Hydrological Response of Natural Mediterranean Watersheds to Forest Fires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Input Data
2.2. Model
2.2.1. Model Setup
2.2.2. Sensitivity Analysis, Calibration, and Validation
2.2.3. Model Application and Data Analysis
3. Results
3.1. Model Calibration and Validation
3.2. Hydrological Response
4. Discussion
5. Conclusions
- SWAT model was unable to describe the hydrological response of the watershed without extensive calibration for both the pre-fire and the post-fire conditions even if detailed soil, land covet, topographic, and field data were used for its set-up.
- Detailed hydro-meteorological data for an adequate period before and after a wildfire incident in a well-studied watershed are valuable for the investigation of the effect of forest fires.
- Despite the serious limitations, SWAT model was proven to be a valuable tool for the investigation of the forest fire effects on the hydrological response given that sufficient hydrometeorological data for the model calibration are available.
- A profound reduction of the actual evapotranspiration (29.5%) and increase in water yield (38.9%) and percolation (29.4%) in the post-fire conditions were observed.
- Runoff hydrograph is much sharper with considerably higher peak discharges after the effect of the forest fire especially in wet years when runoff response is dominated by surface runoff.
- The main drivers behind the alterations in hydrological response seem to be that of the vegetation cover change and the reduction of soil hydraulic conductivity; however, the involved mechanism are not clear and other disturbances should be also considered.
- A noticeable increase of sediment yield under the post fire conditions was observed.
Author Contributions
Funding
Conflicts of Interest
References
- Soulis, K.X.; Dercas, N.; Valiantzas, J.D. Wildfires Impact on Hydrological Response—The Case of Lykorrema Experimental Watershed. Glob. Nest J. 2012, 14, 303–310. [Google Scholar]
- Marlon, J.R.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallett, D.J.; Power, M.J.; et al. Long-Term Perspective on Wildfires in the Western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Chelsea Nagy, R.; Fusco, E.J.; Mahood, A.L. Human-Started Wildfires Expand the Fire Niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated Fires in Mediterranean Europe Due to Anthropogenic Warming Projected with Non-Stationary Climate-Fire Models. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Rulli, M.C.; Rosso, R. Hydrologic Response of Upland Catchments to Wildfires. Adv. Water Resour. 2007, 30, 2072–2086. [Google Scholar] [CrossRef]
- Robichaud, P.R. Fire Effects on Infiltration Rates after Prescribed Fire in Northern Rocky Mountain Forests, USA. J. Hydrol. 2000, 231, 220–229. [Google Scholar] [CrossRef]
- Robichaud, P.R. Measurement of Post-Fire Hillslope Erosion to Evaluate and Model Rehabilitation Treatment Effectiveness and Recovery. Int. J. Wildland Fire 2005, 14, 475. [Google Scholar] [CrossRef] [Green Version]
- Prosser, I.P.; Williams, L. The Effect of Wildfire on Runoff and Erosion in Native Eucalyptus Forest. Hydrol. Process. 1998, 12, 251–265. [Google Scholar] [CrossRef]
- Pierson, F.B.; Robichaud, P.R.; Spaeth, K.E. Spatial and Temporal Effects of Wildfire on the Hydrology of a Steep Rangeland Watershed. Hydrol. Process. 2001, 15, 2905–2916. [Google Scholar] [CrossRef]
- Pierson, F.B.; Carlson, D.H.; Spaeth, K.E. Impacts of Wildfire on Soil Hydrological Properties of Steep Sagebrush-Steppe Rangeland. Int. J. Wildland Fire 2002, 11, 145–151. [Google Scholar] [CrossRef]
- Pierson, F.B.; Robichaud, P.R.; Moffet, C.A.; Spaeth, K.E.; Hardegree, S.P.; Clark, P.E.; Williams, C.J. Fire Effects on Rangeland Hydrology and Erosion in a Steep Sagebrush-dominated Landscape. Hydrol. Process. 2008, 22, 2916–2929. [Google Scholar] [CrossRef]
- Basso, M.; Vieira, D.C.S.; Ramos, T.B.; Mateus, M. Assessing the Adequacy of SWAT Model to Simulate Postfire Effects on the Watershed Hydrological Regime and Water Quality. Land Degrad. Dev. 2020, 31, 619–631. [Google Scholar] [CrossRef]
- Pereira, M.G.; Fernandes, L.S.; Carvalho, S.; Santos, R.B.; Caramelo, L.; Alencoão, A. Modelling the Impacts of Wildfires on Runoff at the River Basin Ecological Scale in a Changing Mediterranean Environment. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Rodrigues, E.L.; Jacobi, C.M.; Figueira, J.E.C. Wildfires and Their Impact on the Water Supply of a Large Neotropical Metropolis: A Simulation Approach. Sci. Total Environ. 2019, 651, 1261–1271. [Google Scholar] [CrossRef]
- Poon, P.K.; Kinoshita, A.M. Spatial and Temporal Evapotranspiration Trends after Wildfire in Semi-Arid Landscapes. J. Hydrol. 2018, 559, 71–83. [Google Scholar] [CrossRef]
- Debano, L.F. The Role of Fire and Soil Heating on Water Repellency in Wildland Environments: A Review. J. Hydrol. 2000, 231, 195–206. [Google Scholar] [CrossRef]
- Soulis, K.X.; Londra, P.A.; Kargas, G. Characterizing Surface Soil Layer Saturated Hydraulic Conductivity in a Mediterranean Natural Watershed. Hydrol. Sci. J. 2020, 65, 2616–2629. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Vaze, J.; Lane, P.; Xu, S. Impact of Bushfire and Climate Variability on Streamflow from Forested Catchments in Southeast Australia. Hydrol. Sci. J. 2015, 60, 1340–1360. [Google Scholar] [CrossRef]
- Ebel, B.A. Simulated Unsaturated Flow Processes after Wildfire and Interactions with Slope Aspect. Water Resour. Res. 2013, 49, 8090–8107. [Google Scholar] [CrossRef]
- Kinoshita, A.M.; Hogue, T.S. Increased Dry Season Water Yield in Burned Watersheds in Southern California. Environ. Res. Lett. 2015, 10, 14003. [Google Scholar] [CrossRef]
- Wine, M.L.; Cadol, D. Hydrologic Effects of Large Southwestern USA Wildfires Significantly Increase Regional Water Supply: Fact or Fiction? Environ. Res. Lett. 2016, 11, 085006. [Google Scholar] [CrossRef]
- Lane, P.N.; Sheridan, G.J.; Noske, P.J.; Sherwin, C.B.; Costenaro, J.L.; Nyman, P.; Smith, H.G. Fire Effects on Forest Hydrology: Lessons from a Multi-Scale Catchment Experiment in SE Australia. Iahs Publ. 2012, 353, 137–143. [Google Scholar]
- Mayor, A.G.; Bautista, S.; Llovet, J.; Bellot, J. Post-Fire Hydrological and Erosional Responses of a Mediterranean Landscpe: Seven Years of Catchment-Scale Dynamics. Catena 2007, 71, 68–75. [Google Scholar] [CrossRef]
- Tan, K.; Flower, D.; Flowers, D. An Event Runoff Coefficient Approach for Assessing Changes in Short-Term Catchment Runoff Following Bushfires. In Proceedings of the 33rd hydrology and water resources symposium, Brisbane, Australia, 26 June–1 July 2011; pp. 1522–1529. [Google Scholar]
- Vega, J.A.; Fernández, C.; Fonturbel, T. Throughfall, Runoff and Soil Erosion after Prescribed Burning in Gorse Shrubland in Galicia (NW Spain). Land Degrad. Dev. 2005, 16, 37–51. [Google Scholar] [CrossRef]
- Marcos, E.; Tarrega, R.; Luis-Calabuig, E. Comparative Analysis of Runo and Sediment Yield with a Rainfall Simulator after Experimental Fire. Arid Soil Res. Rehabil. 2000, 14, 293–307. [Google Scholar] [CrossRef]
- De Luis, M.; González-Hidalgo, J.C.; Raventós, J. Effects of Fire and Torrential Rainfall on Erosion in a Mediterranean Gorse Community. Land Degrad. Dev. 2003, 14, 203–213. [Google Scholar] [CrossRef]
- Yassoglou, N. Desertification in a European Context; Publications Office of the EU: Brussels, Belgium, 1995. [Google Scholar]
- Inbar, M.; Tamir, M.; Wittenberg, L. Runoff and Erosion Processes after a Forest Fire in Mount Carmel, a Mediterranean Area. Geomorphology 1998, 24, 17–33. [Google Scholar] [CrossRef]
- Wine, M.L.; Cadol, D.; Makhnin, O. In Ecoregions across Western USA Streamflow Increases during Post-Wildfire Recovery. Environ. Res. Lett. 2018, 13, 14010. [Google Scholar] [CrossRef]
- Wang, X. Advances in Separating Effects of Climate Variability and Human Activity on Stream Discharge: An Overview. Adv. Water Resour. 2014, 71, 209–218. [Google Scholar] [CrossRef]
- Marhaento, H.; Booij, M.J.; Rientjes, T.H.M.; Hoekstra, A.Y. Attribution of Changes in the Water Balance of a Tropical Catchment to Land Use Change Using the SWAT Model. Hydrol. Process. 2017, 31, 2029–2040. [Google Scholar] [CrossRef]
- Soulis, K.X. Estimation of SCS Curve Number Variation Following Forest Fires. Hydrol. Sci. J. 2018, 63, 1332–1346. [Google Scholar] [CrossRef]
- Candela, A.; Aronica, G.; Santoro, M. Effects of Forest Fires on Flood Frequency Curves in a Mediterranean Catchment/Effets d’incendies de Forêt Sur Les Courbes de Fréquence de Crue Dans Un Bassin Versant Méditerranéen. Hydrol. Sci. J. 2005, 50. [Google Scholar] [CrossRef]
- Goodrich, D.C.; Canfield, H.E.; Burns, I.S.; Semmens, D.J.; Miller, S.N.; Hernandez, M.; Levick, L.R.; Guertin, D.P.; Kepner, W.G. Rapid Post-Fire Hydrologic Watershed Assessment Using the AGWA GIS-Based Hydrologic Modeling Tool. In Proceedings of the Managing Watersheds for Human and Natural Impacts, American Society of Civil Engineers, Reston, VA, USA, 13 July 2005; pp. 1–12. [Google Scholar]
- Nalbantis, I.; Lymperopoulos, S. Assessment of Flood Frequency after Forest Fires in Small Ungauged Basins Based on Uncertain Measurements. Hydrol. Sci. J. 2012, 57, 52–72. [Google Scholar] [CrossRef]
- Papathanasiou, C.; Makropoulos, C.; Mimikou, M. Hydrological Modelling for Flood Forecasting: Calibrating the Post-Fire Initial Conditions. J. Hydrol. 2015, 529, 1838–1850. [Google Scholar] [CrossRef]
- Papathanasiou, C.; Alonistioti, D.; Kasella, A.; Makropoulos, C.; Mimikou, M. The Impact of Forest Fires on the Vulnerability of Peri-Urban Catchments to Flood Events (the Case of the Eastern Attica Region). Glob. Nest J. 2012, 14, 294–302. [Google Scholar] [CrossRef]
- Versini, P.A.; Velasco, M.; Cabello, A.; Sempere-Torres, D. Hydrological Impact of Forest Fires and Climate Change in a Mediterranean Basin. Nat. Hazards 2013, 66, 609–628. [Google Scholar] [CrossRef]
- Batelis, S.C.; Nalbantis, I. Potential Effects of Forest Fires on Streamflow in the Enipeas River Basin, Thessaly, Greece. Environ. Process. 2014, 1, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Leopardi, M.; Scorzini, A.R. Effects of Wildfires on Peak Discharges in Watersheds. IForest 2015, 8, 302–307. [Google Scholar] [CrossRef] [Green Version]
- Kochilakis, G.; Poursanidis, D.; Chrysoulakis, N.; Varella, V.; Kotroni, V.; Eftychidis, G.; Lagouvardos, K.; Papathanasiou, C.; Karavokyros, G.; Aivazoglou, M.; et al. A Web Based DSS for the Management of Floods and Wildfires (FLIRE) in Urban and Periurban Areas. Environ. Model. Softw. 2016, 86, 111–115. [Google Scholar] [CrossRef]
- Yochum, S.E.; Norman, J.B. Wildfire-Induced Flooding and Erosion Potential Modeling: Examples from Colorado: 2012 and 2013. In Proceedings of the 3rd Joint Federal Interagency Conference on Sedimentation and Hydrologic, Reno, Nevada, USA, 19–23 April 2015. [Google Scholar] [CrossRef]
- Ebel, B.A.; Moody, J.A. Parameter Estimation for Multiple Post-Wildfire Hydrologic Models. Hydrol. Process. 2020, 34, 4049–4066. [Google Scholar] [CrossRef]
- Tufekcioglu, M.; Yavuz, M.; Zaimes, G.N.; Dinc, M.; Koutalakis, P.; Tufekcioglu, A. Application of Soil Water Assessment Tool (SWAT) to Suppress Wildfire at Bayam Forest, Turkey. J. Environ. Biol. 2017, 38, 719–726. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Bombino, G.; Carrà, B.G.; D’Agostino, D.; Denisi, P.; Labate, A.; Plaza-Alvarez, P.A.; Zema, D.A. Modeling the Soil Response to Rainstorms after Wildfire and Prescribed Fire in Mediterranean Forests. Climate 2020, 8, 150. [Google Scholar] [CrossRef]
- Efthimiou, N.; Psomiadis, E.; Panagos, P. Fire Severity and Soil Erosion Susceptibility Mapping Using Multi-Temporal Earth Observation Data: The Case of Mati Fatal Wildfire in Eastern Attica, Greece. Catena 2020, 187, 104320. [Google Scholar] [CrossRef] [PubMed]
- Psomiadis, E.; Soulis, K.X.; Efthimiou, N. Using SCS-CN and Earth Observation for the Comparative Assessment of the Hydrological Effect of Gradual and Abrupt Spatiotemporal Land Cover Changes. Water 2020, 12, 1386. [Google Scholar] [CrossRef]
- Soulis, K.X.; Dercas, N. Field Calibration of Weirs Using Partial Volumetric Flow Measurements. J. Irrig. Drain. Eng. 2012, 138. [Google Scholar] [CrossRef]
- Soulis, K.X.; Dercas, N.; Papadaki, C. Effects of Forest Roads on the Hydrological Response of a Small-Scale Mountain Watershed in Greece. Hydrol. Process. 2015, 29. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D. SCS-CN Parameter Determination Using Rainfall-Runoff Data in Heterogeneous Watersheds—The Two-CN System Approach. Hydrol. Earth Syst. Sci. 2012, 16, 1001–1015. [Google Scholar] [CrossRef] [Green Version]
- Soulis, K.X.; Valiantzas, J.D. Identification of the SCS-CN Parameter Spatial Distribution Using Rainfall-Runoff Data in Heterogeneous Watersheds. Water Resour. Manag. 2013, 27, 1737–1749. [Google Scholar] [CrossRef]
- Soulis, K.X.; Valiantzas, J.D.; Dercas, N.; Londra, P.A. Investigation of the Direct Runoff Generation Mechanism for the Analysis of the SCS-CN Method Applicability to a Partial Area Experimental Watershed. Hydrol. Earth Syst. Sci. 2009, 13, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Baltas, E.A.; Dervos, N.A.; Mimikou, M.A. Technical Note: Determination of the SCS Initial Abstraction Ratio in an Experimental Watershed in Greece. Hydrol. Earth Syst. Sci. 2007, 11, 1825–1829. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. College of Agriculture and Life Sciences Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas A&M University System: College Station, TX, USA, 2011. [Google Scholar]
- de Girolamo, A.M.; Barca, E.; Pappagallo, G.; lo Porto, A. Simulating Ecologically Relevant Hydrological Indicators in a Temporary River System. Agric. Water Manag. 2017, 180, 194–204. [Google Scholar] [CrossRef]
- Papadaki, C.; Soulis, K.; Bellos, V.; Ntoanidis, L.; Dimitriou, E. Estimation of a Suitable Range of Discharges for the Development of Instream Flow Recommendations. Environ. Process. 2020, 7, 703–721. [Google Scholar] [CrossRef]
- Papadaki, C.; Soulis, K.; Ntoanidis, L.; Zogaris, S.; Dercas, N.; Dimitriou, E. Comparative Assessment of Environmental Flow Estimation Methods in a Mediterranean Mountain River. Environ. Manag. 2017, 60, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Papadaki, C.; Soulis, K.; Muñoz-Mas, R.; Martinez-Capel, F.; Zogaris, S.; Ntoanidis, L.; Dimitriou, E. Potential Impacts of Climate Change on Flow Regime and Fish Habitat in Mountain Rivers of the South-Western Balkans. Sci. Total Environ. 2016, 540, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Loiselle, D.; Du, X.; Alessi, D.S.; Bladon, K.D.; Faramarzi, M. Projecting Impacts of Wildfire and Climate Change on Streamflow, Sediment, and Organic Carbon Yields in a Forested Watershed. J. Hydrol. 2020, 590, 125403. [Google Scholar] [CrossRef]
- Venkatesh, K.; Preethi, K.; Ramesh, H. Evaluating the Effects of Forest Fire on Water Balance Using Fire Susceptibility Maps. Ecol. Indic. 2020, 110, 105856. [Google Scholar] [CrossRef]
- Havel, A.; Tasdighi, A.; Arabi, M. Assessing the Hydrologic Response to Wildfires in Mountainous Regions. Hydrol. Earth Syst. Sci. 2018, 22, 2527–2550. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Kalin, L. Modelling Effects of Land Use/Cover Changes under Limited Data. Ecohydrology 2011, 4, 265–276. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D. Crop Evapotranspiration (Guidelines for Computing Crop Water Requirements). In FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Herrnegger, M.; Nachtnebel, H.P.; Haiden, T. Evapotranspiration in High Alpine Catchments—An Important Part of the Water Balance! Hydrol. Res. 2012, 43, 460–475. [Google Scholar] [CrossRef] [Green Version]
- Steenhuis, T.S.; Winchell, M.; Rossing, J.; Zollweg, J.A.; Walter, M.F. SCS Runoff Equation Revisited for Variable-Source Runoff Areas. J. Irrig. Drain. Eng. 1995, 121, 234–238. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT-CUP SWAT Calibration and Uncertainty Programs—A User Manual; Eawag, Swiss Federal Institute of Aquatic Science and Technology: Dübendorf, Switzerland, 2015. [Google Scholar]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, and Applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef] [Green Version]
- Brath, A.; Montanari, A.; Moretti, G. Assessing the Effect on Flood Frequency of Land Use Change via Hydrological Simulation (with Uncertainty). J. Hydrol. 2006, 324, 141–153. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. Asabe 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Kokkinou, I.; Ntoulas, N.; Nektarios, P.A.; Varela, D. Response of Native Aromatic and Medicinal Plant Species to Water Stress on Adaptive Green Roof Systems. HortScience 2016, 51, 608–614. [Google Scholar] [CrossRef] [Green Version]
- Dingman Lawrence, S. Physical Hydrology, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; ISBN 9780130996954. [Google Scholar]
- Darracq, A.; Destouni, G.; Persson, K.; Prieto, C.; Jarsjö, J. Scale and Model Resolution Effects on the Distributions of Advective Solute Travel Times in Catchments. Hydrol. Process. 2010, 24, 1697–1710. [Google Scholar] [CrossRef]
- Beven, K.J. Preferential Flows and Travel Time Distributions: Defining Adequate Hypothesis Tests for Hydrological Process Models. Hydrol. Process. 2010, 24, 1537–1547. [Google Scholar] [CrossRef]
- Merheb, M.; Moussa, R.; Abdallah, C.; Colin, F.; Perrin, C.; Baghdadi, N. Hydrological Response Characteristics of Mediterranean Catchments at Different Time Scales: A Meta-Analysis. Hydrol. Sci. J. 2016, 61, 2520–2539. [Google Scholar] [CrossRef] [Green Version]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Zema, D.A.; González-Romero, J.; Moya, D.; de las Heras, J. Changes in Soil Hydraulic Conductivity after Prescribed Fires in Mediterranean Pine Forests. J. Environ. Manag. 2019, 232, 1021–1027. [Google Scholar] [CrossRef]
- Guse, B.; Kiesel, J.; Pfannerstill, M.; Fohrer, N. Assessing Parameter Identifiability for Multiple Performance Criteria to Constrain Model Parameters. Hydrol. Sci. J. 2020, 65, 1158–1172. [Google Scholar] [CrossRef]
- Li, X.; Huang, S.; He, R.; Wang, G.; Tan, M.L.; Yang, X.; Zheng, Z. Impact of Temporal Rainfall Resolution on Daily Streamflow Simulations in a Large-Sized River Basin. Hydrol. Sci. J. 2020, 65, 2630–2645. [Google Scholar] [CrossRef]
- Franco, A.C.L.; de Oliveira, D.Y.; Bonumá, N.B. Comparison of Single-Site, Multi-Site and Multi-Variable SWAT Calibration Strategies. Hydrol. Sci. J. 2020, 65, 2376–2389. [Google Scholar] [CrossRef]
- Tarigan, S.; Stiegler, C.; Wiegand, K.; Knohl, A.; Murtilaksono, K. Relative Contribution of Evapotranspiration and Soil Compaction to the Fluctuation of Catchment Discharge: Case Study from a Plantation Landscape. Hydrol. Sci. J. 2020, 65, 1239–1248. [Google Scholar] [CrossRef]
- Larbi, I.; Obuobie, E.; Verhoef, A.; Julich, S.; Feger, K.H.; Bossa, A.Y.; Macdonald, D. Water Balance Components Estimation under Scenarios of Land Cover Change in the Vea Catchment, West Africa. Hydrol. Sci. J. 2020, 65, 2196–2209. [Google Scholar] [CrossRef]
- Pooralihossein, S.; Delavar, M. A Multi-Model Ensemble Approach for the Assessment of Climatic and Anthropogenic Impacts on River Flow Change. Hydrol. Sci. J. 2020, 65, 71–86. [Google Scholar] [CrossRef]
- Bart, R.R. A Regional Estimate of Postfire Streamflow Change in California. Water Resour. Res. 2016, 52, 1465–1478. [Google Scholar] [CrossRef] [Green Version]
Parameter Name | Parameter Description | Value Change Method | Range |
---|---|---|---|
ESCO | Soil evaporation compensation factor. | replace | (0, 1) |
EPCO | Plant uptake compensation factor. | replace | (0, 1) |
SOL_AWC | Available water capacity of the soil layer. | relative | (−0.5, 0.5) |
SOL_K | Saturated hydraulic conductivity. | relative | (−0.5, 0.8) |
SOL_Z | Depth from soil surface to bottom of layer | relative | (−0.5, 1.5) |
ALPHA_BF | Baseflow alpha factor. | absolute | (−0.048, 0.95) |
GDRAIN | Drain tile lag time. | absolute | (0, 100) |
GW_DELAY | Groundwater delay. | absolute | (−10, 300) |
GW_REVAP | Groundwater "revap" coefficient. | absolute | (−0.02, 0.18) |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur. | absolute | (−500, 2000) |
RCHRG_DP | Deep aquifer percolation fraction. | absolute | (−0.05, 0.95) |
REVAPMN | Threshold depth of water in the shallow aquifer for “revap” to occur. | relative | (−0.6, 0.4) |
LATTIME | Lateral flow travel time. | absolute | (0, 180) |
CNCOEF | Plant ET curve number coefficient. | absolute | (−0.5, 1) |
Pre-Fire Model | Post-Fire Model | |||
---|---|---|---|---|
Independent Calibration (a,b) | Using Post-Fire Model Calibrated Parameters (c) | Independent Calibration (a) | Using Independent Pre-fire Model Calibrated Parameters (b) | |
Calibration | ||||
NSE | 0.63 | 0.47 | 0.84 | 0.82 |
MNSE | 0.54 | 0.33 | 0.61 | 0.57 |
PBIAS (%) | −2.8 | 17.6 | 4.8 | −5.6 |
Validation | ||||
NSE | 0.56 | 0.42 | 0.73 | 0.7 |
MNSE | 0.51 | 0.28 | 0.57 | 0.53 |
PBIAS (%) | −3.9 | 13.9 | 6.3 | −7.9 |
Observed Entire Period | Observed Pre-Fire | Observed Post-Fire | Simulated Entire Period Pre-Fire Conditions | Simulated Entire Period Post-Fire Conditions | |
---|---|---|---|---|---|
Statistic | Discharge (m3/s) | ||||
Average | 0.027 | 0.019 | 0.033 | 0.020 | 0.034 |
Maximum | 4.942 | 0.616 | 4.942 | 1.343 | 4.801 |
Minimum | 0.003 | 0.003 | 0.004 | 0.001 | 0.002 |
Q95 | 0.004 | 0.004 | 0.005 | 0.002 | 0.003 |
Q90 | 0.005 | 0.004 | 0.006 | 0.003 | 0.004 |
Q75 | 0.007 | 0.006 | 0.009 | 0.005 | 0.006 |
Median (Q50) | 0.013 | 0.010 | 0.017 | 0.010 | 0.010 |
Q25 | 0.025 | 0.015 | 0.031 | 0.022 | 0.020 |
Q10 | 0.047 | 0.045 | 0.049 | 0.047 | 0.048 |
Q5 | 0.069 | 0.071 | 0.069 | 0.064 | 0.117 |
Q1 | 0.154 | 0.130 | 0.219 | 0.132 | 0.388 |
Conditions without the Effect of Forest Fire | Conditions with the Effect of Forest Fire | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | PREC | REF ET | PERC | ACT ET | WATER YIELD | SED YIELD | PERC | ACT ET | WATER YIELD | SED YIELD |
mm | mm | mm | mm | mm | t/ha | mm | mm | mm | t/ha | |
2005 | 778.6 | 767.9 | 323.4 | 351.0 | 137.8 | 0.02 | 360.2 | 283.5 | 201.0 | 0.03 |
2006 | 692.5 | 824.1 | 263.7 | 372.3 | 111.0 | 0.02 | 319.4 | 259.0 | 149.6 | 0.03 |
2007 | 541.5 | 833.9 | 103.3 | 399.2 | 57.8 | 0.02 | 180.3 | 267.6 | 95.5 | 0.02 |
2008 | 484.0 | 883.1 | 76.4 | 354.4 | 36.6 | 0.01 | 143.0 | 231.2 | 75.5 | 0.02 |
2009 | 530.1 | 792.3 | 167.7 | 366.7 | 54.7 | 0.02 | 240.2 | 262.5 | 90.5 | 0.08 |
2010 | 669.0 | 872.6 | 155.6 | 402.5 | 62.9 | 0.02 | 249.7 | 290.5 | 111.0 | 0.02 |
2011 | 758.5 | 838.9 | 262.7 | 429.0 | 120.1 | 0.03 | 311.7 | 301.1 | 163.2 | 0.45 |
2012 | 796.0 | 878.2 | 124.8 | 374.4 | 58.1 | 0.02 | 266.2 | 249.2 | 154.8 | 0.05 |
2013 | 687.1 | 881.6 | 264.7 | 384.2 | 129.0 | 0.02 | 374.2 | 267.1 | 168.2 | 0.17 |
2014 | 744.3 | 828.6 | 192.9 | 414.2 | 62.2 | 0.02 | 298.6 | 298.8 | 150.3 | 0.03 |
Per Year | 668.2 | 840.1 | 193.5 | 384.8 | 83.0 | 0.02 | 274.4 | 271.0 | 136.0 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soulis, K.X.; Generali, K.A.; Papadaki, C.; Theodoropoulos, C.; Psomiadis, E. Hydrological Response of Natural Mediterranean Watersheds to Forest Fires. Hydrology 2021, 8, 15. https://doi.org/10.3390/hydrology8010015
Soulis KX, Generali KA, Papadaki C, Theodoropoulos C, Psomiadis E. Hydrological Response of Natural Mediterranean Watersheds to Forest Fires. Hydrology. 2021; 8(1):15. https://doi.org/10.3390/hydrology8010015
Chicago/Turabian StyleSoulis, Konstantinos X., Konstantina Amalia Generali, Christina Papadaki, Christos Theodoropoulos, and Emmanouil Psomiadis. 2021. "Hydrological Response of Natural Mediterranean Watersheds to Forest Fires" Hydrology 8, no. 1: 15. https://doi.org/10.3390/hydrology8010015
APA StyleSoulis, K. X., Generali, K. A., Papadaki, C., Theodoropoulos, C., & Psomiadis, E. (2021). Hydrological Response of Natural Mediterranean Watersheds to Forest Fires. Hydrology, 8(1), 15. https://doi.org/10.3390/hydrology8010015