An Evaluation Matrix to Compare Computer Hydrological Models for Flood Predictions
Abstract
:1. Introduction
2. The Evaluation Matrix of Models
2.1. Description of the Matrix
- Input requirement;
- Availability of input data;
- Complexity;
- User interface;
- Prediction accuracy;
- Range of time and space scales;
- Flexibility;
- Computation effort;
- Commercial cost;
- Compatibility with other software
2.2. Evaluation of the Prediction Accuracy
- The main statistics (i.e., the maximum, minimum, mean and standard deviation of both the observed and simulated values);
- A set of summary and difference measures, such as the coefficient of determination (R2), coefficient of efficiency (E, [27]) and its modified form (E*, [24]), and Root Mean Square Error (RMSE). In particular, E is more sensitive to extreme values, while E* is better suited to significant over- or underprediction as it reduces the effect of squared terms. The related equations are reported in the works of [28,29,30].
- −∞ < E < 1 and −∞ < E* < 1. The model accuracy is “good” if E and E* ≥ 0.75, “satisfactory” if 0.36 ≤ E and E* ≤ 0.75 and “unsatisfactory” if E and E* ≤ 0.36 [30];
- −∞ < CRM < +∞ is the Coefficient of Residual Mass and measures the tendency of the model to overestimate or underestimate the observations. Positive or negative values for CRM indicate model underestimation or overestimation, respectively.
3. Case Study
3.1. The Hydrological Computer Models under Evaluation
- HEC-HMS (Hydrologic Engineering Center—Hydrologic Modelling System, developed by the “US Army Corps of Engineers” [34]);
- SWMM (Storm Water Management Model, developed by the Environmental Protection Agency of USA [35]);
- MIKE11 NAM (Nedbør-Afstrømnings-Model, developed at the Institute of Hydrodynamics and Hydraulic Engineering at the Technical University of Denscore [36]);
3.2. The Sample Watershed (Mesima Torrent, Southern Italy)
3.3. The Hydrological Database
3.4. Calibration and Validation Procedures
4. Results and Discussions
4.1. Analysis of the Discharge Prediction Capability
4.2. Analysis of the Model’s Performance Matrix
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Vente, J.; Poesen, J. Predicting soil erosion and sediment yield at the basin scale: Scale issues and semi-quantitative models. Earth Sci. Rev. 2005, 71, 95–125. [Google Scholar] [CrossRef]
- Bisantino, T.; Bingner, R.; Chouaib, W.; Gentile, F.; Liuzzi, G.T. Estimation of Runoff, Peak Discharge and Sediment Load at the Event Scale in a Medium-Size Mediterranean Watershed Using the AnnaGNPS Model. Land Degrad. Dev. 2015, 26, 340–355. [Google Scholar] [CrossRef]
- Aksoy, H.; Kavvas, M.L. A review of hillslope and watershed scale erosion and sediment transport models. Catena 2005, 64, 247–271. [Google Scholar] [CrossRef]
- Singh, V.P.; Woolhiser, D.A. Mathematical Modeling of Watershed Hydrology. J. Hydrol. Eng. 2002, 7, 270–292. [Google Scholar] [CrossRef] [Green Version]
- Filianoti, P.G.; Nicotra, A.; Labate, A.; Zema, D.A. A Method to Improve the Flood Maps Forecasted by On-Line Use of 1D Model. Water 2020, 12, 1525. [Google Scholar] [CrossRef]
- Borah, D.K.; Bera, M. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Trans. ASAE 2004, 47, 789–803. [Google Scholar] [CrossRef] [Green Version]
- Merritt, W.; Letcher, R.; Jakeman, A.J. A review of erosion and sediment transport models. Environ. Model. Softw. 2003, 18, 761–799. [Google Scholar] [CrossRef]
- Lieskovský, J.; Kenderessy, P. Modelling the effect of vegetation cover and different tillage practices on soil erosion in vineyards: A case study in vráble (slovakia) using watem/sedem. Land Degrad. Dev. 2012, 25, 288–296. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, K.; Dai, H.; Liang, Y. Modeling interrill erosion on un-paved roads in the Loess Plateau of China. Land Degrad. Dev. 2015, 26, 825–832. [Google Scholar] [CrossRef]
- Liebe, J.R.; Van De Giesen, N.; Andreini, M.; Walter, M.T.; Steenhuis, T.S. Determining watershed response in data poor environments with remotely sensed small reservoirs as runoff gauges. Water Resour. Res. 2009, 45, 7369. [Google Scholar] [CrossRef] [Green Version]
- Saliha, A.H.; Awulachew, S.B.; Cullmann, J.; Horlacher, H.-B. Estimation of flow in ungauged catchments by coupling a hydrological model and neural networks: Case study. Hydrol. Res. 2011, 42, 386–400. [Google Scholar] [CrossRef]
- Fu, B.; Merritt, W.; Croke, B.F.; Weber, T.R.; Jakeman, A.J. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environ. Model. Softw. 2019, 114, 75–97. [Google Scholar] [CrossRef]
- Martın-Vide, J.; Niñerola, D.; Bateman, A.; Navarro, A.; Velasco, E. Runoff and sediment transport in a torrential ephemeral stream of the Mediterranean coast. J. Hydrol. 1999, 225, 118–129. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Boix-Fayos, C.; Tamburino, V.; Zimbone, S.M.; Fortugno, D. Evaluation and modeling of scouring and sedimentation around check dams in a Mediterranean torrent in Calabria, Italy. J. Soil Water Conserv. 2014, 69, 316–329. [Google Scholar] [CrossRef]
- Llasat, M.-C.; Marcos, R.; Turco, M.; Gilabert, J.; Llasat-Botija, M. Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. J. Hydrol. 2016, 541, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Fortugno, D.; Boix-Fayos, C.; Bombino, G.; Denisi, P.; Rubio, J.M.Q.; Tamburino, V.; Zema, D.A. Adjustments in channel morphology due to land-use changes and check dam installation in mountain torrents of Calabria (southern Italy). Earth Surf. Process. Landf. 2017, 42, 2469–2483. [Google Scholar] [CrossRef]
- Zema, D.A.; Bombino, G.; Denisi, P.; Lucas-Borja, M.E.; Zimbone, S.M. Evaluating the effects of check dams on channel geometry, bed sediment size and riparian vegetation in Mediterranean mountain torrents. Sci. Total Environ. 2018, 642, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Bombino, G.; Gurnell, A.M.; Tamburino, V.; Zema, D.A.; Zimbone, S.M. A method for assessing channelization effects on riparian vegetation in a Mediterranean environment. River Res. Appl. 2007, 23, 613–630. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; Barberá, G.G.; López-Bermúdez, F.; Castillo, V.M. Effects of check dams, reforestation and land-use changes on river channel morphology: Case study of the Rogativa catchment (Murcia, Spain). Geomorphology 2007, 91, 103–123. [Google Scholar] [CrossRef]
- Zema, D.A.; Labate, A.; Martino, D.; Zimbone, S.M. Comparing Different Infiltration Methods of the HEC-HMS Model: The Case Study of the Mésima Torrent (Southern Italy). Land Degrad. Dev. 2017, 28, 294–308. [Google Scholar] [CrossRef]
- Zema, D.A.; Lucas-Borja, M.E.; Carrà, B.G.; Denisi, P.; Rodrigues, V.A.; Ranzini, M.; Arcova, F.C.S.; De Cicco, V.; Zimbone, S.M. Simulating the hydrological response of a small tropical forest watershed (Mata Atlantica, Brazil) by the AnnAGNPS model. Sci. Total. Environ. 2018, 636, 737–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmel, R.; Smith, P.; Migliaccio, K.W.; Chaubey, I.; Douglas-Mankin, K.; Benham, B.; Shukla, S.; Muñoz-Carpena, R.; Robson, B.J. Evaluating, interpreting, and communicating performance of hydrologic/water quality models considering intended use: A review and recommendations. Environ. Model. Softw. 2014, 57, 40–51. [Google Scholar] [CrossRef]
- Singh, G.; Kumar, E. Input data scale impacts on modeling output results: A review. J. Spat. Hydrol. 2017, 13, 1–10. [Google Scholar]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef] [Green Version]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow forecasting through conceptual models—Part I: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Krause, P.; Boyle, D.P.; Base, F. Comparison of different efficiency parameters for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of the swat model on a large rwer basin with point and nonpoint sources. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Fernández, C.; Vega, J.A.; Vieira, D.C.S. Assessing soil erosion after fire and re- habilitation treatments in NW Spain: Performance of RUSLE and revised Morgan-Morgan-Finney models. Land Degrad. Dev. 2010, 21, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Knapp, H.V.; Arnold, J.; Demissie, M. Hydrological modeling of the iroquois river watershed using hspf and swat. JAWRA J. Am. Water Resour. Assoc. 2005, 41, 343–360. [Google Scholar] [CrossRef]
- Feldman, A.D. Hydrologic Modelling System HEC-HMS, Technical Reference Manual; US Army Corps of Engineers, Hydrologic Engineering Center (HEC): Davis, CA, USA, 2000. [Google Scholar]
- Huber, W.C.; Dickinson, R. Storm Water Management Model, Version 4: Users Manual; Environmental Research Laboratory, EPA: Washington, DC, USA, 1988. [Google Scholar]
- Nielsen, S.A.; Hansen, E. Numerical simulation of the rainfall runoff process on a daily basis. Hydrol. Res. 1973, 4, 171–190. [Google Scholar]
- Sinagra, M.; Nasello, C.; Tucciarelli, T.; Barbetta, S.; Massari, C.; Moramarco, T. A Self-Contained and Automated Method for Flood Hazard Maps Prediction in Urban Areas. Water 2020, 12, 1266. [Google Scholar] [CrossRef]
- Aricò, C.; Filianoti, P.G.F.; Sinagra, M.; Tucciarelli, T. The FLO Diffusive 1D-2D Model for Simulation of River Flooding. Water 2016, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T. MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes. Adv. Water Resour. 2011, 34, 1427–1449. [Google Scholar] [CrossRef] [Green Version]
- Aricò, C.; Tucciarelli, T. A marching in space and time (MAST) solver of the shallow water equations. Part I: The 1D model. Adv. Water Resour. 2007, 30, 1236–1252. [Google Scholar] [CrossRef]
- Aricò, C.; Nasello, C.; Tucciarelli, T. A marching in space and time (MAST) solver of the shallow water equations. Part II: The 2D model. Adv. Water Resour. 2007, 30, 1253–1271. [Google Scholar] [CrossRef]
- Verma, A.K.; Jha, M.K.; Mahana, R.K. Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geo-graphical information system. Paddy Water Environ. 2010, 8, 131–144. [Google Scholar] [CrossRef]
- Abushandi, E.; Merkel, B. Modelling Rainfall Runoff Relations Using HEC-HMS and IHACRES for a Single Rain Event in an Arid Region of Jordan. Water Resour. Manag. 2013, 27, 2391–2409. [Google Scholar] [CrossRef]
- Kamali, B.; Mousavi, S.J.; Abbaspour, K. Automatic calibration of HEC-HMS using single-objective and multi-objective PSO algorithms. Hydrol. Process. 2013, 27, 4028–4042. [Google Scholar] [CrossRef]
- US Army Corps of Engineers (USACE). Hydrologic Engineering Center, Hydrologic Modelling System HEC-HMS. User’s Manual (version 4.1, July 2015). Available online: www.hec.usace.army.mil/software/hec-hms/documentation.aspx (accessed on 1 May 2020).
- Galkate, R.V.; Jaiswal, R.K.; Thomas, T.; Nayak, T.R. Rainfall Runoff Modeling Using Conceptual NAM Model India Madhya Pradesh Map of Bina Basin up to Rahatgarh Site; Institute of Management and Technology: Nagpur, India, 2011. [Google Scholar]
- DHI Water and Environment. 1D-2D Modelling. User Manual; DHI Water & Environment: Horsholm, Denmark, 2003. [Google Scholar]
- DHI Water and Environment. MIKE 11: A modeling system for rivers and channels. User Guide; DHI Water & Environment: Horsholm, Denmark, 2009. [Google Scholar]
- Razad, A.Z.A.; Sidek, L.M.; Jung, K.; Basri, H. Reservoir inflow simulation using MIKE NAM rainfall-runoff model: Case study of cameron highlands. J. Eng. Sci. Technol. 2018, 13, 4206–4225. [Google Scholar]
- Alam, M.S.; Willems, P.; Alam, M.M. Comparative assessment of urban flood risks due to urbanization and climate change in the turnhout valley of Belgium. ABC J. Adv. Res. 2014, 3, 14–23. [Google Scholar] [CrossRef]
- Wang, K.-H.; Altunkaynak, A. Comparative Case Study of Rainfall-Runoff Modeling between SWMM and Fuzzy Logic Approach. J. Hydrol. Eng. 2012, 17, 283–291. [Google Scholar] [CrossRef]
- Henonin, J.; Russo, B.; Score, O.; Gourbesville, P. Real-time urban flood forecasting and modelling—A state of the art. J. Hydroinform. 2013, 15, 717–736. [Google Scholar] [CrossRef]
- Wheater, H.S.; Jakeman, A.J.; Beven, K.J. Progress and directions in rainfall-runoff modelling. In Modelling Change in Environmental Systems; Jakeman, A.J., Beck, M.B., McAleer, M.J., Eds.; Wiley: Chichester, UK, 1993; pp. 101–132. [Google Scholar]
- Bennett, J.P. Concepts of mathematical modeling of sediment yield. Water Resour. Res. 1974, 10, 485–492. [Google Scholar] [CrossRef]
- Farmer, W.; Vogel, R.M. On the deterministic and stochastic use of hydrologic models. Water Resour. Res. 2016, 52, 5619–5633. [Google Scholar] [CrossRef] [Green Version]
- Kirpich, Z.P. Time of concentration of small agricultural watersheds. Civ. Eng. 1940, 10, 362. [Google Scholar]
- Chow, V.T. Handbook of Applied Hydrology; McGraw-Hill: New York, NY, USA, 1965. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- ARSSA Calabria (Regional Agency for Development and Services in Agriculture). Pedological Map Scale 1:250,000; Agenzia Regionale per lo Sviluppo ed i Servizi in Agricoltura della Calabria: Catanzaro, Italy, 2003. (In Italy) [Google Scholar]
- USDA Soil Survey Staff. Soil Survey Manual; United States Department of Agriculture: Washington, DC, USA, 1975. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Prediction rainfall erosion losses. In Handbook No. 537; USDA: Washington, DC, USA, 1978. [Google Scholar]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Klemeš, V. Operational testing of hydrological simulation models. Hydrol. Sci. J. 1986, 31, 13–24. [Google Scholar] [CrossRef]
- Cunderlik, J.; Simonovic, S.P. Calibration, Verification and Sensitivity Analysis of the HEC-HMS Hydrologic Model; Department of Civil and Environmental Engineering, Western University: London, ON, Canada, 2004. [Google Scholar]
- Majidi, A.; Shahedi, K. Simulation of rainfall-runoff process using Green-Ampt method and HEC-HMS model (Case study: Abnama Watershed, Iran). Int. J. Hydraul. Eng. 2012, 1, 5–9. [Google Scholar]
- Osuch, M. Sensitivity and Uncertainty Analysis of Precipitation-Runoff Models for the Middle Vistula Basin. In Stochastic Flood Forecasting System; Springer: Cham, Switzerland, 2015; pp. 61–81. [Google Scholar]
- Rabori, A.M.; Ghazavi, R.; Reveshty, M.A. Sensitivity analysis of SWMM model parameters for urban runoff estimation in semi-arid area. J. Biodivers Environ. Sci. 2017, 10, 284–294. [Google Scholar]
- Sharifan, R.; Roshan, A.; Aflatoni, M.; Jahedi, A.; Zolghadr, M. Uncertainty and Sensitivity Analysis of SWMM Model in Computation of Manhole Water Depth and Subcatchment Peak Flood. Procedia Soc. Behav. Sci. 2010, 2, 7739–7740. [Google Scholar] [CrossRef] [Green Version]
- DHI Water and Environment. AutoCal: Auto Calibration Tool, User Guide; DHI Water and Environment: Hørsholm, Denmark, 2017. [Google Scholar]
- SCS. Urban Hydrology for Small Watersheds; Technical Release 55; USDA-SCS: Washington, DC, USA, 1986. [Google Scholar]
- Givati, A.; Gochis, D.; Rummler, T.; Kunstmann, H. Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- El Hassan, A.A.; Sharif, H.O.; Jackson, T.; Chintalapudi, S. Performance of a conceptual and physically based model in simulating the response of a semi-urbanized watershed in San Antonio, Texas. Hydrol. Process. 2012, 27, 3394–3408. [Google Scholar] [CrossRef]
- Ali, M.; Khan, S.J.; Aslam, I.; Khan, Z. Simulation of the impacts of land-use change on surface runoff of Lai Nullah Basin in Islamabad, Pakistan. Landsc. Urban Plan. 2011, 102, 271–279. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Kopsiaftis, G.; Bellos, V.; Tsihrintzis, V.A. Calibration and validation of SWMM model in two urban catchments in Athens, Greece. In Proceedings of the International Conference on Environmental Science and Technology (CEST), Rhodes, Greece, 31 August–2 September 2017. [Google Scholar]
- Bisht, D.S.; Chatterjee, C.; Kalakoti, S.; Upadhyay, P.; Sahoo, M.; Panda, A. Modeling urban floods and drainage using SWMM and MIKE URBAN: A case study. Nat. Hazards 2016, 84, 749–776. [Google Scholar] [CrossRef]
- Choi, K.-S.; Ball, J.E. Parameter estimation for urban runoff modelling. Urban Water 2002, 4, 31–41. [Google Scholar] [CrossRef]
- Beling, F.A.; Garcia, J.I.B.; Paiva, E.M.C.D.; Bastos, G.A.P.; Paiva, J.B.D. Analysis of the SWMM model parameters for runoff evaluation in periurban basins from southern Brazil. In Proceedings of the 12nd International Conference on urban Drainage, Porto Alegre city, Rio Grande do Sul, Brazil, 18–21 April 2011; pp. 11–16. [Google Scholar]
- Barco, J.; Wong, K.M.; Stenstrom, M.K. Automatic Calibration of the U.S. EPA SWMM Model for a Large Urban Catchment. J. Hydraul. Eng. 2008, 134, 466–474. [Google Scholar] [CrossRef]
- Doulgeris, C.; Georgiou, P.; Papadimos, D.; Papamichail, D. Ecosystem approach to water resources management using the MIKE 11 modeling system in the Strymonas River and Lake Kerkini. J. Environ. Manag. 2012, 94, 132–143. [Google Scholar] [CrossRef]
- Amir, M.S.I.I.; Khan, M.M.K.; Rasul, M.G.; Sharma, R.H.; Akram, F. Automatic multi-objective calibration of a rainfall runoff model for the Fitzroy Catchment, Queensland, Australia. Int. J. Environ. Sci. Dev. 2013, 4, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Hafezparast, M.; Araghinejad, S.; Fatemi, S.E.; Bressers, H. A Conceptual Rainfall-Runoff Model Using the Auto Calibrated NAM Models in the Sarisoo River. Hydrol. Curr. Res. 2013, 4, 1–6. [Google Scholar] [CrossRef]
- Makungo, R.; Odiyo, J.; Ndiritu, J.; Mwaka, B. Rainfall–runoff modelling approach for ungauged catchments: A case study of Nzhelele River sub-quaternary catchment. Phys. Chem. Earth, Parts A/B/C 2010, 35, 596–607. [Google Scholar] [CrossRef]
- Zema, D.A.; Denisi, P.; Ruiz, E.V.T.; Gómez, J.A.; Bombino, G.; Fortugno, D. Evaluation of Surface Runoff Prediction by A nn AGNPS Model in a Large Mediterranean Watershed Covered by Olive Groves. Land Degrad. Dev. 2015, 27, 811–822. [Google Scholar] [CrossRef]
- Sarangi, A.; Cox, C.; Madramootoo, C. Evaluation of the AnnAGNPS Model for prediction of runoff and sediment yields in St Lucia watersheds. Biosyst. Eng. 2007, 97, 241–256. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Zema, D.A.; Carrà, B.G.; Cerdà, A.; Plaza-Alvarez, P.A.; Cózar, J.S.; Gonzalez-Romero, J.; Moya, D.; Heras, J.D.L. Short-term changes in infiltration between straw mulched and non-mulched soils after wildfire in Mediterranean forest ecosystems. Ecol. Eng. 2018, 122, 27–31. [Google Scholar] [CrossRef] [Green Version]
Model Characteristic | Software | |||
---|---|---|---|---|
HEC-HMS | MIKE11 NAM | SWMM | WEC-FLOOD | |
Spatial scale (distributed/lumped) | Lumped | Distributed | ||
Time scale (continuous/event) | Event | Continuous | ||
Type of hydrological process modelling (empiric/conceptual/physical-based) | Conceptual | Physical-based | ||
Approach to the hydrological processes (deterministic/stochastic) | Deterministic |
Rainfall/Runoff Event | Rainfall | Runoff | ||||||
---|---|---|---|---|---|---|---|---|
Total Depth (mm) | Duration (h) | Intensity (mm/h) | Total Volume (mm) | Runoff Coefficient (−) | Peak (m3/s) | Time to Peak (h) | ||
Average | Max | |||||||
1–6 December 2008 | 261 | 63 | 3.3 | 24.8 | 11.94 | 4.58 | 195 | 38 |
10–15 January 2009 | 375 | 104 | 3.3 | 29.7 | 20.82 | 5.55 | 272 | 60 |
24–31 January 2009 | 277 | 169 | 1.5 | 9.9 | 24.95 | 9.01 | 125 | 115 |
9–12 November 2009 | 184 | 85 | 2.2 | 28.2 | 20.34 | 11.03 | 235 | 50 |
5–18 February 2010 | 525 | 304 | 1.7 | 169.2 | 40.91 | 7.79 | 169 | 73 |
6–11 March 2010 | 292 | 95 | 2.8 | 22.1 | 33.58 | 11.49 | 323 | 83 |
17–22 October 2010 | 370 | 104 | 3.1 | 28.0 | 38.43 | 10.39 | 427 | 44 |
1–3 November 2010 | 226 | 29 | 5.4 | 530.8 | 30.54 | 13.52 | 531 | 17 |
30 January–4 February 2011 | 43 | 120 | 0.4 | 4.5 | 35.34 | 82.13 | 180 | 127 |
28 February–8 March 2011 | 331 | 169 | 1.7 | 279.2 | 13.57 | 4.10 | 279 | 35 |
Water Discharge | Mean | Standard Deviation | Minimum | Maximum | R2 | E | E* | RMSE | CRM |
---|---|---|---|---|---|---|---|---|---|
HEC-HMS | |||||||||
Calibration | |||||||||
Observed | 58.7 | 41.0 | 26.6 | 216.8 | 0.76 | 0.60 | 0.36 | 41.93 | −0.01 |
Simulated | 54.0 | 40.0 | 31.7 | 224.8 | |||||
Difference (%) | −8.0 | −2.4 | 18.9 | 3.7 | |||||
Validation | |||||||||
Observed | 70.2 | 69.5 | 19.7 | 311.3 | 0.62 | 0.44 | 0.27 | 72.71 | 0.05 |
Simulated | 58.0 | 64.3 | 27.0 | 322.2 | |||||
Difference (%) | −17.4 | −7.5 | 37.0 | 3.5 | |||||
SWMM | |||||||||
Calibration | |||||||||
Observed | 216.8 | 71.6 | 169.2 | 323.0 | 0.45 | 0.38 | 0.15 | 22.55 | 0.03 |
Simulated | 209.5 | 64.6 | 153.6 | 282.8 | |||||
Difference (%) | −3.4 | −9.7 | −9.2 | −12.4 | |||||
Validation | |||||||||
Observed | 311.3 | 144.8 | 124.7 | 530.8 | 0.57 | 0.08 | 0.21 | 40.62 | 0.26 |
Simulated | 230.5 | 60.9 | 134.5 | 284.5 | |||||
Difference (%) | −26.0 | −57.9 | 7.9 | −46.4 | |||||
MIKE11 NAM | |||||||||
Calibration | |||||||||
Observed | 216.8 | 71.6 | 169.2 | 323.0 | 0.97 | 0.93 | 0.70 | 7.60 | 0.01 |
Simulated | 214.1 | 84.6 | 148.2 | 334.8 | |||||
Difference (%) | −1.3 | 18.2 | −12.4 | 3.6 | |||||
Validation | |||||||||
Observed | 311.3 | 144.8 | 124.7 | 530.8 | 0.38 | 0.27 | 0.17 | 36.18 | 0.06 |
Simulated | 291.4 | 130.1 | 126.1 | 447.1 | |||||
Difference (%) | −6.4 | −10.1 | 1.1 | −15.8 | |||||
WEC-FLOOD | |||||||||
Calibration | |||||||||
Observed | 216.8 | 71.6 | 169.2 | 323.0 | 0.73 | 0.52 | 0.43 | 19.89 | 0.04 |
Simulated | 208.8 | 92.4 | 103.3 | 328.4 | |||||
Difference (%) | −3.7 | 29.1 | −39.0 | 1.7 | |||||
Validation | |||||||||
Observed | 311.3 | 144.8 | 124.7 | 530.8 | 0.84 | −2.30 | −0.89 | 77.16 | −0.29 |
Simulated | 401.3 | 369.9 | 36.9 | 842.2 | |||||
Difference (%) | 28.9 | 155.5 | −70.4 | 58.7 |
Parameter | Mean Weight | ||||
---|---|---|---|---|---|
(0 to 5) | (0 to 1) | ||||
Researchers | Freelancers | Public Administration Officials | Mean Among Stakeholder Categories | ||
Input requirement | 4.7 | 5.0 | 4.9 | 4.9 | 1.0 |
Availability of input data | 2.7 | 3.2 | 1.3 | 2.3 | 0.5 |
Complexity | 4.3 | 4.7 | 3.6 | 4.1 | 0.8 |
User interface | 4.2 | 4.3 | 3.5 | 4.0 | 0.8 |
Prediction accuracy | 5.0 | 4.5 | 4.6 | 4.7 | 0.9 |
Range of time and space scales | 2.2 | 3.0 | 1.9 | 2.3 | 0.5 |
Flexibility | 1.8 | 2.3 | 0.8 | 1.6 | 0.3 |
Computation effort | 4.0 | 3.0 | 2.8 | 3.2 | 0.6 |
Commercial cost | 1.8 | 3.2 | 1.6 | 2.1 | 0.4 |
Compatibility with other software | 3.7 | 4.0 | 1.6 | 3.0 | 0.6 |
Model Performance/Requisite | Software | |||
---|---|---|---|---|
HEC-HMS | SWMM | MIKE11 NAM | WEC-FLOOD | |
Input requirement | 0.6 | 0.6 | 0 | 0.7 |
Availability of input data | 0.6 | 0.6 | 0.6 | 0.6 |
Complexity | 0.6 | 0.6 | 1 | 0.4 |
User interface | 1 | 1 | 1 | 1 |
Prediction accuracy | 0.6 | 0.1 | 0.7 | 0 |
Range of time and space scales | 0.4 | 1 | 1 | 0.4 |
Flexibility | 0.6 | 0.6 | 0.6 | 1 |
Computation effort | 1 | 1 | 1 | 0.5 |
Commercial cost | 1 | 1 | 0 | 0.5 |
Compatibility with other software | 0.5 | 0.5 | 1 | 0.8 |
TOTAL | 6.9 | 7.0 | 6.9 | 5.9 |
Model Performance/Requisite | Software | |||
---|---|---|---|---|
HEC-HMS | SWMM | MIKE11 NAM | WEC-FLOOD | |
Input requirement | 0.55 | 0.62 | 0 | 0.69 |
Availability of input data | 0.27 | 0.27 | 0.27 | 0.27 |
Complexity | 0.49 | 0.49 | 0.82 | 0.33 |
User interface | 0.79 | 0.79 | 0.79 | 0.79 |
Prediction accuracy | 0.61 | 0.05 | 0.67 | 0 |
Range of time and space scales | 0.18 | 0.46 | 0.46 | 0.18 |
Flexibility | 0.19 | 0.19 | 0.19 | 0.32 |
Computation effort | 0.64 | 0.64 | 0.64 | 0.32 |
Commercial cost | 0.42 | 0.42 | 0 | 0.21 |
Compatibility with other software | 0.30 | 0.30 | 0.59 | 0.47 |
TOTAL | 4.45 | 4.23 | 4.43 | 3.59 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filianoti, P.; Gurnari, L.; Zema, D.A.; Bombino, G.; Sinagra, M.; Tucciarelli, T. An Evaluation Matrix to Compare Computer Hydrological Models for Flood Predictions. Hydrology 2020, 7, 42. https://doi.org/10.3390/hydrology7030042
Filianoti P, Gurnari L, Zema DA, Bombino G, Sinagra M, Tucciarelli T. An Evaluation Matrix to Compare Computer Hydrological Models for Flood Predictions. Hydrology. 2020; 7(3):42. https://doi.org/10.3390/hydrology7030042
Chicago/Turabian StyleFilianoti, Pasquale, Luana Gurnari, Demetrio Antonio Zema, Giuseppe Bombino, Marco Sinagra, and Tullio Tucciarelli. 2020. "An Evaluation Matrix to Compare Computer Hydrological Models for Flood Predictions" Hydrology 7, no. 3: 42. https://doi.org/10.3390/hydrology7030042
APA StyleFilianoti, P., Gurnari, L., Zema, D. A., Bombino, G., Sinagra, M., & Tucciarelli, T. (2020). An Evaluation Matrix to Compare Computer Hydrological Models for Flood Predictions. Hydrology, 7(3), 42. https://doi.org/10.3390/hydrology7030042