Importance of the Induced Recharge Term in Riverbank Filtration: Hydrodynamics, Hydrochemical, and Numerical Modelling Investigations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Hydrodynamic Investigations
2.3. Hydrochemical Characterisation
2.4. Groundwater Flow Numerical Modelling
- (a)
- Simulation of the aquifer river exchange prior to any riverbed modification or aquifer exploitation in order to evaluate pristine conditions: to this aim, we linearly reconstructed the riverbed profile prior to the weir construction;
- (b)
- Simulation of the aquifer river exchange prior to any riverbed modification considering aquifer exploitation for 0.350 m3/s;
- (c)
- Simulation of the aquifer river exchange considering the Sant’Alessio weir in operation and aquifer exploitation for 0.350 m3/s;
- (d)
- Simulation of the aquifer river exchange considering the Sant’Alessio weir in operation and aquifer exploitation for 0.430 m3/s.
3. Result and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: Joint Monitoring Programme 2017 Update and SDG Baselines. Available online: http://www.who.int/water_sanitation_health/publications/jmp-2017/en/ (accessed on 22 October 2020).
- Meffe, R.; de Bustamante, I. Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Sci. Total Environ. 2014, 481, 280–295. [Google Scholar] [CrossRef] [PubMed]
- Paldor, A.; Shalev, E.; Katz, O.; Aharonov, E. Dynamics of saltwater intrusion and submarine groundwater discharge in confined coastal aquifers: A case study in northern Israel. Hydrogeol. J. 2019, 27, 1611–1625. [Google Scholar] [CrossRef]
- Wanner, P. Plastic in agricultural soils—A global risk for groundwater systems and drinking water supplies?—A review. Chemosphere 2021, 264, 128453. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.; Stuyfzand, P.; Grischek, T. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Dillon, P.; Fernández Escalante, E.; Megdal, S.B.; Massmann, G. Managed Aquifer Recharge for Water Resilience. Water 2020, 12, 1846. [Google Scholar] [CrossRef]
- Fernandez Escalante, E.; Henao Casas, J.D.; Vidal Medeiros, A.M.; San Sebastián Sauto, J. Regulations and guidelines on water quality requirements for Managed Aquifer Recharge. International comparison. Acque Sotter. Ital. J. Groundw. 2020, 9. [Google Scholar] [CrossRef]
- Dillon, P. Future management of aquifer recharge. Hydrogeol. J. 2005, 13, 313–316. [Google Scholar] [CrossRef]
- Stefan, C.; Ansems, N. Web-based global inventory of managed aquifer recharge applications. Sustain. Water Resour. Manag. 2018, 4, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Umar, D.A.; Ramli, M.F.; Aris, A.Z.; Sulaiman, W.N.A.; Kura, N.U.; Tukur, A.I. An overview assessment of the effectiveness and global popularity of some methods used in measuring riverbank filtration. J. Hydrol. 2017, 550, 497–515. [Google Scholar] [CrossRef]
- Kühn, W.; Müller, U. Riverbank filtration. JAWWA 2000, 92, 60–69. [Google Scholar] [CrossRef]
- Hiscock, K.M.; Grischek, T. Attenuation of groundwater pollution by bank filtration. J. Hydrol. 2002, 266, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Hunt, H.; Schubert, J.; Ray, C. Conceptual Design of Riverbank Filtration Systems. In Riverbank Filtration: Improving Source Water Quality; Springer: Berlin/Heidelberg, Germany, 2002; pp. 19–27. [Google Scholar]
- Ray, C. Riverbank Filtration Concepts and Applicability to Desert Environments. In Riverbank Filtration for Water Security in Desert Countries; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–4. [Google Scholar]
- Shankar, V.; Eckert, P.; Ojha, C. Transient three-dimensional modeling of riverbank filtration at Grind well field, Germany. Hydrogeol. J. 2009, 17, 321–326. [Google Scholar] [CrossRef]
- Ray, C.; Grischek, T.; Schubert, J.; Wang, Z.; Speth, T.F. A perspective of riverbank filtration. JAWWA 2002, 94, 149–160. [Google Scholar] [CrossRef]
- Hoppe-Jones, C.; Oldham, G.; Drewes, J.E. Attenuation of total organic carbon and unregulated trace organic chemicals in U.S. riverbank filtration systems. Water Res. 2010, 44, 4643–4659. [Google Scholar] [CrossRef] [PubMed]
- Massmann, G.; Dünnbier, U.; Heberer, T.; Taute, T. Chemosphere Behaviour and redox sensitivity of pharmaceutical residues during bank filtration–Investigation of residues of phenazone-type analgesics. Chemosphere 2008, 71, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, C.; Lorenzen, G.; Hülshoff, I. Vulnerability of bank filtration systems to climate change. Sci. Total Environ. 2011, 409, 655–663. [Google Scholar] [CrossRef]
- Ahmed, A.K.A.; Marhaba, T.F. Review on river bank filtration as an in situ water treatment process. Clean Technol. Environ. Policy 2017, 19, 349–359. [Google Scholar] [CrossRef]
- Barthel, R.; Banzhaf, S. Groundwater and Surface Water Interaction at the Regional-scale—A Review with Focus on Regional Integrated Models. Water Resour. Manag. 2016, 30, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.G. Quantifying river gain and loss at regional scales (Review). J. Hydrol. 2015, 531, 749–758. [Google Scholar] [CrossRef]
- Sottani, A.; Vielmo, A. Groundwater conservation and monitoring activities in the middle Brenta River plain (Veneto Region, Northern Italy): Preliminary results about aquifer recharge. Acque Sotter. Ital. J. Groundw. 2014, 3. [Google Scholar] [CrossRef]
- Wang, W.-S.; Oswald, S.E.; Gräff, T.; Lensing, H.-J.; Liu, T.; Strasser, D.; Munz, M. Impact of river reconstruction on groundwater flow during bank filtration assessed by transient three-dimensional modelling of flow and heat transport. Hydrogeol. J. 2020, 28, 723–743. [Google Scholar] [CrossRef] [Green Version]
- Barbagli, A.; Jensen, B.N.; Raza, M.; Schueth, C.; Rossetto, R. Assessment of soil buffer capacity on nutrients and pharmaceuticals in nature-based solution applications. Environ. Sci. Pollut. Res. 2019, 26, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, R.; Barbagli, A.; Borsi, I.; Mazzanti, G.; Vienken, T.; Bonari, E. Site investigation and design of the monitoring system at the Sant’Alessio Induced RiverBank Filtration plant (Lucca, Italy). Rend. Online Soc. Geol. Ital. 2015, 35, 248–251. [Google Scholar] [CrossRef]
- Studio Nolledi. Indagini Idrogeologiche Finalizzate All’individuazione Dell’area di Salvaguardia del Campo Pozzi di sant’Alessio—Lucca Art. 21 del D.Lgs. 152/99. Prima Fase Individuazione e Caratterizzazione Dell’area di Rispetto. 2003; (Comune di Lucca Unpublished Report); Available online: file:///C:/Users/mdpi/AppData/Local/Temp/D39.pdf (accessed on 7 December 2020).
- Rossetto, R.; Barbagli, A.; De Filippis, G.; Marchina, C.; Mazzanti, G.; De Caterini, A. Case Study 19: The Serchio River Bank Filtration for Drinking Water Supply in Sant’Alessio area of Lucca, Italy. In Managing Aquifer Recharge: A Showcase for Resilience and Sustainability; Zheng, Y., Ross, A., Villholth, K.G., Dillon, P., Eds.; A Unesco-Iah-Gripp Publication, 2002; (to be Advised); Available online: https://recharge.iah.org/unesco-exemplary-mar-projects-booklet (accessed on 8 December 2020).
- Rossetto, R.; Bockelmann-Evans, B. Modellazione numerica del flusso e del trasporto di soluti ai fini dell’investigazione dei processi di trasporto dell’erbicida terbutilazina nel sistema acquifero della pianura di S. Alessio (Lucca). G. Geol. Appl. 2007, 5, 29–44. [Google Scholar]
- EPA. Expedited Site Assessment Tools for underground Storage Tank Sites. A Guide for Regulators; U.S. Government Printing Office: Washington, DC, USA, 1997.
- Butler, J.J. Hydrogeological Methods for estimation of Spatial Variations in Hydraulic Conductivity. In Hydrogeophysics; Rubin, Y., Hubbard, S.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 23–58. [Google Scholar]
- Dietrich, P.; Leven, C. Direct Push-Technologies. In Groundwater Geophysics; Kirsch, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 321–340. [Google Scholar]
- McCall, W.; Nielsen, D.M.; Farrington, S.P.; Christy, T.M. Use of Direct-Push Technologies in Environmental Site Characterization and Ground-Water Monitoring. In Practical Handbook of Environmental Site Characterization and Ground-Water Monitoring; Nielsen, D.M., Ed.; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2006; pp. 345–471. [Google Scholar]
- Liu, G.S.; Butler, J.J.; Reboulet, E.; Knobbe, S. Hydraulic conductivity profiling with direct push methods. Grundwasser 2012, 17, 19–29. [Google Scholar] [CrossRef]
- Vienken, T.; Leven, C.; Dietrich, P. Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization—A field study. Can. Geotech. J. 2012, 49, 197–206. [Google Scholar] [CrossRef]
- Vienken, T.; Kreck, M.; Hausmann, J.; Werban, U.; Dietrich, P. Innovative strategies for high resolution site characterization: Application to a flood plain. Ital. J. Groundw. 2014, 138, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, P.; Butler, J.J.; Faiss, K. A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 2008, 46, 323–328. [Google Scholar] [CrossRef]
- Sellwood, S.M.; Healey, J.M.; Birk, S.; Butler, J.J. Direct-push hydrostratigraphic profiling: Coupling electrical logging and slug tests. Ground Water 2005, 43, 19–29. [Google Scholar] [CrossRef]
- Vienken, T.; Huber, E.; Kreck, M.; Huggenberger, P.; Dietrich, P. How to chase a tracer—Combining conventional salt tracer testing and direct push electrical conductivity profiling for enhanced aquifer characterization. Adv. Water Resour. 2017, 99, 60–66. [Google Scholar] [CrossRef]
- Marchina, C.; Zuecco, G.; Chiogna, G.; Bianchini, G.; Carturan, L.; Comiti, F.; Engel, M.; Natali, C.; Borga, M.; Penna, D. Alternative methods to determine the δ2H-δ18O relationship: An application to different water types. J. Hydrol. 2020, 587, 124951. [Google Scholar] [CrossRef]
- De Filippis, G.; Borsi, I.; Foglia, L.; Cannata, M.; Velasco Mansilla, V.; Vasquez-Suñe, E.; Ghetta, M.; Rossetto, R. Software tools for sustainable water resources management: The GIS-integrated FREEWAT platform. Rend. Online Soc. Geol. 2017, 42, 59–61. [Google Scholar] [CrossRef] [Green Version]
- Foglia, L.; Borsi, I.; Mehl, S.; De Filippis, G.; Cannata, M.; Vasquez-Sune, E.; Criollo, R.; Rossetto, R. Freewat, A Free and Open Source, GIS-Integrated, Hydrological Modeling Platform. Groundwater 2018, 56, 521–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harbaugh, A.W. MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model—The Ground-Water Flow Process; Techniques and Methods 6-A16; U.S. Geological Survey: Reston, VA, USA, 2005. [CrossRef] [Green Version]
- Rossetto, R.; Borsi, I.; Schifani, C.; Bonari, E.; Mogorovich, P.; Primicerio, M. SID&GRID: Integrating hydrological modeling in GIS environment. Rend. Online Soc. Geol. Ital. 2013, 24, 282–283. [Google Scholar]
- Rossetto, R.; Borsi, I.; Foglia, L. Freewat: Free and open source software tools for WATer resource management. Rend. Online Soc. Geol. Ital. 2015, 35, 252–255. [Google Scholar] [CrossRef] [Green Version]
- Criollo, R.; Velasco, V.; Nardi, A.; Vries, L.M.; Riera, C.; Scheiber, L.; Jurado, A.; Brouyère, S.; Pujades, E.; Rossetto, R.; et al. AkvaGIS: An open source tool for water quantity and quality management. Comput. Geosci. 2020, 127, 123–132. [Google Scholar] [CrossRef]
- Cannata, M.; Neumann, J.; Rossetto, R. Open source GIS platform for water resource modelling: FREEWAT approach in the Lugano Lake. Spat. Inf. Res. 2018, 26, 241–251. [Google Scholar] [CrossRef] [Green Version]
- De Filippis, G.; Pouliaris, C.; Kahuda, D.; Vasile, T.A.; Manea, V.A.; Zaun, F.; Panteleit, B.; Dadaser-Celik, F.; Positano, P.; Nannucci, M.S.; et al. Spatial Data Management and Numerical Modelling: Demonstrating the Application of the QGIS-Integrated FREEWAT Platform at 13 Case Studies for Tackling Groundwater Resource Management. Water 2020, 12, 41. [Google Scholar] [CrossRef] [Green Version]
- Joodavi, A.; Izady, A.; Karbasi Maroof, M.T.; Majidi, M.; Rossetto, R. Deriving optimal operational policies for off-stream man-made reservoir considering conjunctive use of surface- and groundwater at the Bar dam reservoir (Iran). J. Hydrol. Reg. Stud. 2020, 31, 100725. [Google Scholar] [CrossRef]
- La Vigna, F.; Hill, M.C.; Rossetto, R.; Mazza, R. Parameterization, sensitivity analysis, and inversion: An investigation using groundwater modeling of the surface-mined Tivoli-Guidonia basin (Metropolitan City of Rome, Italy). Hydrogeol. J. 2016, 24, 1423–1441. [Google Scholar] [CrossRef]
- Rossetto, R.; Barbagli, A.; De Filippis, G.; Marchina, C.; Di Bartolo, S.; Bonari, E.; Sabbatini, T.; Triana, F.; Tozzini, C.; Ercoli, L.; et al. Deliverable 8.4. Report on the Induced RiverBank Filtration MAR Plant at Sant’Alessio (Lucca, Italy). FP7 MARSOL (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought). Available online: http://marsol.eu/ (accessed on 28 November 2020).
- Butler, J.J., Jr.; Garnett, E.J.; Healey, J.M. Analysis of Slug Tests in Formations of High Hydraulic Conductivity. Groundwater 2003, 41, 620–631. [Google Scholar] [CrossRef] [PubMed]
- Barbagli, A. Analysis of Water-Soil Interaction in Drainage Water Phyto-Treatment and in Aquifer Recharge Schemes. Ph.D. Thesis, Scuola Superiore Sant’Anna, Pisa, Italy. Available online: https://dta.santannapisa.it (accessed on 28 November 2020).
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic Patterns in Modern Global Precipitation, in Climate Change in Continental Isotopic Records; Swart, P.K., Lohmann, K.C., Mckenzie, J., Savin, S., Eds.; American Geophysical Union: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Longinelli, A.; Selmo, E. Isotopic composition of precipitation in Italy: A first overall map. J. Hydrol. 2003, 270, 75–88. [Google Scholar]
- La Ruffa, G.; Panichi, C. Caratterizzazione Chimico-Isotopica Delle Acque Fluviali: Il Caso Del Fiume Arno; Istituti Editoriali Poligrafici Internazionali: Pisa, Italy, 2000; p. 101. [Google Scholar]
- Rodríguez-Escales, P.; Canelles, A.; Sanchez-Vila, X.; Folch, A.; Kurtzman, D.; Rossetto, R.; Fernández-Escalante, E.; Lobo-Ferreira, J.P.; Sapiano, M.; San-Sebastián, J.; et al. A risk assessment methodology to evaluate the risk failure of managed aquifer recharge in the Mediterranean Basin. Hydrol. Earth Syst. Sci. 2018, 22, 3213–3227. [Google Scholar] [CrossRef] [Green Version]
- Natural Resource Management Ministerial Council, Environment Protection and Heritage Council National Health and Medical Research Council. Australian Guidelines for Water Recycling, Managing Health and Environmental Risks, Vol 2C: Managed Aquifer Recharge. Available online: http://webarchive.nla.gov.au/gov/20130904195601/http://www.environment.gov.au/water/publications/quality/water-recycling-guidelines-mar-24.html (accessed on 29 September 2020).
Inflow Terms | Outflow Terms | |||
---|---|---|---|---|
Cumulative Volume (m3) | % Over the Total | Cumulative Volume (m3) | % Over the Total | |
Storage | 846 | Negligible | 938 | Negligible |
Inflow from the Monte S.Quirico—Carignano hills | 207,089 | 0.3 | 15,640,341 | 26.4 |
Rainfall infiltration | 673,287 | 1.1 | 658 | Negligible |
River leakage | 58,154,744 | 98.2 | 38,439,232 | 64.9 |
Southern boundary of the domain | 160,214 | 0.3 | 5,109,272 | 8.6 |
TOTAL | 59,196,180 | 100.0 | 59,190,432 | 100.0 |
No-Weir/No-Wells | No-Weir/Average Pumping (0.350 m3/s) | Change in Recharge Rate (m3/s) | |
---|---|---|---|
Net Aquifer Recharge (m3/s) | 0.151 | 0.488 | 0.337 |
No-Weir/Average Pumping (0.350 m3/s) | Weir/Average Pumping (0.350 m3/s) | Change in Recharge Rate (m3/s) | |
Net Aquifer Recharge (m3/s) | 0.488 | 0.521 | 0.033 |
Weir/Average Pumping (0.350 m3/s) | Weir/High Pumping (0.430 m3/s) | Change in Recharge Rate (m3/s) | |
Net Aquifer Recharge (m3/s) | 0.521 | 0.609 | 0.088 |
Dry Season | Wet Season | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sampling Point | Na+ mg/L | K+ mg/L | Ca2+ mg/L | Mg2+ mg/L | HCO3− mg/L | Cl− mg/L | SO42− mg/L | Br− mg/L | Li µg/L | δ18O ‰ | δD ‰ | Na+ mg/L | K+ mg/L | Ca2+ mg/L | Mg2+ mg/L | HCO3− mg/L | Cl− mg/L | SO42− mg/L | Br− mg/L | Li µg/L | δ18O ‰ | δD ‰ |
93 | 13.97 | 2.23 | 71.42 | 9.47 | 234 | 16.83 | 55.79 | 0.06 | 7.33 | - | - | 16.19 | 2.09 | 104.90 | 11.34 | 191 | 29.04 | 103.31 | 0.16 | 7.63 | - | - |
94 | 14.66 | 2.86 | 79.81 | 10.41 | 228 | 15.10 | 47.70 | 0.07 | 10.26 | - | - | - | - | - | - | - | - | - | - | - | - | - |
221 | 13.35 | 3.80 | 52.67 | 4.59 | 249 | 20.85 | 14.67 | 0.11 | 0.77 | −4.9 | −31.7 | 14.45 | 3.85 | 69.84 | 5.42 | 270 | 22.67 | 10.48 | 0.14 | 0.74 | −5.0 | −30.6 |
C_2 | 15.67 | 1.60 | 68.32 | 9.54 | 164 | 26.15 | 97.05 | 0.12 | 11.66 | - | - | 19.05 | 1.62 | 83.55 | 10.53 | 150 | 27.00 | 98.88 | 0.13 | 13.30 | −6.7 | −46.6 |
C_5 | 19.30 | 1.55 | 69.45 | 9.44 | 155 | 31.54 | 101.77 | 0.11 | 12.29 | −7.9 | −47.6 | 17.82 | 1.55 | 74.93 | 9.07 | 144 | 27.38 | 103.87 | 0.13 | 13.13 | −6.4 | −43.7 |
MAR_10 | 15.16 | 2.18 | 63.30 | 10.09 | 320 | 24.42 | 91.97 | 0.08 | 7.93 | −6.3 | −43.3 | 21.39 | 2.81 | 117.27 | 13.84 | 224 | 28.93 | 80.76 | 0.10 | 10.32 | −6.8 | −42.3 |
P_1 | 17.73 | 1.65 | 71.88 | 9.73 | 162 | 29.58 | 116.05 | 0.14 | 13.21 | - | - | 22.63 | 1.42 | 86.18 | 12.01 | 140 | 42.87 | 129.96 | 0.28 | 15.22 | - | - |
PR_01a | 17.77 | 1.98 | 74.06 | 9.24 | 162 | 33.49 | 101.05 | 0.16 | 13.25 | −8.2 | −48.1 | 16.62 | 1.37 | 79.39 | 10.26 | 120 | 27.80 | 102.04 | 0.18 | 12.31 | −7.2 | −44.0 |
PR_01b | 15.84 | 2.36 | 61.09 | 8.40 | 87 | 17.30 | 60.80 | 0.07 | 9.29 | −7.4 | −45.7 | - | - | - | - | - | - | - | - | - | - | - |
PR_01c | 16.06 | 1.65 | 73.14 | 8.60 | 159 | 19.95 | 62.98 | 0.07 | 12.22 | −7.8 | −47.3 | 20.40 | 1.37 | 83.29 | 10.53 | 174 | 30.66 | 110.71 | 0.21 | 12.02 | −7.0 | −44.0 |
PR_02a | 13.76 | 1.48 | 59.21 | 8.52 | 209 | 20.25 | 62.65 | 0.13 | 10.91 | −8.0 | −47.1 | 19.77 | 1.48 | 80.87 | 10.79 | 155 | 32.91 | 126.16 | 0.20 | 14.78 | −7.2 | −43.7 |
PR_02b | 15.77 | 1.70 | 67.90 | 9.08 | 133 | 25.69 | 99.80 | 0.12 | 13.95 | −8.0 | −48.2 | 21.02 | 1.78 | 78.75 | 11.63 | 127 | 33.23 | 125.07 | 0.34 | 13.89 | - | - |
PR_03b | 13.80 | 2.34 | 68.65 | 7.61 | 144 | 25.50 | 67.20 | 0.16 | 11.51 | −7.4 | −46.5 | - | - | - | - | - | - | - | - | - | - | - |
PR_04a | 14.70 | 1.74 | 57.40 | 7.66 | 181 | 21.67 | 69.99 | 0.11 | 9.98 | −7.6 | −46.9 | 18.97 | 1.64 | 79.04 | 10.37 | 143 | 32.99 | 119.66 | 0.17 | 9.99 | - | - |
PR_04b | 14.41 | 1.54 | 61.04 | 8.51 | 159 | 24.05 | 72.62 | 0.12 | 11.11 | −7.6 | −49.0 | 20.14 | 1.65 | 83.55 | 10.78 | 153 | 31.09 | 122.80 | 0.14 | 13.02 | −7.2 | −46.1 |
PR_04c | 14.75 | 1.36 | 59.65 | 8.05 | 123 | 27.24 | 81.39 | 0.17 | 11.18 | −7.5 | −46.7 | - | - | - | - | - | - | - | - | - | - | - |
PR_05a | 13.89 | 1.34 | 52.22 | 8.03 | 135 | 20.72 | 58.03 | 0.07 | 10.10 | - | - | 19.43 | 1.51 | 77.18 | 10.38 | 231 | 31.89 | 121.68 | 0.18 | 12.20 | −7.5 | −46.6 |
PR_05b | 14.03 | 1.24 | 59.17 | 8.91 | 178 | 18.88 | 68.47 | 0.05 | 8.08 | - | - | 19.98 | 1.99 | 87.29 | 10.97 | 163 | 31.12 | 118.68 | 0.33 | 13.42 | - | - |
PR_06a | 11.11 | 1.18 | 48.91 | 7.01 | 160 | 25.31 | 75.40 | 0.10 | 8.86 | - | - | 19.54 | 1.91 | 76.68 | 10.85 | 133 | 31.73 | 125.62 | 0.17 | 15.10 | −7.1 | −44.6 |
PR_06b | 11.40 | 1.86 | 52.51 | 7.68 | 129 | 23.50 | 83.93 | 0.08 | 11.40 | - | - | - | - | - | - | - | - | - | - | - | - | - |
PR_07 | 20.95 | 2.67 | 31.06 | 16.44 | 180 | 45.45 | 70.11 | <LOD | 1.72 | - | - | 24.92 | 3.56 | 137.75 | 20.02 | 264 | 39.40 | 43.00 | 0.09 | 2.99 | −7.3 | −43.4 |
PR_08 | 17.10 | 1.57 | 58.04 | 10.04 | 190 | 24.26 | 59.84 | <LOD | 7.60 | - | - | 17.38 | 2.50 | 110.06 | 11.99 | 196 | 32.95 | 100.60 | 0.18 | 9.20 | −6.8 | −42.4 |
PR_09 | 13.49 | 3.46 | 55.24 | 9.88 | 190 | 16.56 | 59.66 | <LOD | 4.71 | - | - | 16.56 | 3.84 | 102.96 | 11.09 | 214 | 27.03 | 95.95 | 0.16 | 7.50 | −7.1 | −43.0 |
Freddanella Ditch | 40.02 | 6.39 | 62.35 | 6.77 | 294 | 112.21 | 57.11 | 0.11 | 5.43 | - | - | 47.04 | 4.45 | 92.45 | 8.43 | 205 | 94.42 | 41.95 | 0.11 | 6.14 | - | - |
Serchio River | 20.92 | 1.59 | 64.95 | 9.35 | 144 | 29.06 | 97.60 | 0.19 | 11.27 | −8.2 | −48.1 | 15.15 | 1.35 | 58.69 | 8.10 | 153 | 23.03 | 67.27 | 0.11 | 12.30 | −6.5 | −44.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossetto, R.; Barbagli, A.; De Filippis, G.; Marchina, C.; Vienken, T.; Mazzanti, G. Importance of the Induced Recharge Term in Riverbank Filtration: Hydrodynamics, Hydrochemical, and Numerical Modelling Investigations. Hydrology 2020, 7, 96. https://doi.org/10.3390/hydrology7040096
Rossetto R, Barbagli A, De Filippis G, Marchina C, Vienken T, Mazzanti G. Importance of the Induced Recharge Term in Riverbank Filtration: Hydrodynamics, Hydrochemical, and Numerical Modelling Investigations. Hydrology. 2020; 7(4):96. https://doi.org/10.3390/hydrology7040096
Chicago/Turabian StyleRossetto, Rudy, Alessio Barbagli, Giovanna De Filippis, Chiara Marchina, Thomas Vienken, and Giorgio Mazzanti. 2020. "Importance of the Induced Recharge Term in Riverbank Filtration: Hydrodynamics, Hydrochemical, and Numerical Modelling Investigations" Hydrology 7, no. 4: 96. https://doi.org/10.3390/hydrology7040096
APA StyleRossetto, R., Barbagli, A., De Filippis, G., Marchina, C., Vienken, T., & Mazzanti, G. (2020). Importance of the Induced Recharge Term in Riverbank Filtration: Hydrodynamics, Hydrochemical, and Numerical Modelling Investigations. Hydrology, 7(4), 96. https://doi.org/10.3390/hydrology7040096