; pp. 87–100. [Google Scholar]
- Day, N.G. Extended streamflow forecasting using NWSRFS. J. Water Resour. Plan. Manag. 1985, 111, 157–170. [Google Scholar] [CrossRef]
- Aubert, D.; Loumagne, C.; Oudin, L. Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. J. Hydrol. 2003, 280, 145–161. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hutton, C.J.; Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett. 2016, 43, 4382–4390. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Kumar, M.; McGlynn, B.L. Variations in streamflow response to large hurricane-season storms in a Southeastern US watershed. J. Hydrometeorol. 2015, 16, 55–69. [Google Scholar] [CrossRef]
- Silvestro, F.; Rebora, N. Impact of precipitation forecast uncertainties and initial soil moisture conditions on a probabilistic flood forecasting chain. J. Hydrol. 2014, 519A, 1052–1067. [Google Scholar] [CrossRef]
- Pathiraja, S.; Westra, S.; Sharma, A. Why continuous simulation? The role of antecedent moisture in design flood estimation. Water Resour. Res. 2012, 48, W06534. [Google Scholar] [CrossRef]
- Berthet, L.; Andréassian, V.; Perrin, C.; Javelle, P. How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrol. Earth Syst. Sci. 2009, 13, 819–831. [Google Scholar] [CrossRef] [Green Version]
- U.S Geological Survey. National Water Information System Data. 2019. Available online: http://waterdata.usgs.gov/nwis/rt (accessed on 10 January 2018).
- Wallis, J.R.; Lettenmaier, D.P.; Wood, E.F. A daily hydroclimatical data set for the continental United States. Water Resour. Res. 1991, 27, 1657–1663. [Google Scholar] [CrossRef]
- USDA Natural Resources Conservation Service. National Water and Climate Center Data. 2019. Available online: http://www.wcc.nrcs.usda.gov/snow/ (accessed on 10 February 2018).
- Western Reginal Climate Center. Recent Climate in the West. Temperature and Precipitation Data. 2019. Available online: http://www.wrcc.dri.edu (accessed on 21 January 2018).
- NOAA National Weather Service Climate Prediction Center. Soil Moisture Monitoring Data. 2019. Available online: http://www.cpc.ncep.noaa.gov/products/Soilmst_Monitoring (accessed on 19 February 2018).
- Huang, J.; van den Dool, H.; Georgakakos, K.P. Analysis of model-calculated soil moisture over the United States (1931–93) and application to long-range temperature forecasts. J. Clim. 1996, 9, 1350–1362. [Google Scholar] [CrossRef]
- Van den Dool, H.; Huang, J.; Fan, Y. Performance and analysis of the constructed analogue method applied to U.S. soil moisture over 1981–2001. J. Geophys. Res. 2003, 108, 8617. [Google Scholar] [CrossRef]
- Biondi, F.; Waikul, K. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput. Geosci. 2004, 30, 303–311. [Google Scholar] [CrossRef]
- Khattree, R.; Naik, S. Multivariate Data Reduction and Discrimination with SAS Software; SAS Institute Inc.: Cary, NC, USA, 2000; pp. 60–61. [Google Scholar]
- Anderson, T.W. An Introduction to Multivariate Statistical Analysis, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 461–462. [Google Scholar]
- Montgomery, D.C.; Peck, E.A.; Vining, G.G.; Myers, R.H. Introduction to Linear Regression Analysis, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2006; pp. 141–142. [Google Scholar]
- Myers, R.H. Classical and Modern Regression with Applications, 2nd ed.; Duxbury Press: Belmont, CA, USA, 1990; p. 171. [Google Scholar]
- Ward, N.M.; Folland, K.K. Prediction of seasonal rainfall in the North Nordeste of Brazil using eigenvectors of sea-surface temperature. Int. J. Climatol. 1991, 11, 711–743. [Google Scholar] [CrossRef]
- Potts, J.M.; Folland, C.K.; Jolliffe, I.T.; Sexton, D. Revised ‘LEPS’ scores for assessing climate model simulations and long-range forecasts. J. Clim. 1996, 9, 34–53. [Google Scholar] [CrossRef]
- Tootle, G.A.; Singh, A.K.; Piechota, T.C.; Farnham, I. Long lead-time forecasting of U.S. streamflow using partial least squares regression. Am. Soc. Civ. Eng. J. Hydrol. Eng. 2007, 12, 442–451. [Google Scholar] [CrossRef]
- Piechota, T.C.; Chiew, F.H.S.; Dracup, J.A.; McMahon, T.A. Seasonal streamflow forecasting in eastern Australia and the El Niño—Southern Oscillation. Water Resour. Res. 1998, 34, 3035–3044. [Google Scholar] [CrossRef]
- Piechota, T.C.; Dracup, J.A. Long range streamflow forecasting using El Niño–Southern Oscillation indicators. J. Hydrol. Eng. 1999, 4, 144–151. [Google Scholar] [CrossRef]
- Tootle, G.A.; Piechota, T.C. Suwannee River long range streamflow forecasts based on seasonal climate predictors. J. Am. Water Resour. Assoc. 2004, 40, 523–532. [Google Scholar] [CrossRef]
- Murphy, T.A. Sensing the elements: Moisture sensors and weather stations. Irrig. J. 1996. Available online: http://www.sowacs.com/sensors/sensingaug.html (accessed on 3 March 2018).
(a) | |||
USGS 06620000 w/o ASM | USGS 06620000 w/ASM | USGS 06620000 Decision System | |
Period of Record | 1940–2005 (66) | 1940–2005 (66) | 1940–2005 (66) |
R2 | 0.67 | 0.69 | 0.73 |
R2(adj) | 0.67 | 0.69 | 0.72 |
R2(pred) | 0.65 | 0.67 | 0.70 |
PRESS | 286,191 | 269,145 | 248,396 |
S | 65.0 | 63.5 | 59.4 |
S”“ | 41.9 | 42.6 | 43.3 |
SK | 63.5 | 64.6 | 65.5 |
(b) | |||
USGS 06625000 w/o ASM | USGS 06625000 w/ASM | USGS 06625000 Decision System | |
Period of Record | 1941–2005 (65) | 1941–2005 (65) | 1941–2005 (65) |
R2 | 0.73 | 0.77 | 0.81 |
R2(adj) | 0.72 | 0.76 | 0.80 |
R2(pred) | 0.70 | 0.74 | 0.78 |
PRESS | 48,715 | 42,312 | 36,253 |
S | 26.5 | 24.6 | 22.4 |
S”“ | 42.8 | 43.5 | 45.7 |
SK | 65.9 | 66.9 | 70.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oubeidillah, A.; Tootle, G.; Piechota, T. Incorporating Antecedent Soil Moisture into Streamflow Forecasting. Hydrology 2019, 6, 50. https://doi.org/10.3390/hydrology6020050
Oubeidillah A, Tootle G, Piechota T. Incorporating Antecedent Soil Moisture into Streamflow Forecasting. Hydrology. 2019; 6(2):50. https://doi.org/10.3390/hydrology6020050
Chicago/Turabian StyleOubeidillah, Abdoul, Glenn Tootle, and Thomas Piechota. 2019. "Incorporating Antecedent Soil Moisture into Streamflow Forecasting" Hydrology 6, no. 2: 50. https://doi.org/10.3390/hydrology6020050
APA StyleOubeidillah, A., Tootle, G., & Piechota, T. (2019). Incorporating Antecedent Soil Moisture into Streamflow Forecasting. Hydrology, 6(2), 50. https://doi.org/10.3390/hydrology6020050